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Abstract
We develop a novel methodology that uses machine learning to produce accurate estimates of consumption per
capita and poverty in 10x10km cells in sub-Saharan Africa over time. Using the new data, we revisit two prominent
papers that examine the effect of institutions on economic development, both of which use “nightlights” as a proxy
for development. The conclusions from these papers are reversed when we substitute the new consumption data
for nightlights. We argue that the different conclusions about institutions are due to a previously unrecognized
problem that is endemic when nightlights are used as a proxy for spatial economic well-being: nightlights suffer
from nonclassical measurement error. This error will typically lead to biased estimates in standard statistical
models that use nightlights as a spatially disaggregated measure of economic development. The bias can be
either positive or negative, and it can appear when nightlights are used as either a dependent or an independent
variable. Our research therefore underscores an important limitation in the use of nightlights, which has become
the standard measure of spatial economic well-being for studies focusing on developing parts of the world. It
also demonstrates how machine learning models can generate a useful alternative to nightlights, with important
implications for the conclusions we draw from the analyses in which such data are employed.
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1. Introduction

Spatially disaggregated data on key measures of economic development are crucial to the

study of a wide-range of questions about economic progress, violence and conflict, and policies

to alleviate poverty, among others. Such data, however, is lacking for much of the developing

world, and especially in Africa. Scholars have therefore turned to the use of satellite images of

luminosity at night (“nightlights”). Pioneered by Henderson et al (2011, 2012) and Chen and

Nordhaus (2011), nightlights are a natural proxy for economic development, with brighter

areas associated with higher development. Since nightlights are measured in very small pixels

(grid cells are measured at a resolution of 30 arc-seconds, or in cells that are approximately

1 km2 at the equator), they can be aggregated at essentially any spatial level. And though

changes over time in satellite technology create challenges, time series analysis is possible

because yearly data exist for the whole world since 1992. Given these features of nightlights

and the paucity of alternatives, it is not surprising that so many scholars now use nightlights

in empirical research on economic development and to evaluate economic outcomes.2

However, there are two important limitations associated with using nightlights (NL) as

a spatially fine-grained proxy for development. The first is well-known: nightlights do not

have a substantively interpretable metric, providing at most ordinal information about spatial

economic activity. But measures expressed in widely understood cardinal metrics, like income

or consumption levels, are essential because they make it possible to calculate poverty rates,

growth rates, levels of inequality, and other key indicators of spatial economic development.

The second limitation has received little if any attention in the previous literature:

nightlights suffer measurement error that is typically non-classical. That nightlights suffer

measurement error has of course been widely recognized, including by Chen and Nordhaus

(2011).3 But the fact that measurement error is non-classical poses a considerable challenge for

research using NL as a proxy for spatially disaggregated development in regression models

because estimates from such models will typically be biased.

2See Michalopoulos and Papaioannou (2018), and Gibson, Olivia and Boe-Gibson (2020) for reviews of the
literature in economics, and see Burke et. al. (2021) for a discussion of how satellite imagery has been used for
assessing progress toward sustainable development goals. Figure A.1 in Appendix A provides evidence of the
rapid increase in the use of nightlights in economics research over time.

3See Gibson, Olivia and Boe-Gibson (2020) for discussions of the sources of measurement error.
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This paper makes two contributions. First, we develop new spatially disaggregated

estimates of economic well-being that are denominated in an easily interpretable metric,

consumption dollars. Second, we use these data to undergird our argument that measurement

error in NL is non-classical, leading to biases of unknown direction in estimates from regression

models that use NL as a dependent or independent variable.

To develop spatially disaggregated estimates of economic well-being, our approach

follows a strategy used in previous research.4 In broad strokes, this strategy uses individual-

level surveys that have information on asset ownership to create an asset index that serves as

a proxy for economic well-being. Such surveys are obviously very limited in their geographic

scope (particularly in developing parts of the world), and they are conducted infrequently.

But the asset indices are geocoded, and thus can be used to create a training variable for use

in machine learning models. The asset-based training variable can be predicted by variables

like nightlights, making it possible to estimate economic well-being across essentially any

space and over time. The results of such efforts can therefore be used to assess development

outcomes, as summarized in Burke et. al (2021).

A central limitation of these existing studies, however, is that the asset index used as a

training variable lacks interpretability (Yeh et al. 2020, McCallum et al., 2022) and sometimes

even cross-country comparability (Chi et al. 2022).5 In this sense, it shares the same limitation

as nightlights. Our approach addresses this limitation by developing a training variable that

measures the log of consumption per capita in 2011 PPP dollars. We do this by developing

a simple mathematical framework for combining individual-level asset indices with macro

data on consumption per capita and inequality to create individual-level measures of log

consumption per capita.

More specifically, we generate geographically fine-grained measures of consumption

in three steps. First, we construct the new training variable, denominated in (log) con-

sumption dollars, using geocoded household-level information on asset ownership from

the Demographic and Health Surveys (DHS), along with the World Bank’s WB-PIP data on

4See, e.g., Jean et. al. (2016), Yeh et al. (2020 and 2021), Chi et al. (2022) and Aiken et al. (2022).
5An additional limitation is that to create an asset-based training variable that is comparable across time and

space requires the strong assumption that the economic value of particular assets is constant across time and space.
See section B in the Appendix for a discussion.
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country-level consumption and inequality.6 Second, we employ this variable to train random

forest models that use a wide variety of predictors – including nightlights, as well as a cell’s

remoteness, geography, disease environment, CO2 emissions, population, and characteristics

of the ecosystem, among others – to predict consumption in the DHS cells and to assess

prediction accuracy. Third, we use the trained models to create estimates of log consumption

per capita across 10x10km cells. We then estimate poverty rates at the cell level by using a

non-parametric approach that incorporates information from the nearly one million household

surveys from DHS. We call the resulting estimates the Spatial Economic Development (“SED”)

data.7.

This procedure results in a novel dataset providing annual measures of per capita

consumption and poverty rates at the cell level across 42 sub-Saharan African countries from

2003 to 2018. As we detail below, we improve on prediction accuracy with respect to previous

papers, and do so at much lower computational cost. In fact, our entire analysis is executable

in STATA, underscoring its feasibility for low-resource computing environments. Thus, the

new data serves as a proof of concept and demonstrates the potential for our methods to be

readily applied in generating new data for all developing countries.

Figure 1 illustrates how the SED data differ from nightlights. Panel (a) shows a map of

nightlights in Tanzania (a country at about the 33rd percentile of development in Africa) in

2013 (a year when the more accurate VIIRS data is used to measure nightlights).8 The most

striking feature of the map is the vast swaths of darkness – 89% of cells in Tanzania are dark,

and population estimates suggest 54% of Tanzanians live in these dark cells. The map also

indicates that lit areas are almost exclusively located in larger cities and along the major roads,

and that there is little differentiation in brightness levels when one crosses a national border.

It is also important to note that though there is variation in light intensity across the 11% of

cells that are lit, this variation is essentially uninterpretable given the metric used to measure

6See https://dhsprogram.com/Data/ and https://pip.worldbank.org/ for the DHS and the WB-PIP data,
respectively.

7The new data can be visualized at https://www.spatial-economic-development.com/ where detailed
consumption and poverty maps for the years 2003-2018 can be found

8The Visible Infrared Imaging Radiometer Suite (VIIRS) data, operational since 2012, provides more accurate
and higher-resolution nightlight data compared to the older Defense Meteorological Satellite Program (DMSP)
data. VIIRS offers improved sensitivity to low light levels and better calibration, making it more suitable for
detailed monitoring and analysis of nighttime lights.
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Figure 1. Maps of nightlights and consumption in Tanzania. Panel (a) shows the map of (log) nightlights in 2013. The
value 1 is added to each nightlight score so that when taking logs, dark areas on the map have a value of 0. Panel (b) shows
the map of consumption per capita in 2013 using the SED estimates (RF-2) developed in this paper.

light intensity. Finally, the map reminds us that measures of nightlight intensity represent

the same level of economic development no matter where the nightlight is measured. Thus,

a cell with a nightlight measure of, say, 12.55 is assumed to have the same level of economic

development whether this cell is in a city or the country, or whether the cell is in Tanzania, in

a richer country (like Rwanda) or in a poorer one (like the DRC).

Panel (b) in the figure shows a map of consumption per capita using the new SED data.

In addition to the fact that the cells are denominated in dollars, there are a number of clear

differences from the nightlights map. These differences include that the consumption map (i)

shows considerable variation within dark areas and within lit areas; (ii) reveals largely dark

regions that have relatively high levels of development, such as southwest area of Tanzania

near Lake Malawi; (iii) indicates how consumption changes as one moves along or away from

highways, or away from cities; and (iv) shows that differences in consumption per capita are

large across some national border areas but small across others.

We use the SED data to make our second contribution, which is to demonstrate that

measurement error in nightlights is non-classical and that results from statistical models using

nightlights as disaggregated measures of development therefore produce biased estimates,
4



regardless of whether nightlights are used to construct a dependent or an independent

variable. To illustrate how non-classical measurement error in nightlights produces bias,

we reconsider two prominent papers that use nightlights to study the effect of institutions

on political development. Michalopoulos and Papaioannou (2013) use nightlights as a proxy

for economic development to show that centralized ethnic institutions positively affect the

latter. Michalopoulos and Papaioannou (2014) similarly use nightlights to show that strong

national institutions (related to rule of law and corruption control) have no causal effect

on national development. We use the data and statistical models from these two papers

but substitute the SED measures of consumption for nightlights. Since predictions from

machine learning models often suffer from nonclassical measurement error, we use a simple

approach to eliminate such error from the SED estimates. We then use the corrected measure

of consumption in the regressions. The results are the reverse of those in the original papers,

with no effect of centralized ethnic institutions on development, and a strong positive effect

of national institutions on development.

Why the change in results? We argue that non-classical measurement error (NCME) in

nightlights plays a central role. More specifically, we argue that centralized ethnic institutions

are positively correlated with the measurement error in nightlights, causing an upward bias in

the coefficient estimates for centralized ethnic institutions. This explains how Michalopoulos

and Papaioannou (2013) can obtain significant results when the true effect of ethnic institutions

is likely zero. Similarly, we argue that national institutions are negatively correlated with

nightlights measurement error, causing a downward bias in the coefficient estimates for the

variables measuring these institutions. This explains how Michalopoulos and Papaioannou

(2014) can obtain null results when in fact national institutions likely have a positive effect on

development.

The problem of bias is not specific to these two papers. The NCME arises largely because

so many cells in the developing world are dark, making the problem endemic to the use

of nightlights as a spatially disaggregated measure of development. Without better data

than nightlights, it is very difficult to know whether the bias resulting from the NCME is

one of amplification or attenuation. Thus, there is a general problem inherent to making
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inferences from models that use nightlights as either an outcome or explanatory variable. The

dollar-denominated SED data, corrected to eliminate NCME, not only makes possible clear

substantive interpretation of results, it also makes it possible to avoid the problem of bias

inherent to nightlights.

The paper is organized as follows. Section 2 describes the problem of NCME in

nightlights, including a discussion of the bias created when nightlights are used in regression

models. Section 3 introduces the mathematical framework that we employ to construct

the new training variable. It then describes the construction of this variable and presents

evidence using both micro and macro data to validate the new measure. Section 4 describes

the methods and the data used to estimate prediction models for the new training variable. It

then assesses the prediction accuracy of the models. The section also describes our approach

to estimating poverty rates in cells, and presents evidence that the cluster-level predictions,

when aggregated to the national level, result in measures of consumption and poverty that

are closely aligned with external measures of these national aggregates. Section 5 presents the

SED data for 42 countries over time, and it describes evidence that these data are capturing

within-country variation in a meaningful way.

Sections 6 and 7 focus on using the new data in regression analysis. Section 6 describes

the problem of non-classical measurement error in the estimates of consumption, which can be

seen in the negative correlation between the level of consumption in a cell and its associated

predicted error. We then describe our approach for ridding the data of this error. Section

7 uses the SED data (with the NCME eliminated), to re-estimate models in Michalopoulos

and Papaioannou (2013) and Michalopoulos and Papaioannou (2014). This exercise allows

us (a) to illustrate the problem of biased estimates due to non-classical measurement error

in nightlights, (b) to describe how SED data can be used to estimate the substantive size

of the effects of institutions on economic outcomes, and (c) to conclude that strong national

institutions have a very large effect on development whereas ethnic institutions do not. Section

8 concludes. Additional information is provided in the Appendix.
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2. The problem of non-classical measurement error in nightlights

It is well-known that nightlights are measured with substantial error due to various factors,

including changes in satellite technology, sensor saturation, overglow effects, and other issues

(see Gibson et al. (2020) for a comprehensive review). Here we focus on the problem of

non-classical measurement error in nightlights, which largely stems from the fact that for the

vast majority of territory in the developing world, satellites detect no light at night. This

problem was noted by Chen and Nordhaus (2011, p. 8594), who wrote that “. . . luminosity data

do not allow reliable estimates of low-output-density regions largely because the level of stable lights is

too low to be distinguished from the background lights and is set at zero.” In sub-Saharan Africa, for

instance, around 92% of the 10x10km cells are dark in the period 2006-2018.9

In what follows, we argue that this “problem of darkness” extends beyond mere data

censoring; it involves significant misclassification, where economically prosperous areas are

mistakenly identified as poor, and vice versa. This leads to nonclassical measurement error

in NL data, which poses a considerable challenge for research employing NL in regression

analysis. The remainder of this section discusses why the error in NL is nonclassical and

summarizes the problems arising when using NL in standard statistical models.

Nonclassical measurement error in NL. Why should we expect NL to suffer non-classical

measurement error? To address this question, it is useful to first recall the difference between

the two types of measurement error in the NL context. Let y∗ be the “true" measure of economic

well-being, and define nightlights as a noisy proxy for y∗, with an additive error such that

NL = y∗ + u. Classical measurement error occurs when the true indicator y∗ is uncorrelated

with u. When y∗ is correlated with u, the measurement error is nonclassical. This type of error

is typically more difficult to deal with than is classical error, as we summarize below.

A central reason that NCME arises with nightlights is because the vast majority of cells

in the developing world are dark. Importantly, the dark areas are full of people. Panel (a)

9There are two main sources of nighttime lights data. For the period before 2012, we utilize the Defense
Meteorological Satellite Program (DMSP) dataset. In this dataset, 93% of the cells in sub-Saharan Africa are unlit,
and this figure increases to 99% after correcting for the issue of overglow. For the period from 2013 to 2018, we
employ the more accurate Visible Infrared Imaging Radiometer Suite (VIIRS) dataset. According to this dataset,
89% of the cells appear to be unlit for the years 2013-2018.
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Figure 2. Relative frequency of (log) population (Panel a) and (log) consumption per capita (Panel b) in lit and unlit
areas in Sub-Saharan Africa. To compute these graphs, Sub-Saharan Africa has been divided in cells of 10×10 km. The
histogram in Panel (a) reflects the relative frequency distribution of population in lit versus unlit cells for the period 2006–
2018. Panel (b) presents the histogram of this paper’s measure of log consumption per capita in lit versus unlit areas for the
subsample of cells for which geo-located survey data exist in this period (see section 3 for details). Yearly nightlights data
comes from DSMP (blur data) for the period 2006-2012 and from VIIRS for the 2013-2018 period.

of Figure 2 shows the distribution of estimated cell population across lit and dark 10km2

cells in 42 African countries from the period 2006-18 (which is the period for which we have

DHS data). Although lit cells are obviously more populated, there is a large overlap in the

two distributions. In 2018, existing population estimates suggest that 51.4% percent of the

population lived in dark cells.

Since roughly half the population lives in dark areas, one should expect that there is

substantial economic activity in these areas. This can be seen in panel (b) of the figure, which

shows the distribution of (log) consumption per capita in dark and lit cells for the subset

of country-years for which we have surveys to create training data.10 Forty-five percent of

the surveyed locations are “dark,” and though lit pixels are richer on average, confirming

the expected connection between nightlights and economic development, there is remarkable

overlap of the two distributions and a wide range of consumption values within both sets of

cells.

10The log-consumption data has been computed by combining information from 85 geo-located surveys from
the DHS and country-level consumption per capita data from the World Bank; see section 3 for details.
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The link between NCME in nightlights and the “problem of darkness” is easy to appreciate

if one first considers the case where y∗ is binary, i.e., y∗ equals 1 when a latent variable of well-

being exceeds a certain threshold. Consider also a binary version of NL, where all strictly

positive NL values are set equal to 1. Since NL = y∗ + u, u can only take three values in this

simple example: u = 0 (if there is no misclassification), u = −1 (false negative case, where

y∗ = 1 and NL = 0), and u = 1 (false positive case, where y∗ = 0 and NL = 1). As is well-known,

misclassification in binary variables always results in nonclassical measurement error (Meyer

and Mittag, 2017). For the case of nightlights just described, there is obviously a negative

correlation between u and y∗.

Because of the vast areas of darkness, when we consider continuous values in NL and y∗,

the reasoning from the binary case still operates. Given the problem of darkness, NL = 0 for

more than 90% of the territory and, as is clear from Figure 2, there are many people and much

economic activity in these dark spaces. This implies that y∗ = −u for the vast majority of cells,

thus ensuring a negative correlation between y∗ and u.

Using NL in Regression Analysis. The presence of non-classical measurement error has

significant implications for the interpretation and validity of OLS and IV estimators (see

Bound et al. (1994) for a comprehensive treatment). These implications affect the way we

understand the results presented in section 7, and so we briefly review them here.

We first consider the case where NL is employed as a dependent variable in a spatially

disaggregated data set. Suppose we would like to estimate the (true) model y∗ = βx + ϵ, but

NL = y∗ + u is used in place of the unobserved y∗. We therefore estimate NL = βx + (ϵ + u).

Assume for simplicity that β ≥ 0 (otherwise, redefine x accordingly), that all variables are in

deviations from their mean, and that x is exogenous. It follows that the bias δ of the OLS

estimator is given by:

δ = β̂ − β =
cov(x′u)
var(x)

+ op(1). (1)

In the classical case, u is assumed to be uncorrelated with y∗ and x and therefore δ
p
→ 0. Thus,

OLS coefficients are consistent, although they will be less precise due to increased variability.
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In the non-classical case, the problems are considerable: since u is correlated with y∗, it is

also likely to be correlated with x (as y∗ and x are in principle related). This implies that δ
p
↛ 0.

Furthermore, the sign of the bias is determined by the sign of the correlation between x and u,

which is often unknown. Since this simple example assumes that β ≥ 0, a negative correlation

will generate an attenuation bias whereas a positive correlation will generate an amplification

bias.

Next consider the case where NL is a regressor. We wish to estimate the (true) model

z = βy∗ + ε but instead estimate z = βNL + (ε − βu), which implies

β̂ =
(
1 −

cov(y∗,u) + σ2
u

σ2
NL

)
β + op(1) = (1 − γ)β + op(1). (2)

In the classical error case, endogeneity issues arise and OLS coefficients are inconsistent.

However, as cov(y∗,u) = 0, the coefficients are always biased towards zero (provided σ2
u > 0).

Given the presence of this attenuation bias, researchers can interpret estimated coefficients

as lower bounds on the true relationships between the variables.11 But the problems are

again more thorny when the error is non-classical. Assuming that cov(y∗,u) < 0, the bias

is attenuating if γ > 0, which will occur if var(u) > −cov(y∗,u). As cov(y∗,u) becomes more

negative, attenuation can become sufficiently severe that the sign of the estimated coefficient

will be reversed. If γ < 0, (i.e., when var(u) < −cov(y∗,u)), the bias is amplifying.

Can this problem be solved using an instrument for the mismeasured regressor? This is

an appropriate solution when the error is classical. Unfortunately, in the nonclassical case,

finding suitable IVs is much more difficult. In this case, the endogeneity problem might not

be confined to the mismeasured variable exclusively, as in the classical case. The reason is

that the error term u is correlated with development, y∗, and since in multiple regression other

regressors are typically also correlated with y∗, those regressors can also become endogenous.

Consequently, using IV estimation to address the NCME when NL is a regressor might require

identification of appropriate instruments for all the regressors in the model that are correlated

with y∗. But not only are more IVs needed, finding valid IVs is more complicated in the

11Furthermore, when the measurement error is limited to a single regressor, it is possible to obtain an upper
bound of the true coefficient by computing the reverse regression (i.e., using the mismeasured variable as a
dependent variable). This classical finding, as documented by Frisch in 1934, provides valuable estimated bounds
on the coefficients.
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nonclassical case. This is due to the fact that a valid IV needs to be correlated with the

endogenous variable(s) but uncorrelated with u. But since u and y∗ are in fact correlated, the

task of finding instruments that satisfy both conditions is formidable.

In summary, when conducting regressions using NL as either a dependent or independent

variable, inconsistent coefficients are likely to emerge due to nonclassical measurement error.

This inconsistency can result in attenuation or amplification bias, making the interpretation of

estimates challenging. Furthermore, attempting to mitigate this issue through IV estimation

is difficult, as nonclassical measurement error complicates considerably the search for valid

instruments.

3. A new measure of spatial consumption per capita

This section presents a novel measure of per capita economic well-being, one that has high

spatial resolution and that is denominated in an easily interpretable metric. The measure is

created using supervised machine learning, which involves training a computational model

on a dataset that includes both the geocoded target variable, known as the training variable

and the geocoded predictors (also known as features). We use random forests, which learn by

recognizing complex and potentially highly nonlinear relationships between the features and

the training variable.

The primary challenge associated with using machine learning to this end is to identify

an appropriate variable for training the model. The training variable must be geographically

fine-grained, have broad temporal and spatial scope to ensure comprehensive learning by the

model, and be denominated in a metric useful for economic research, such as consumption

or income. Unfortunately, in the context of sub-Saharan Africa and many other developing

parts of the world, this appropriate training variable does not exist. Several data sources are

available, but none that combine adequate geographic and temporal scope with a measure of

economic well-being denominated in a useful metric. For instance, the Living Standards

Measurement Study (LSMS) uses surveys to measure household consumption and asset

ownership, but in sub-Saharan Africa the number of usable surveys containing geocoded

enumeration areas with sufficient respondents in each is too small to adequately train a
11



predictive model. The Demographic and Health Surveys (DHS) offer broad temporal and

spatial scope and have geocoded enumeration areas with sufficient respondents. But the

only measure of economic well-being that can be derived from these surveys is an index of

asset ownership, which is expressed in arbitrary units. Finally, the World Bank (WB-PIP)

has amassed an extensive collection of surveys on income and/or consumption levels from

developing countries, but the publicly accessible data are mostly limited to different aspects of

the country-level distribution, such as its mean, the Gini coefficient, poverty rates or deciles.12

Our solution to this problem is to develop a framework for translating an asset index

into a measure of consumption. This allows us to leverage the broad temporal and spatial

scope of the DHS surveys, but to do so in a way that utilizes a training variable that contains

interpretable economic information. In the remainder of this section, we first introduce a

simple mathematical framework designed to enable the computation of a novel measure of

consumption by integrating existing datasets. In so doing, we make clear the assumptions

underlying the construction of the new measure, and discuss the consequences when the

assumptions are violated. We then describe how we implement this framework and conclude

the section by describing evidence to validate the measure, including a critical examination of

the key assumptions within the framework.

3.1. Deriving the Training Variable: Mathematical Framework. We assume the existence

of a latent variable, y∗, which represents the “true" level of economic well-being. While we

interpret y∗ as the log of per capita consumption (expressed in log dollars for the sake of

this discussion), it could alternatively embody other economic metrics such as income or

expenditure.13

While y∗ is unobserved, two proxies for this quantity exist and can be (at least partially)

observed: yC and yA. yC is a consumption index, also measured in log dollars. The second

indicator, yA, is an index of asset ownership.14 We adopt a framework similar to Chen and

12Recently, the World Bank has begun to grant access to microdata via the Poverty and Inequality Platform.
However, the number of surveys for which these data are accessible remains quite limited. For further information
and data availability, see at https://pip.worldbank.org/home.

13Throughout this paper, unless explicitly indicated otherwise, all variables are expressed in logarithmic form.
14In practice, the variable yA is observed at the individual level across numerous country years, utilizing DHS

surveys. However, for yC, only measures of centrality and dispersion are available at the country-year level,
sourced from the WB-PIP data.
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Nordhaus (2011) and Pinkovskiy and Sala-i-Martin (2016) and assume that both yA and yC are

linearly related to y∗ in the following way.15

Assumption A. The variables yC
ict and yA

ict are related to y∗ict as follows:

yC
ict = y∗ict + ϵ

C
ict, (3)

yA
ict = αct + βcty∗ict + ϵ

A
ict, βct > 0, (4)

where i indexes individuals, c indexes countries, and t indexes time. The errors ϵCict and ϵAict

have zero mean, are mutually uncorrelated and are uncorrelated with y∗ict.

Equation (3) expresses the assumed relationship between existing consumption data and

y∗. It implies that although yC
ict is measured with error, it is unbiased; i.e., Ect(yC

ct) = µ
C
ct =

Ect(y∗ct) = µ
∗

ct, where Ect(.) represents the expected value over the distribution of individuals

for country c at time t. Equation (4) expresses the assumed relationship between an asset

index, yA, and y∗. yA
ict is measured in different units than yC

ict and y∗ict and, since these units

are arbitrary, we assume without loss of generality that yA
ct has a mean of zero and a standard

deviation equal to 1 for each country c and year t (otherwise, redefine αct and βct accordingly).

Using equation (4), define a new proxy for y∗ as ỹ∗ict = (yA
ict −αct)/βct, which can be written

as

ỹ∗ict = y∗ict + ϵ̃ict, where ϵ̃ict = ϵ
A
ict/βct. (5)

The proxy variable ỹ∗ict has two key properties. First, it is an unbiased proxy for y∗ict that is

measured in the same units as y∗ict (i.e., log dollars). Second, if αct and βct were known, ỹ∗ict

could be observed at the micro level provided yA
ict is observable too. To identify the parameters

αct and βct, note that combining equations (3) and (4) yields

yC
ict =

(yA
ict − αct)

βct
+ (ϵCict − ϵ

A
ict/βct). (6)

15See also Hruschka et al. (2015) for an alternative strategy to transform asset-based indices. Their approach
is developed under very stringent distributional assumptions since it adopts parametric assumptions on the
distribution of the asset-based index, as opposed to the approach presented in this section.
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Given that E(yA
ict) = 0 and Var(yA

ict) = σ
2
yA

ct
= 1, equation (6) implies that

E(yC
ct) = µyC

ct
=
−αct

βct
, and (7)

Var(yC
ct) = σ

2
yC

ct
= 1/β2

ct + (σ2
ϵCct
− σ2
ϵAct
/β2

ct), (8)

where σ2
ϵict

denotes the variance of ϵict for i = {C,A}.

To simplify the expressions ofαct and βct, Assumption B is very useful (though we examine

the consequences of its violation below).

Assumption B. The variances of the measurement error in yC
ct (the consumption variable) and

in ỹ∗ct (the asset variable transformed by αct and βct into a measure of consumption) are similar

in magnitude; i.e., σ2
ϵCct
− σ2
ϵAct
/β2

ct ≈ 0.

Under Assumption B, equation (8) simplifies to Var(yC
ct) = σ

2
yC

ct
= 1/β2

ct. Therefore, this

assumption makes it possible to obtain expressions for αct and βct that depend only on country

level moments of yC
ct:

βct = 1/σyC
ct
, and αct = −βctµyC

ct
⇒ αct = −

µyC
ct

σyC
ct

. (9)

Equation (9) implies that consistent estimates for αct and βct can be computed by plugging

consistent estimates of µyC
ct

and σyC
ct

in those expressions. An estimate for ỹ∗ict, which we will

call ŷ∗ict, is therefore obtained by replacing αct and βct with their corresponding estimates:

ŷ∗ict =
(yA

ict − α̂ct)

β̂ct
= σ̂yC

ct
yA

ict + µ̂yC
ct
. (10)

To summarize, assumptions A and B make it possible to construct a new proxy of (log)

consumption at the individual level, ŷ∗ict, by combining two types of (existing) datasets, one on

individual-level asset ownership (DHS) and another that provides the first and second order

moments of the country-level consumption distribution (WB-PIP).

3.2. Violations of key assumptions. We now consider the consequences of violating the two

key assumptions in the mathematical framework.
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Violation of Assumption A. Assumption A has two key elements. The first is that through their

connection with y∗, yC
ict and yA

ict are linearly related (eq. 6). The second is that yC
ict is an unbiased

proxy, i.e., Ect(yC
ct) = µ

∗

ct.

If Assumption A does not hold, there is no reason to expect that yC
ict and yA

ict should have

an empirical relationship that is linear. We will examine this implication in section 3.4 using

data from the LSMS, as these surveys contain information about yC
ict and yA

ict for the same

household.

If yC
ict is not an unbiased proxy of y∗ict, ỹ∗ict will not be unbiased either. More specifically,

assume that yC
ict = δ0 + δ1y∗ict + ϵ

C
ict (and, therefore, Ect(yC

ct) = δ0 + δ1µ∗ct), which implies that

Ect(ỹ∗ct) = δ0 + δ1µ∗ct.
16 It follows the bias of ỹ∗ict will be similar to the bias of yC

ict, but no worse.

Unfortunately, since data on y∗ is not available, it is not possible to test this assumption.

This fact highlights the importance of using good quality country-level data to transform the

variables, as the “transformed" consumption index inherits the biases of the consumption data

used to compute it.

Violation of Assumption B. If Assumption B does not hold (that is, σ2
ϵCct
− σ2

ϵAct
/β2

ct 0 0), then β̄ct,

defined as β̄ct = 1/σyC
ct
, is no longer equal to βct. Define ȳ∗ict as the proxy obtained by using β̄ct

instead of the true βct. By equation (7), it is computed as ȳ∗ict = yA
ct/β̄ct + µC

ct.

The violation of Assumption B does not affect the unbiasedness of the new proxy; i.e.,

Ect(ȳ∗ct) = µ
C
ct = µ

∗

ct since Ect(yA
ct) = 0. The proxy ȳ∗ict is related to y∗ict through the following

equation:

ȳ∗ict = σ
C
cty

A
ict + µ

C
ct = (αctσ

C
ct + µ

∗

ct) + σ
C
ctβcty∗ict + ϵ

A
ictσ

C
ct. (11)

Violation of Assumption B therefore implies that the intercept in equation (11), αctσC
ct+µ

C
ct,

is different from zero, and the slope, σC
ctβct, is different from 1. This implies that the validity

of Assumption B could be tested by regressing the transformed asset proxy on yC
ict and then

examining whether the intercept is zero and the slope is one.17 We conduct this test in section

3.4.

16To see this, recall that ỹ∗ict =
yA

ict
βc
−
αct
βct

. Since Ect(yA
ct) = 0, it follows that Ect(ỹ∗ct) = 0 − αct

βct
= µC

ct = δ0 + δ1µ∗ct.
17Notice that under Assumption A, yC

ict = y∗ + ϵC
ct and therefore, one can use yC

ict in place of y∗ict in equation (11).
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3.3. Constructing the training variable: Cluster-level measures of consumption. This

section briefly describes the steps involved in constructing the consumption measure used as

a training variable. A more detailed explanation can be found in Appendix B.

The first step is to construct the individual-level indicator, ŷ∗ict. We use 85 DHS surveys

from 29 sub-Saharan African countries during the period 2006-2018. The surveys comprise

over 900,000 respondents who are heads of households, and for each we calculate ŷ∗ict as

defined in eq. (10).18 This requires an asset based index, yA
ict, as well as country-year estimates

ofµC
ct and σC

ct. For each survey, we estimate a principal components model using all households

and a variety of asset variables that are present in the given survey (see Appendix B.1 for a

description of the assets). The log of the index from the principal components model yields

yA
ict.

The second step is to use the World Bank’s WB-PIP data on average consumption and the

Gini coefficient for the country-year of the survey to obtain estimates of µC
ct and σC

ct, the mean

and the standard deviation of log-consumption.19 Importantly, the WB-PIP data are based on

surveys, and thus avoid biases that can occur in national accounts data (see, e.g., Martinez

2022). We use the estimates of yA
ict, µ

C
ct and σC

ct to compute ŷ∗ict as described in section 3.1, eq.

(10). The resulting measure, ŷ∗ict, is expressed as the log of consumption in 2011 PPP dollars.

DHS groups respondents into geocoded clusters, the DHS term for an enumeration area,

which we index by r. An advantage of the DHS survey methodology for our purposes is that

the surveys include a sufficient number of households in each cluster to obtain meaningful

cluster averages.20 Thus, the third step is to compute cluster-level averages of ŷ∗ict, yielding

ŷ∗rct, our training variable, expressed as the log of consumption per capita in 2011 PPP dollars.

The 85 surveys in our data contain 34,483 clusters that we can use in prediction. Since DHS

households are within 5km of the cluster centroid (which is known), we assign each cluster to

a 10x10 square kilometer cell that has as its centroid the latitude and longitude of the cluster.

18DHS data are collected at the household level. To obtain per capita measures, we apply standard
transformations; see Appendix B.1 for details.

19Appendix B.2 describes how these estimates are obtained.
20We include only clusters that have at least 16 households. The mean cluster size is 26 households and the

median is 25.
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3.4. Validating the training variable. This section assesses the validity of the framework

described in section 3.1 for translating asset indices into measures of consumption. We

begin by considering the direct empirical implications of violating Assumptions A and B, as

discussed in section 3.2. The most direct way to assess these implications is to utilize surveys

that have measures of both consumption and assets. The DHS surveys we use as the main

source of asset indices in this paper have no measure of consumption. Thus, we begin by

using the Living Standards Measurement Study (LSMS).21

Validation using LSMS data. We focus on sub-Saharan countries in our sample time period

(2006 onwards) that contain measures of respondents’ consumption and asset ownership. We

use one survey per country, and to homogenize comparisons, when more than one survey

exists in a country, we select the survey closest to the years 2012-13. The result is a dataset

composed of 49,062 household from seven countries.22 For each household, we compute

a (log) consumption index and a (log) asset-based index, transforming the asset index as

described in section 3. We use the LSMS survey log-consumption mean to measure µyC
ct

and

we use the standard deviation of this variable to measure σyC
ct
.

Given our focus on cluster-level data in the prediction exercises below, we focus on

“cluster” level LSMS data, which is created using LSMS enumeration areas. In each

enumeration area, we average the respondents’ consumption scores and translated asset

scores to create the cluster-level measures.23 Let LSMS-C be the measure of consumption in

an LSMS cluster, and let LSMS-TA be the measure of consumption using the transformed asset

variable. There is a total of 2,461 clusters in the seven countries.

As underlined in section 3.2, Assumption A implies there should be a linear relationship

between yC
ct and ŷ∗ct. Panel (a) in Figure 3 shows the binned scatter plot of LSMS-C and LSMS-

TA. Though there are deviations from linearity, these deviations are quite small, suggesting

that the relationship between the two variables is in fact quite close to linear.

21See https://www.worldbank.org/en/programs/lsms. Note the LSMS surveys cannot be used as training data
due to the paucity of surveys and to the frequent absence of geocoded enumeration areas of the appropriate size.

22The seven countries with the required measures are Burkina Faso (2014), Ghana (2010), Malawi (2013), Niger
(2011), Nigeria (2018), Tanzania (2012) and Uganda (2013).

23Due to data limitations with LSMS enumeration areas, we impose a minimum of 10 households in a cluster
for inclusion of the cluster.
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(b) Scatter plot of LSMS-C vs. LSMS-
TA (both measured as log consumption
dollars per capita), along with 45-degree
line (in black) and regression line (in red)
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(d) Scatter plot of country-level poverty
rates using WB-PIP (WB-D) and DHS
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(e) Scatter plot of mean of decile values
using WB-PIP (WB-D) and DHS transformed
asset-based (DHS-D) (both measured in log
consumption dollars per capita), along with
45-degree line

Figure 3. Validating the transformation of asset indices into measures of consumption.

Assumption B implies that if we regress the transformed asset proxy on yC
ict, the intercept should

be near zero and the coefficient for yC
ict should be near one. Panel (b) in Figure 3 shows the scatter
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plot of LSMS-C against LSMS-TA, along with the red regression line and the black 45-degree

line. Although the red line has a slightly flatter slope than the 45-degree line (suggesting the

transformed asset variable is compressing the tails of the distribution a bit), the two variables

are very closely related. In the regression, the constant is 0.70 (p=.06), the slope is 0.91 (p=.000)

and the adjusted R-squared is 0.87. Thus, these data suggest that Assumption B is not perfectly

satisfied, but the departures from what the assumption requires are modest. Indeed, if the

six outlying clusters (out of 2,461) from Ghana in the southwest corner of the scatter plot are

excluded, the constant is no longer statistically significant (p=.18) and the slope coefficient

is 0.92, with a 95% confidence interval that includes 1 (it ranges from .81 to 1.04), making it

impossible to reject the hypothesis that the slope equals 1 (p=0.15).

It is also useful to consider the overall distributions of the two variables. If both

assumptions are satisfied, and if the measurement error is not too large, then we should

also expect the distribution of LSMS-C to be similar to the distribution of LSMS-TA. Panel (c)

in the figure show the histograms of the two variables, and it reveals that the distributions are

very similar to each other.

Validation using WB-PIP data. Next consider evidence regarding the validity of the mathemati-

cal framework obtained by comparing the distributions of the consumption variable provided

by the WB-PIP and the new consumption variable calculated using DHS surveys. As noted

in connection with panel (c), if assumptions A and B are satisfied and if measurement error is

not too large, the distribution of consumption using a transformed asset variable should be

similar to the distribution of consumption itself.

In addition to the mean of consumption and the Gini coefficient, both of which are

employed to compute the new consumption index, WB-PIP provides additional information

on the country-level distribution of individual consumption: the poverty rates and the values

of each decile. Denote the poverty rate published by WB-PIP as WB-P. To calculate a country

poverty rate from the new consumption proxy, which we denote DHS-P, we calculate for each

survey the proportion of respondents with asset-based consumption scores that are below

the poverty line of $1.90 per day. Panel (d) in Figure 3 presents the results. The poverty

rates derived from the new consumption proxy are indeed very similar to the poverty rates
19



published by WB-PIP – the correlation is 0.98 – and this is true across the range of poverty

rates that exist in these country-years, though there are modestly higher poverty rates using

DHS-P in the higher ranges of poverty.

WB-PIP also publishes the consumption values at different deciles in the consumption

distribution. As in the calculation of poverty rates, we can use the new consumption data to

calculate the value of consumption at each decile in a survey. Let WB-D refer to decile values

using WB-PIP and let DHS-D refer to decile values derived from the new data. Panel (e) of

Figure 3 presents for each decile the scatterplot of the 85 values using WB-D against the values

from DHS-D. The solid circles, for example, plot the values for the first decile, and there is a

tendency for WB-D to have slightly lower values than DHS-D values in this decile. But the

figure shows that there is a very strong relationship between the decile values from WB-D and

the decile values derived from the transformed DHS asset variable. Indeed, the correlation

between the two variables is at least 0.95 for 7 of the 9 deciles (and is 0.90 in decile 9 and 0.93 in

decile 8). These strong relationships across all 9 deciles provide additional evidence that we

should have confidence that transformed assets can be used to create an accurate distribution

of consumption.

4. Prediction

This section lists the predictors (features) employed to estimate the prediction models (section

4.1), describes the algorithm and models employed (section 4.2), and assesses prediction

accuracy (section 4.3). In addition, we aggregate cluster data on consumption and poverty

(which we estimate at the cluster level using a non-parametric method described below)

to the national level and compare these consumption and poverty aggregates with data on

consumption and poverty from the World Bank (section 4.4).

4.1. Features. We use the following predictor variables, defined over 10 km2 cells. Time-

varying predictors are in bold. For a detailed description and data sources, please see

Appendix C.

(1) Nightlights. Cell-level intensity of lights at night. Nightlights are measured using

DMSP data for the period 2006-2012 and using VIIRS for the remaining years. We also
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include a standardized version of three-year averages that comprises the entire time

period, as described in Yeh et al (2020).

(2) Core variables. Cell-level variables describing different features of the cell that are

related to:

(a) Geography. Ecosystem type, ruggedness of terrain, elevation, latitude and

longitude.

(b) Distances. Distance from the pixel to the capital, a highway, the coast, a harbor, a

protected area, a river, and catholic and/or protestant missions;

(c) Climatic variables/disease environment: Temperature, rainfall and malaria inci-

dence.

(d) Other indicators of economic activity: Population density and CO2 production.

4.2. Algorithm: Random Forests. We use a random forest (RF) algorithm to predict the

measure of log consumption in each cell. The RF algorithm is an ensemble method, i.e.,

it is made up of a large number of individual decision trees, each producing their own

predictions. The random forest algorithm combines these individual predictions to produce

a more accurate one. This is important because standard decision tree algorithms have the

disadvantage that they are prone to overfitting. The ensemble design allows the random

forest to avoid this problem.24

The RF algorithm has several advantages: it has impressive prediction accuracy; it

performs well when using a relatively large number of predictor variables (as opposed to

other methods, such as K-Nearest Neighbor); and it is much less computationally intensive

than other approaches, such as neural networks. This ability to achieve accurate predictions at

low computational cost is important. It allows scalability to a large number of country-years,

and makes it possible to assess the robustness of estimates that emerge from any particular

model. Moreover, these methods can be executed in popular statistical software like STATA,

thereby facilitating their adoption by the broader research community with ease.25

We consider three RF models that differ in the predictors employed. Model RF-1 includes

only nightlights. RF-2, our core model for generating data on cell consumption, includes

24Breiman (2001) provides a general description of random forests.
25See Scholao and Zou (2020) for details on the algorithm we employ in Stata to compute the predictions.
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nightlights and the core variables. Finally, to gain additional insight into the role of nightlights

versus the additional variables in the model, RF-3 removes nightlights from RF-2. To provide

a comparison with previous literature, we also estimate models that include only nightlights

as predictors using OLS and using the K-Nearest Neighbor algorithm.

Using RF requires the tuning of various hyperparameters to optimize performance. These

hyperparameters, which include the number of trees in the forest, the depth of each tree, and

the minimum number of samples required to split a node, among others, play a crucial role in

the model’s ability to learn from data without overfitting. See section D.1 of the Appendix for

details regarding parameter tuning, as well as the hyperparameter values selected for each

model.

4.3. Out-of-Sample Predictive performance. All evaluation is done on held-out locations.

Specifically, for each survey s, a random forest model using clusters from all surveys other

than s is estimated, and predictions are then obtained for the clusters in survey s. This

approach replicates the real-world setting of making predictions where ground data do not

exist.

To assess prediction accuracy, we focus primarily on mean square error (MSE) computed

from the out-of-sample forecasts described above. To facilitate comparison with previous

work (Yeh et al. 2020, Jean et al. 2016), we also display the R2 of the out-of-sample predictions,

which is computed as the square of the within-survey correlation between the training variable

and the (out-of-sample) predictions. For each omitted survey s, we produce out-of-sample

forecasts and compute the MSE and the R2.

Table 1 reports the median values of the out-of-sample survey-level MSE and R2 across the

85 out-of-sample predictions for the three models described above. The first three models use

a random forest algorithm and different combinations of predictors, as described above. Three

key findings from the table merit attention. First, prediction accuracy is high. The full model,

RF-2, exhibits a MSE of 0.135 and an R2 value nearing 0.72. Not only does this performance

surpass existing benchmarks (e.g. Yeh et al. 2020), it also achieves this performance at a

lower computational cost.26 This efficiency suggests that the model’s predictions are highly

26Appendix D.5 provides a direct comparison of model performance using our approach and that of Yeh et
al. (2020), using the Yeh et al. training variable in both cases. We show that the RF approach with the rich set of
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scalable.27 Second, adding the core variables to nightlights substantially improves predictive

performance. One can see this by comparing RF-1 (which uses only NL) with RF-2 (which

adds all the “core" variables). The median MSE decreases by 32% when these additional

predictors are added. Finally, the core variables are more informative than NL. This can be

seen by comparing the performance of RF-3 (which excludes nightlights), with RF-1, which

contains only nightlights.

One might hope that the poor results for RF-1 would improve by using a K-Nearest

Neighbor (KNN) algorithm, which though computationally intensive, often performs well

when there are a small number of predictors. Yeh et al. (2020), for example, do not use RF, but

they find in a setting similar to ours that the KNN algorithm using only nightlights performs

basically identically to a convolutional neural network (CNN) with only nightlights, or to a

CNN using nightlights and daylight imagery.28 The results from Model 4 show that the MSE

associated with KNN is around 7% larger than that of RF-1, and much larger than that of

RF-2. Finally, Model 5 aims to reflect the “naive" approach of using a linear function of NL as

a predictor of economic activity. This model displays the worst performance, with a MSE that

is about 2.5 times larger than that of the core model (RF-2).

Median MSE Median R2

RF-1: NL 0.199 0.650
RF-2: NL, Core 0.135 0.716
RF-3: Core 0.141 0.680
Model 4: KNN with NL 0.242 0.579
Model 5: OLS with NL 0.323 0.391

Table 1. Prediction Accuracy. This table displays the median MSE and R2 corresponding to the 85 sets of out-of-sample
predictions estimated in five different ways. The first three models are estimated using a random forest algorithm and differ
in the predictors included in the model. Core contains the core variables described in section 4.1. Models 4 and 5 include
only NL as predictors and are estimated by KNN and OLS, respectively.

Figure 4 plots the training data against the predicted values from the core model, RF-2.

The binned scatter plot in panel (a) shows that there is a tight linear relationship between

predictors provides more accurate estimates than the Yeh et al approach based on a much more computationally
expensive convolutional neural network.

27For instance, Yeh et al. (2020) rely on computationally intensive neural networks. Coupled with their
use of daylight imagery as a predictor, which is challenging to process, the scalability of their methodology is
substantially limited.

28Model 4 in Table 1 uses the same nightlights predictors as RF-1 but estimates the model using KNN.
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the training data and the prediction. Panel (b) shows that there is a tendency to slightly

overestimate (log) consumption of the very poor and underestimate it for the very rich. The

scatter plot therefore suggests that the RF estimates suffer non-classical measurement error

(with the error negatively correlated with consumption). In section 6 below, we discuss this

issue and provide a method for eliminating such error.
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Figure 4. Predicted versus Training values, Model RF-2. Panel (a) displays a binned scatterplot of predicted versus
training data while Panel (b) presents the scatter plot containing all the data points.

Appendix D provides additional information about (a) the importance of different

predictors in obtaining the estimates of log consumption (Appendix D.2) (b) prediction

performance at the survey level (Appendix D.3); (c) the poor performance of the models

that use only nightlights (Appendix D.4); and (d) a direct comparison of model performance

using our approach with performance in Yeh et al. (2020) (Appendix D.5).

4.4. Predictive performance at the country level: national consumption and poverty. A

second way to evaluate predictive performance is to aggregate the predictions of the cluster

level data into national aggregates and to compare these aggregates with the WB-PIP national

aggregates. Here we do this for consumption and poverty using our core model, RF-2. It is

straightforward to compute the national consumption per capita by aggregating the cluster-

level predictions of consumption and to compare the results with measures published by

WB-PIP. In addition, the geographic distribution of poverty is of central substantive interest

in developing parts of the world. But since ŷ∗rct captures average consumption in the cluster

r, it provides no information about the within-cluster distribution of consumption, and thus
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provides no information about the cell’s poverty rate. We therefore use a non-parametric

approach for estimating the poverty rate for each cluster, based on the estimated consumption

for each cluster. We then use the cluster poverty rates to estimate the national poverty rate,

which can be compared with WB-PIP poverty rates.

Estimating cell poverty rates. One possible “naive approach” to estimating cell poverty rates

is to assume that all individuals in a cell have the same level of consumption, so that all

within-cluster distributions have a variance of zero. Under this assumption, the cell poverty

rate would be 0 if the cluster’s mean consumption were below the poverty line and would be

1 if the mean were above the poverty line. At the opposite extreme, one could assume that

each cluster has its own distribution, with no clear relationship between mean consumption

in a cell and its poverty rate. This assumption, however, would make it impossible to use the

only available information – the estimate of cell consumption – to estimate cell poverty rates.

We adopt an intermediate position. The main assumption in our approach to estimating

cell poverty rates is that all clusters with a very similar level of consumption per capita

share the same distribution of consumption, and therefore share the same poverty rate. This

assumption allows us to use household-level consumption information to compute within-

cluster poverty rates for each of the groups.

The approach works as follows.29 First, 100 groups of clusters are defined by the

percentiles of the cluster-level distribution of consumption per capita. The first group, for

example, includes all clusters that are in the first percentile of the distribution of consumption,

obtained using all clusters in the training data. Second, each of the roughly 920,000

respondents in the DHS surveys are assigned to the group associated with the respondent’s

cluster mean income. Third, we use the individual consumption levels of the roughly 9,000

respondents in each group to compute the poverty rate of the group (by simply calculating

the percent of the roughly 9,000 respondents in poverty, using the 2011 PPP poverty line of

$1.90 per day). Finally, to calculate the poverty rate for a cluster, we assign the poverty rate

for the cluster’s group.

29Additional details regarding the estimation of cell poverty rates are provided in Appendix E.
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National consumption per capita and poverty rates using WB-PIP and RF predictions. Figure 5

plots the national measures of consumption and poverty from WB-PIP against the measures

obtained by aggregating the out-of-sample predictions from the the core prediction model,

RF-2. Panel (a) depicts country-level log consumption per capita from WB-PIP and from

RF-2, along with the 45-degree line. The estimated consumption tends to be higher using

WB-PIP, especially in the richest countries. But the correlation between the two variables is

0.82, and though there are several exceptions, the preponderance of points on the graph are

quite close to the 45-degree line. Thus, the predictions from RF-2 generate national estimates

of consumption that are closely aligned with those from WB-PIP.

Panel (b) plots the WB-PIP poverty rates against the poverty rates derived from applying

the non-parametric approach to the estimates from RF-2. The poverty rates from WB-PIP tend

to be lower, but again there is a very strong relationship across the range of poverty rates,

and the correlation of the two variables is 0.84. These macro-comparisons provide evidence

that the accurate cluster-level predictions can be aggregated to provide sensible estimates of

macro consumption and poverty, albeit estimates that are slightly more pessimistic about the

level of development than those published by WB-PIP.
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Figure 5. Country-level comparison. These figures display country-level consumption per capita and poverty rates from
WB-PIP and out-of-sample predictions from RF the 85 country-years in our sample.

5. Spatial Economic Development (“SED”) data for sub-Saharan Africa

The last step in data creation is to develop estimates for all grid cells in sub-Saharan Africa

over time. We do this by using all the DHS surveys to estimate the RF-2 model and then use
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this model to predict the log of average consumption for each 10x10km cell in 42 countries

from 2003-18. Poverty rates for each cell are calculated by applying the approach described

in section 4.4. We refer to the resulting estimates as the “SED” data, for Spatial Economic

Development data. As mentioned in the Introduction, dynamic versions of these maps covering

the entire time period are found at https://www.spatial-economic-development.com/.

Figure 6 shows the population-weighted distribution of the cell estimates. For comparison

purposes, we have also calculated the cell values using RF-1, which uses only nightlights as

predictors. The histograms include all grid cells (over 4.1 million) across countries and over

time. The left panel shows the distributions for log consumption. The top left histogram

presents the consumption distribution resulting from RF-1. The distribution is concentrated

on an extremely small range of values, with a huge proportion of values in the same narrow

band. Using the SED data (bottom left panel), there is much more variability in the estimates

and much higher maximum values. The poverty rates are depicted in the right panels, and

again there is a concentration of (very high) values from RF-1, and a much more fine-grained

distribution of poverty using the SED data. The histograms therefore clearly illustrate that

nightlights alone cannot produce estimates with the variability we would expect in spatial

measures of well-being, and that the inclusion of the additional predictors results in SED

measures that exhibit the rich variability we should expect.

Does this rich variability accurately capture variation in economic-well being across cells

within countries? While we cannot address this question at the cell level, we can examine

whether within-country variation in SED estimates is aligned with variation in estimates from

external datasets that exist at the level of subnational regions. The external data sets, along

with the SED data, provide estimates with unknown biases and unknown measurement

error. Thus, these comparisons should not be viewed as a validation exercise of the SED

cell-level data. But since each dataset is computed using different data sources and different

methodologies, if the SED and external data produce estimates that are strongly correlated

within countries, this should improve our confidence in each data set, and in the possibility

that the cell estimates from SED data are capturing within-country variation across cells in a

meaningful way.
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Figure 6. The population-weighted distribution of consumption and poverty cells in SED. The left panel histograms
depict the population weighted distribution of consumption from RF-1 and RF-2. The right panel depicts these distributions
for poverty rates. The data include over 4.1 million cells from 2003-18.

We begin by using data from the Human Development Index (HDI), which has been

compiled for subnational regions by Smits and Permanyer (2019). The subnational HDI

is constructed in the same way as the national HDI, and is an aggregate of three indices:

health (measured as life expectancy at birth), education (based on the mean of average years

of schooling and expected years of schooling), and standard of living (measured as log of

gross net income (GNI) per capita in 2011 PPP dollars).30 We are particularly interested in

comparing the SED consumption measure with the the HDI measure of regional income per

capita. Although income obviously measures something different than consumption, the two

variables should be closely related, and the goal here is to understand how regional income

is correlated with SED regional consumption within countries.

To make the comparison, we aggregate the SED measures of consumption in each cell to

the level of the HDI regions.31 The data are from 2016, a year which minimizes interpolation

of the HDI data. There are a total of 244 matched regions from 20 countries.

30See Smits and Permanyer (2019) for a detailed discussion of the data sources.
31For HDI, we have only the name of the region. We therefore assign each grid cell to the region associated

with administration level 1 (akin to a state, and closest to the regional level used in the external data). We then
match to the extent possible the names of these regions to the names of the regions in HDI.

28



For regional poverty, we use the World Bank’s GSAP estimates of poverty rates in

subnational regions.32 We can use SED poverty rates along with the population of each grid

cell to calculate the poverty rate in corresponding subnational regions. This makes it possible

to conduct within-country comparisons of poverty rates from the SED data with poverty

rates from GSAP. GSAP estimates are based on survey data from the Global Monitoring

Database (GMD) and exist only for 2019. Though the data are based on surveys, we do not

have information on the representativeness of the surveys at the subnational level or on the

number of respondents on which the regional estimates are based. The data are created by

using one survey for each country, the one conducted closest to 2019. In some cases, the survey

on which the data are based are from many years before, and the data are then interpolated

to 2019 using national-level estimates of poverty change. To minimize errors associated with

this interpolation, we focus only on countries where the baseline survey is within 5 years of

the SED data we use, which is from 2018 (so we are comparing 2018 SED data with 2019 GSAP

estimates). Our regional poverty data set has SED and GSAP estimates for 391 regions from

29 countries.

HDI Income HDI Education HDI Life Exp. GSAP Poverty
(1) (2) (3) (4)

Consumption, SED 0.81 0.64 0.38

Poverty, SED 0.67

Table 2. Within-country correlation using data at the level of subnational regions. The cells display within-country
correlations between variables from external data (named at the top of each column) and variables from the SED data
(named at the beginning of each row). The within-correlation is based on deviations of the variables from their country
means. In columns (1) through (3), there are 244 regions from 20 countries. In column (4) there are 391 regions from 29
countries.

Table 2 provides the “within-country” correlations of SED with the external variables.

These within-correlations are calculated using the deviations of each region from its country

mean. Columns (1) through (3) of Table 2 present the correlations for the three components

of the HDI using the 244 regions. We find that the SED estimate of regional consumption has

a correlation of 0.80 with the HDI measure of income per capita. This is stronger than the

32For details regarding the construction of the GSAP data, see https://datacatalog.worldbank.org/search/datas
et/0042041/global_subnational_poverty_atlas_gsap. Our data our from the 4th edition.
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within-correlation for the other two components of the HDI. Column (4) of Table 2 presents

the within-correlation for the poverty rates, which is again quite large, though smaller than

that in column (1). Thus, the evidence in Table 2 indicates that the regional variables created

by aggregating SED cells to the regional level are strongly correlated within countries to the

two external data sources.

6. Using SED data in regression analysis: the problem of NCME

The SED dataset can be harnessed to pursue a variety of distinct objectives. One is to provide

detailed, ground-level descriptions of consumption and poverty levels, which can assist in

addressing humanitarian needs by guiding the geographic targeting of development and

humanitarian relief projects. A second important and distinct application is to use the SED

estimates as proxies for economic well-being in regressions using a spatially disaggregated

unit of analysis. This will be our focus in what follows.

For the reasons described at length in section 2, any data used in place of NL in

regression analysis should not only be accurate, it should should also be free of the nonclassical

measurement error that plagues NL. As noted above, however, we should not expect SED

to be free of such error. Panel (a) in Figure 7 shows the relationship between the prediction

error (from RF-2) and the training variable. This graph highlights a negative correlation

between these variables, indicating that SED tends to over-predict cells with lower income

and under-predict cells with higher income. As a result, using this data in regression analysis

can lead to biased coefficients for the reasons discussed in section 2. What follows is a simple

adjustment to address this problem.33 This proposed adjustment can always be applied

to proxies generated via supervised machine learning when it is reasonable to assume the

training variable is a representative sample of the target variable.

Our approach uses the training variable as an auxiliary sample, allowing us to compute

a simple transformation of SED that is free from nonclassical error. It works as follows.

Consider a target variable y for which a proxy ỹ exists that might contain non-classical

33Several estimators have been proposed to address nonclassical measurement error (see Chen et al. (2011) for
a review). While these techniques could be applied when using the SED data, they would be unnecessary if we
could rid the SED data of the NCME, thus making it possible to use conventional estimation methods when using
the adjusted SED data.
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(a) Prediction error (RF-2) vs. training data:
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(b) Prediction error (RF-2) vs. training data:
binned scatterplot
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(c) Prediction error (RF-2) from transformed
data, vs. training data: binned scatterplot

Figure 7. Prediction error versus Training variable. Panel (a) plots the prediction error from ŷRF2 versus the training
variable; Panel (b) presents the binned scatter plot of the same relationship; Panel (c) displays the binned scatter plot relating
the prediction error from ŷT

RF2 versus the training variable.

measurement error, ν. In our context, y and ỹ represent consumption per capita and its

prediction, respectively. We consider the linear projection of ỹ on y,34

ỹ = α0 + α1y + ϵ. (12)

By definition of linear projection, ϵ and y are uncorrelated. This allows us to define a new

proxy ỹT as

ỹT =
ỹ − α0

α1
= y + ϵ/α1. (13)

The new proxy variable ỹT and ỹ each have the same correlation with y, but since y and ϵ are

uncorrelated, ỹT contains only classical measurement error.

To estimate α0 and α1, we assume that the training variable provides a representative

sample of y. The training data can therefore be used to derive consistent estimates of these

parameters. We do this by regressing the predictions (from model RF-2) obtained in section

4 on the training variable to obtain α̂0 and α̂1, thus allowing us to compute ŷT. Panel (c) of

Figure 7 displays the binned scatter plot of the prediction error associated with ŷT versus the

training variable. It confirms there is no relationship between these variables.

Table 3 provides summary statistics of the training variable, the prediction of consumption

from RF-2, denoted as ŷRF2, and the transformed prediction, ŷT
RF2. Columns 1-4 of Table 3

34Panel (b) in Figure 7 suggests that the relationship between u and the training variable is in fact linear in our
case, implying that this linear equation captures well the relationship between these variables.
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display the mean, standard deviation and min and max values for the three variables. ŷRF2

has less variability than the training variable while ŷT
RF2 has more variability, but otherwise

the values are quite similar. Column 5 reports correlations between the prediction errors and

the training variable: as expected, the correlation between the error in ŷT
RF2 and the training

variable is zero. Column 6 shows that both proxies for consumption have a large and identical

correlation with the training variable (as one is just a linear transformation of the other).

Finally, column 7 shows that ŷRF2 has less prediction error than ŷT
RF2 (the MSE of ŷT

RF2 is

around 50% larger). The table therefore illustrates a tradeoff between ŷRF2 and ŷT
RF2: while the

former is more accurate and therefore potentially better for descriptive purposes, the latter

does not have the nonclassical measurement error that contaminates ŷRF2 and therefore is

more suitable in regression analysis.

Mean Std min max corr(ê,ŷ∗rct)
corr(ŷ,ŷ∗rct)

MSE
[1] [2] [3] 4 5 6 7

ŷ∗ 6.74 0.699 4.634 9.835
ŷRF2 6.74 0.558 5.284 8.888 -0.603 0.824 0.135
ŷT

RF2 6.74 0.849 4.512 9.998 0.000 0.824 0.183

Table 3. Transformed and Untransformed proxies of Consumption per capita. This table presents summary statistics
of the training variable (ŷ∗), its best predictor (ŷRF2) and the transformed best predictor (ŷT

RF2). The latter is computed as

ŷT
RF2 = (ŷRF2 − 2.32)/.657, where these coefficients have been computed in a regression of ŷRF2 on ŷ∗rct.

7. Illustration: Institutions and economic development

This section illustrates the usefulness of the SED data by revisiting two influential papers in

the literature on institutions and economic development, Michalopoulos and Papaioannou

(2013) and (2014) ( “MP13” and “MP14” in what follows). Both papers use NL as a dependent

variable to study the effects of institutions on development. To gain insight into how the

NCME in NL affects their conclusions, we will estimate models from MP13 and MP14 using

ŷT
RF2 in place of NL.

The usefulness of the SED data in this context manifests in two significant ways. First,

SED estimates of consumption allow us to obtain more accurate estimators, free from the biases

associated with the use of NL. Second, since the SED data is measured in consumption dollars,
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its opens up the possibility of not just identifying the presence of significant relationships but

also of quantifying the extent to which institutional variables contribute to development. This

capability is crucial for determining what truly drives development, allowing researchers

and policymakers to differentiate between statistically significant results and those that have

substantial, practical implications in the real world.

In the remainder of this section, we begin by substituting ŷT
RF2 for NL in the analyses

of MP13 and MP14. The resulting conclusions about the role of institutions in development

are markedly different than those found in the original MP papers. We then draw on the

discussion in section 2 (regarding biases stemming from non-classical measurement error in

NL) to explain why the resulting conclusions change so much when we substitute ŷT
RF2 for

NL.

7.1. Re-estimating models of institutions and development using SED. MP13 and MP14 use

a dataset with a common general structure, one that relies on the geographically fine-grained

feature of nightlights data. The unit of analysis is a pixel of 0.125 X 0.125 decimal degrees

(approximately 12.5 km X 12.5 km).35 Each pixel is assigned to an ethnic group based on maps

of ethnic homelands described in Murdock (1967), and values of nightlights in the pixels are

used as a proxy for economic development. To replicate the MP13 and MP14 analyses with

the SED data, we use the value of ŷT
RF2 that is closest to each MP pixel. The average distance

between the pairs of centroids is 3.7 km in both MP13 and MP14. The MP data include all

of Africa, whereas the SED data includes sub-Saharan African countries, which means we do

not have data for five countries in the MP data.36 MP13 and MP14 present a wide range of

models in an attempt to assess the robustness of results regarding institutions, and here we

present illustrative results for one table from each paper. Section F in the Appendix presents

results from additional empirical models.

7.1.1. The role of national institutions. First consider MP14, which finds no direct relationship

between national institutions and nightlights. A core set of pixel-level results are found in

Panel B of their Table IV (p. 177) and, for convenience, they are reproduced in Panel A of

Table 4. These models exploit the fact that ethnic group boundaries often transcend national

35The MP papers also include ethnic group-level analyses, which are not our focus here.
36These are Algeria, Egypt, Libya, Morocco and Tunisia.
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borders and that in the case of Africa, these borders can be considered as exogenous. Thus, by

considering only partioned groups (whose settlement areas include both sides of a national

border) when estimating a model that includes for each pixel a measure of the quality of

national institutions, it is possible to compare the value of nightlights for the same ethnic

group across the boundaries of countries with different values of the institutional variables.

The dependent variable in Panel A of Table 4 is an indicator that takes the value 1 if the pixel is

“lit” (i.e., not completely dark), and the World Bank’s measures of rule of law and control of

corruption are the national-level measures of institutions. The first four columns in Panel A

use rule of law as the measure of national institutions and the last four columns use control

of corruption. The key finding is that in models without ethnic-group fixed effects (columns

1, 3, 5 and 7) the coefficients for rule of law and corruption are positive and significant,

but once ethnic-group fixed effects are added (columns 2, 4, 6 and 8), there is no precisely

estimated effect of rule of law or control of corruption on nightlights.

Panel B of Table 4 re-estimates the same models as Panel A using the subset of pixels that

are common to the SED and MP14 data (i.e., pixels from the five north African countries are

excluded, which amounts to around 4% of the total number of cells). Results are very similar,

but now the estimated coefficients of the institutions variables in regressions including ethnic

fixed effects are a bit larger and marginally significant. As discussed below, the marginally

significant results for the institutions variables in Panel B are not robust to other specifications

considered in MP14.

Panel C re-estimates the same models using the measure of log consumption from the

full SED model, ŷT
RF2. This model produces results that are very supportive of arguments

about national institutions. All coefficients in the fixed effects regressions are now significant

at the 5% level and the overall fit of the model improves tremendously.37 Importantly, we can

now provide a meaningful estimate of the magnitude of the effect of national institutions on

development, something that is challenging to do when NL is the outcome. rule of law is a

37The difference between the results using nightlights and results using the SED data is not explained by the
way the training variable is constructed. To see this, we have also estimated the models in the table using log
consumption as estimated by RF-1 (the model that uses only NL as predictors, but which obviously has the same
training variable as RF-2). The results are very similar to those presented in Panels A and B, with less precisely
estimated coefficients and coefficients of quite modest size.
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Dep. variable is Nightlights (MP14, Original Sample)

rule of law 0.1072*** 0.0246 0.0834** 0.0278
(0.0400) (0.0165) (0.0324) (0.0181)

control of corruption 0.1371*** 0.0370 0.1097*** 0.0403
(0.0464) (0.0273) (0.0415) (0.0290)

Adj. R-squared 0.149 0.331 0.202 0.340 0.160 0.331 0.209 0.340
N 42710 42710 41025 41025 42710 42710 41025 41025

Panel B: Dep. variable is Nightlights (Reduced Sample)

rule of law 0.0850** 0.0311* 0.0759** 0.0370*
(0.0428) (0.0170) (0.0369) (0.0199)

control of corruption 0.1121** 0.0479* 0.1025** 0.0541*
(0.0523) (0.0271) (0.0482) (0.0296)

Adj. R-squared 0.131 0.262 0.149 0.271 0.140 0.262 0.156 0.271
N 40872 40872 39251 39251 40872 40872 39251 39251

Panel C: Dep. variable is log consumption p.c., model RF-2 (Reduced Sample)

rule of law 0.4927** 0.2377** 0.3617*** 0.1641**
(0.1979) (0.0942) (0.1222) (0.0717)

control of corruption 0.6509*** 0.3162*** 0.4884*** 0.2593***
(0.1792) (0.1144) (0.1136) (0.0872)

Adj. R-squared 0.219 0.784 0.434 0.812 0.297 0.785 0.474 0.816
N 40872 40872 39251 39251 40872 40872 39251 39251

Ethnicity fixed effects No Yes No Yes No Yes No Yes
Population density and area Yes Yes Yes Yes Yes Yes Yes Yes
Location controls. No No Yes Yes No No Yes Yes
Geographic controls No No Yes Yes No No Yes Yes

Table 4. National institutions and economic development. This table re-estimates models in Table IV, panel B (which
are at the pixel level) of Michalopoulos and Papaioannou (2014). The coefficients are from OLS models with double-
clustered standard errors in parentheses. See Michalopoulos and Papaioannou (2014) for full details regarding the data and
estimation. The results presented in Panels B and C are for a subset of MP data, as the RF data do not include five north
African countries. * indicates p<.10, **indicates p<.05, and *** indicates p<.01.

continuous variable with a range of 2.8475. Therefore, using the estimates from column (4),

going from the worst to the best value of rule of law implies a 46% increase in consumption

per capita. Similarly, going from the worst to the best value of control of corruption implies

a 64% increase in consumption per capita (using the estimates from column (8)).38 To put a

value on these very large effects, the Democratic Republic of Congo has a rule of law score

of -1.88 and Botswana has a rule of law score of 0.615. Thus, if the DRC could improve its

rule of law institutions to the same quality as Botswana, this would result in a 41% increase

in consumption per capita (using model 4). In 2019 (the most recent year for which data is

38A one standard deviation increase in rule of law implies an 9.6% increase in consumption and a one
standard-deviation in control of corruption implies a 15.2% increase in consumption.
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available), the consumption per capita in DRC was $633, so an improvement in institutions of

this magnitude would net each person in DRC $260.

Section F in the Appendix provides results from estimating other models in MP14 using

nightlights and the SED estimates. Across all models that have relevant fixed effects, the

coefficient on institutions is never significant (even at the 10% level) when nightlights is the

dependent variable. By contrast, when consumption is the dependent variable, the coefficients

on the national institutions variables are in general significant at the 5% level.39

In sum, the evidence here indicates that the previously observed weak relationship

between national institutions and development is a consequence of using nightlights as the

development proxy. The conclusions shift dramatically when SED consumption is used as the

measure of development, revealing that institutions, especially the rule of law, have a large

positive impact on development.

7.1.2. The role of ethnic institutions. Next consider MP13, which finds a robust relationship

between the centralization of ethnic institutions and nightlights. The models in this paper

exploit boundaries between ethnic groups within countries. The goal is to estimate whether

development (measured using NL) is higher in pixels that are in areas with more centralized

pre-colonial ethnic institutions. A core set of pixel-level results are found in Panel A of Table V

of MP13 that, for convenience, we produce in Table 5, Panel A. The dependent variable in the

first five columns of their table, our focus here, is a dichotomous measure of nightlights,40 and

the measure of pre-colonial institutions, jurisdictional hierarchy, is Murdock’s (1967) index

of “Jurisdictional Hierarchy beyond the local community level.” This discrete variable ranges

from 0 to 4.41 The main result is that jurisdictional hierarchy is positive and significant at

the 5% level.

39Specifically, we use both NL and ŷT
RF2 to re-estimate the pixel-level models from MP14 Table V (which focuses

on pixels that are close to a national border), Table VI (which adopts a spatial regression discontinuity approach
by adding RD-polynomials based on the distance of a pixel to the border) and Table VII (which has RD models
similar to those in Table VI but focuses only on large institutional differences across borders). The only exception
to significant coefficients using SED data is the results for control of corruption in the models from MP14 Table
VI.

40We also estimate the the models with the log of lights, as MP13 do in models 6-10, and the results are the
same (see section F in the Appendix).

41A zero score indicates stateless societies, a value of 1 corresponds to petty chiefdoms, 2 designates paramount
chiefdoms, while 3 and 4 indicate groups that were part of large states.

36



(1) (2) (3) (4) (5)

Panel A: Dep. var. is lit/unlit (MP13, Original Sample)

jurisdictional hierarchy 0.0673** 0.0447** 0.0280*** 0.0308*** 0.0265***
(0.0314) (0.0176) (0.0081) (0.0074) (0.0071)

Adj. R-squared 0.034 0.272 0.358 0.3757 0.379
N 66570 66570 66570 66173 66173

Panel B: Dep. var. is lit/unlit (Reduced Sample)

jurisdictional hierarchy 0.0301 0.0349* 0.0238*** 0.0256*** 0.0173***
(0.0203) (0.0178) (0.0088) (0.0088) (0.0060)

Adj. R-squared 0.008 0.182 0.268 0.287 0.293
N 61359 61359 61359 61015 61015

Panel C: Dep. var. is log consump. p.c., RF-2 (Reduced Sample)

jurisdictional hierarchy -0.0089 -0.0082 -0.0184 -0.0150 -0.0151
(0.0625) (0.0234) (0.0233) (0.0177) (0.0181)

Adj. R-squared 0.000 0.777 0.792 0.831 0.836
N 61359 61359 61359 61015 61015

Country Fixed effects No Yes Yes Yes Yes
Population Density No No Yes Yes Yes
Controls at the Pixel level No No No Yes Yes
Controls at the Ethnic-Country level No No No No Yes

Table 5. Ethnic institutions and economic development. This table re-estimates models in Table V, panel A, models
1-5 (which are at the pixel level) of Michalopoulos and Papaioannou (2013). The coefficients are from OLS models with
double-clustered standard errors in parentheses. See Michalopoulos and Papaioannou (2013) for full details regarding the
data and estimation. The results presented in Panels B and C are for a subset of MP data, as the SED data do not include
five north African countries that are included in MP13. Each panel in the table differs only in the dependent variable used
to measure economic well-being. ***, **, and * indicate statistical significance at the 1%, 5% and 10% levels, respectively.

Panel B of Table 5 re-estimates the models using the subset of pixels that are common to

the SED and MP13 data (i.e., the five North African countries are excluded). The results are

in broad agreement with those in Panel A. Panel C uses SED log-consumption p.c. (RF-2) as

the outcome variable, and the results are very different: the coefficients for jurisdictional

hierarchy are now insignificant in all columns and have the opposite sign. In section F of the

Appendix, we present the results from a wide range of MP13 models, and the central finding

is that there is no relationship between jurisdictional hierarchy and the SED measures of

consumption.

7.2. Non-classical measurement error and the divergent results. The divergent results across

panels in Table 4 and in Table 5 are striking. The original results based on nightlights

suggest that centralized ethnic institutions matter for development whereas strong national

institutions do not. The results here suggest the opposite. If the results obtained using SED
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accurately reveal the true relationship between institutions and development, the findings in

MP14 would be subject to attenuation bias, which could cause a nonexistent relationship to be

identified when in fact there is a positive relationship. This implies a negative bias in MP14

estimates. Conversely, the results in MP13 would exhibit amplification bias, where a positive

relationship is reported even though in reality, none exists. This implies a positive bias in

MP13. Are the directions of these biases consistent with the presence of NCME in NL?

As described in section 2, when nightlights are used as a dependent variable, a bias δ

arises whenever the regressors are correlated with the error in NL, u, and the direction of

this bias depends on the sign of that correlation. In the MP14 case, since the posited bias is

negative, in order for this bias to be due to NCME, national institutions must be negatively

correlated with the error u. In the MP13 case, since the posited bias is positive, in order for

this bias to be due to NCME, centralized ethnic institutions must be positively correlated with

the error in nightlights. We examine whether these correlations are likely to be present in the

data.

Consider first the national institutions (NI) results in MP14. If the NI variables are in fact

correlated with development, as Panel C in Table 4 strongly suggests, what would be the sign

of the bias δ in MP14 regressions? Recall that u and y∗ (the “true" measure of development)

are negatively related as discussed in section 2. Since the Panel C results indicate that y∗

and the NI variables are positively related, then a negative relationship between NI and u

must follow. This implies that if the true relationship between NI and development is in fact

positive, estimates obtained using NL will be attenuated, i.e., biased towards zero, which is

consistent with our findings using an outcome variable that does not have NCME.

Consider next the MP13 results on the relationship between jurisdictional hierarchy

(JH) and development. The discussion in section 2 reminds us that if JH and u are positively

correlated, then a positive relationship between NL and JH can be found even in situations where

no relationship in fact exists. There is strong reason to believe that this positive relationship

between JH and u should exist because of the relationships between JH, NL and population

density.
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First consider the relationship between the error in NL, u, and population density. It

is well-understood that nightlights detected by satellites are overwhelmingly in places with

high population density, such as urban areas (e.g., Gibson et al, 2020). This implies that “false

negatives" (u = −1) will be more likely in areas with low concentration of people, and “false

positives" (u = 1) will be more likely in the opposite case. Thus, there should be a positive

correlation between population density and u.

Next consider the relationship between JH and population density. It is well-established

that population density is related to the development of institutions. Historically, as

populations grew, social organisation became more complex, creating a greater need for

coordination in decision-making (see, for instance, Turchin et al, 2022). jurisdictional

hierarchy aims to capture precisely the nature of institutions that made such coordination

possible. In the MP13 data, the correlation between population density and jurisdictional

hierarchy is indeed positive and highly significant.42

Since JH is positively related to population density and population density is positively

related to u, we should expect a positive relationship between jurisdictional hierarchy and

u, which will lead to an upward bias that amplifies the estimated effects of jurisdictional

hierarchy in nightlights models.43 As a result, this amplification bias can lead to findings of

positive effects even in situations where there is no relationship between JH and development.

In sum, our analysis of two research papers utilizing nightlights highlights a crucial

point: biases are likely to occur and they can be either positive or negative. Indeed, in the

two papers examined here, the biases from NL models seem to lead to conclusions about

institutions that are the opposite of those reached when using a measure that has no NCME.

The challenge of drawing definitive conclusions from nightlights-based models therefore is

deep and intractable.

42More specifically, the correlation between (the log of) population density and JH is 0.15, which is more
than 50% larger than the 0.09 correlation between nightlights and jurisdictional hierarchy, which is the central
relationship of interest in MP13.

43It is important to note that linearly controlling for population density may attenuate but not eliminate this
problem of bias. If JH and u are non-linear functions of population density, then linearly controlling for the
latter will not eliminate the bias completely. But the relationship between jurisdictional hierarchy (or u) and
population density cannot be exactly linear, as u and jurisdictional hierarchy are discrete variables whereas
population density is continuous. This implies that introducing population density in the nightlights regressions
can reduce the positive bias of the coefficient for jurisdictional hierarchy (as we see in column 3 across panels
in Table 5), but it is unlikely to solve the bias problem described in this paragraph.
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8. Conclusion

Though widely used, nightlights are a problematic proxy for economic development in

regression analysis because of non-classical measurement error. We have shown that this

measurement error can lead to biased coefficients in research that uses nightlights as a spatially

disaggregated proxy for development, and that those estimated coefficients can attenuate or

amplify the true relationship between the relevant variables. The measures we have developed

in its place not only avoid the biases inherent in the use of nightlights, they make it possible

to interpret empirical results in a substantively meaningful way. Our results suggest, for

example, that contrary to findings using nightlights, the cells in a country with the highest

level of control of corruption can be expected to have average consumption levels that are

64% higher than that of cells in countries with the lowest level of control of corruption. Thus,

the substantively interpretable metric of the SED data, along with the high level of spatial

granularity, can be used to gain a more nuanced understanding of economic development.

This is of value not only to researchers, but also to policy markers seeking to identify specific

areas of progress or specific areas requiring targeted interventions. Because of its simplicity

and low computational cost, the framework described here is easily scalable to contexts beyond

Africa, facilitating comparative studies and broadening the scope of empirical research on

economic development.

While we believe the limitations of nightlights for spatially disaggregated research and

policymaking are clear, an important avenue for future research involves understanding the

limitations of nightlights when they are aggregated at high levels, such as at the national

level. For example, Martinez (2022) aggregates nightlights at the national level to show that

dictators exaggerate economic development. Whether the non-classical measurement error in

nightlights emphasized here is problematic at such a high level of aggregation is not obvious,

and exploring this issue will deepen our understanding of the limitations of nightlights.
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Appendix (For Online Publication)

This appendix is divided into six sections:

• Section A shows a figure documenting the increase in the use of nightlights in

economics over time.

• Section B lists the DHS surveys used in constructing the training variable, and presents

further details about its construction.

• Section C presents a table that describes the variables used in the prediction exercise.

• Section D provides additional information about the prediction models, including

parameter tuning, variable importance in the prediction models, prediction accuracy,

and a comparison of the prediction results from our RF models with those of Yeh et al.

(2020) (section D.5).

• Section E provides further information about the approach we follow to estimate cell-

level poverty rates.

• Section F provides additional information and estimation results regarding the analysis

of the models in Michalopoulos and Papaioannou (2013 and 2014) using the SED data.



A. Nightlights in Economic Research

Figure A.1 displays the evolution of the number of papers referencing “nightlights” in

economics according to Google Scholar. For additional information about the use of nightlights

over time in economics research, see Gibson, et al (2020).
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Figure A.1. Papers in economics referencing nightlights. Source: Google Scholar. The graph depicts the number of
papers in Google Scholar obtained using the keywords "nighlights+economics" from 2005 to 2022.

B. Constructing the training variable, ŷ∗rct.

This section provides additional details about the construction of the training variable, ŷ∗rct.

Here we summarize the main steps involved in the process; the subsequent sections provide

additional details related to each of these steps.

(1) For each survey, estimate a principal components model using all respondents and

a variety of asset variables that are present in the given survey to generate the asset

measure, yA
ict.

(2) Use the WB-PIP data on average consumption and the Gini coefficient for the country-

year of the survey to obtain estimates ofµC
ct andσC

ct, the mean and the standard deviation

of log-consumption measured in 2011 PPP dollars.

(3) Apply the estimates of yA
ict, µ

C
ct and σC

ct to compute ŷ∗ict as described in section 3. The

resulting ŷ∗ict is expressed in log of consumption in 2011 PPP dollars.

(4) Calculate ŷ∗rct by averaging ŷ∗ict for all i in cluster r.
1



B.1. Constructing the asset index, yA
ict. We use 85 DHS surveys comprising over 900,000

households who are sampled from across 29 sub-Saharan African countries in the period

2006-2018. Figure B.1 displays a map of the African countries for which we have DHS data,

and Table B.1 provides a list of all the DHS surveys used to create the training data. DHS

surveys provide information on household-level ownership of different assets. These asset

variables are related to sanitation in the home (the source of drinking water and type of toilet

facility), the nature of the household’s dwelling (flooring, wall, and roof materials; presence

of electricity and number of sleeping rooms), and the presence of particular assets (e.g., radio,

television, refrigerator, motorcycle or scooter, car or truck, telephone and mobile phone).

For each individual survey, we use principal component analysis (PCA) to create an asset

index. The (unrotated) loadings of the asset variables on the first component are used to

predict an aggregate asset score for each household. Since we estimate the PCA separately for

each survey, the loadings vary across surveys. That is, we do not assume that the relationship

of each asset to consumption is the same across time and space, which provides additional

flexibility in constructing the index. Since DHS data is defined at the household level, we

follow Duclos et al (2004) and divide the resulting index by s0.5 to obtain a per-capita index,

where s is the size of the household.1 Finally, to calculate yA
ict, we take the log of the index and

standardize it so that for each survey the index has a mean of 0 and a standard deviation of 1.

B.2. Estimates of µyC
ct

and σyC
ct

. WB-PIP data, which are based on surveys rather than national

accounts, provide the current gold standard for country level estimates of consumption in sub-

Saharan Africa. WB-PIP provides estimates of the mean of consumption per capita but not

of the mean and variance of its log, σyC
ct

or µyC
ct
. To overcome this limitation, we assume

that yC
ict follows a normal distribution with mean µy∗ct

and variance σ2
yC

ct
= σ2

y∗ct
+ σ2

ϵct
, (see

equation (3)). This implies that consumption per capita (the exponential value of yict, which

we denote by xict) follows a log-normal distribution.2 The log-normality assumption makes

it possible to use estimates of the Gini coefficient, which exist in WB-PIP country-level data

(as opposed to estimates of the variance of the distribution, which do not), to estimate the

1All the analysis in the paper has also been done without applying this correction and the results are virtually
identical.

2See Battistin, Blundell and Lewbel (2009) for recent evidence supporting this claim.
2



Figure B.1. Countries in the training sample

standard deviation of log consumption. Under log-normality, the Gini coefficient associated

with the consumption level, xC
ct, is related to the standard deviation of the log of consumption,

yC
ct as follows:

GinixC
ct
= 2Φ(

σyC
ct
√

2
) − 1, (b.1)

where Φ(.) is the cumulative standard normal distribution. Therefore, the log-normality

assumption allows us to estimate the variance of log-consumption, σ2
yC

ct
, from estimates of

the Gini of total consumption, which are typically available in WB-PIP. The log-normality

assumption of the WB-PIP data also makes it straightforward to estimate µyC
ct

because the

mean of total consumption, xC
ct, and its log are related through the following equation:

µxC
ct
= e

(
µyC

ct
+0.5(σ2

yC
ct

)
)
.
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Country Year Country Year

Angola 2006 Mozambique 2009
Angola 2011 Mozambique 2011
Angola 2016 Mozambique 2015
Benin 2012 Mozambique 2018
Benin 2017 Namibia 2007
Burkina Faso 2010 Namibia 2013
Burkina Faso 2014 Nigeria 2008
Burkina Faso 2018 Nigeria 2010
Burundi 2010 Nigeria 2013
Burundi 2012 Nigeria 2015
Burundi 2016 Nigeria 2018
Cameroon 2011 Rwanda 2008
Chad 2015 Rwanda 2010
Dem. Rep. of Congo 2007 Rwanda 2015
Dem. Rep. of Congo 2013 Senegal 2008
Ethiopia 2011 Senegal 2011
Ethiopia 2016 Senegal 2013
Gabon 2016 Senegal 2014
Ghana 2008 Senegal 2015
Ghana 2014 Senegal 2016
Ghana 2016 Sierra Leone 2013
Guinea 2012 Sierra Leone 2016
Guinea 2018 Tanzania 2007
Kenya 2009 Tanzania 2010
Kenya 2014 Tanzania 2012
Kenya 2015 Tanzania 2015
Lesotho 2009 Tanzania 2017
Lesotho 2014 Togo 2014
Liberia 2007 Togo 2017
Liberia 2009 Uganda 2006
Liberia 2011 Uganda 2009
Liberia 2013 Uganda 2011
Liberia 2016 Uganda 2014
Madagascar 2011 Uganda 2016
Madagascar 2013 Uganda 2018
Madagascar 2016 Zambia 2007
Malawi 2010 Zambia 2013
Malawi 2012 Zambia 2018
Malawi 2014 Zimbabwe 2010
Malawi 2015 Zimbabwe 2015
Malawi 2017
Mali 2006
Mali 2012
Mali 2015
Mali 2018

Table B.1. DHS surveys. This table summarizes the DHS surveys employed in the construction of the training variable.

Finally, we apply the estimates of yA
ict, µ

C
ct and σC

ct to compute ŷ∗ict as described in section

3.1. The resulting ŷ∗ict is expressed in log of consumption in 2011 PPP dollars.

A central challenge when using asset variables to compute a measure of economic well-

being is achieving comparability across time and space. It is useful to contrast the way this

comparability is achieved when using ŷ∗ict with the approach in Yeh et al. (2020).3 Yeh et

al. (2020) achieve comparability in their asset-based variable by pooling all DHS surveys,

3Chi et al. (2022) also compute a training variable based on a DHS asset index, but this training variable only
provides within country-year information, i.e., its values cannot be compared across countries or over time as all
survey-years are standardized to have a zero mean.
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estimating a principal component model using a set of asset variables that is commonly

available in each survey, and using the factor scores to generate the measure of respondent’s

economic well-being. This results in a variable that though comparable across time and space,

captures only ordinal differences in economic well-being. Thus, like nightlights, the variable

has no substantively meaningful metric.

The most important difference between the Yeh et al approach and the approach here is of

course that ŷ∗ict is expressed as consumption per capita in 2011 PPP dollars. But there are other

differences worth underscoring as well. First, the pooled PCA approach in Yeh et al requires

a common set of assets in every survey. This limits the nature of the training data: since all

surveys must contain the same set of asset variables, surveys must be dropped when they do

not include the requisite asset variables. One way to limit the problem is to use a relatively

small number of asset variables in constructing the measure of well-being. But this strategy

limits the variability in the measure. By allowing the nature of the asset variables used in

constructing ŷ∗ict to vary across surveys, the approach here avoids both of these limitations.

Second, the pooled PCA achieves comparability by assuming that the relationship between

assets and economic well-being is the same across countries and over time. This is a strong

assumption. We might expect, for example, that the relationship between owning a bicycle

(or radio or computer or cell phone) and economic well-being to vary across countries or over

time. The approach here avoids this strong assumption. Instead, it achieves comparability

through the use of macro data on consumption and inequality. While this approach may have

the problems discussed in section 3.2, the fact that ŷ∗ict is denominated in dollars – and that

it can be used to derive poverty rates – opens avenues for evaluating the measure that are

unavailable when using measures lacking an interpretable metric.

B.3. From individuals to clusters. The final step is to average ŷ∗ict to the enumeration

area level, also called “cluster,” which is roughly equivalent to villages in rural areas or

neighborhoods in urban areas, as this is the level at which geo-coordinates are available in the

public survey data. Since ŷ∗ict is expressed in logs, we exponentiate it to obtain consumption

per capita, compute the cluster-level average and then take the log of the average to obtain ŷ∗rct,
5



the log of cluster mean consumption in 2011 PPP dollars for cluster r, c, t.4 For each cluster,

DHS publishes the latitude and longitude of the cluster’s “centroid.” For privacy reasons,

DHS randomly jiggers the published location of this centroid by up to 5 km from the true

centroid. We therefore assign each DHS cluster to a 10x10 square kilometer pixel that has the

centroid reported by DHS (thereby ensuring that the square encompasses the true centroid).5

We denote this geo-located variable as ŷ∗rct, where r denotes enumeration area (cluster). The

training data we use in the prediction models include 34,484 clusters.

4We drop clusters with invalid GPS coordinates. To limit measurement error due to small numbers of
households in a cluster, we also drop clusters with less than 16 households (which results in dropping 2% of the
clusters). On average, there are 26 respondents per cluster.

5Yeh et al (2020) estimate that the jiggering by DHS degrades model performance, reducing the R2 by about
0.07.
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D. Additional information about the predictions models and their accuracy.

This section provides information about parameter tuning (section D.1) and about the variables

with the largest importance in the prediction models (section D.2). It also presents additional

information about prediction accuracy, including an analysis related to the poor performance

of the models including only nightlights as predictors (section D.3). Finally, it compares the

prediction results from our RF models with those of Yeh et al. (2020) (section D.5).

D.1. Parameter tuning. The main hyperparameters of the RF models are the number of

individual trees (ntrees), the maximum number of predictors that are included in each tree

(nvars), maximum tree depth (depth), and the minimum proportion of the variance at a node

in order for splitting to be performed (var). To tune the different models, we consider a grid of

values for each of the parameters. For each of the different values in the grid we estimate the

random forest models using half of the sample; we then evaluate performance in the unseen

data. Using this process, we identify the hyperparameter values leading to the lowest MSE for

each model. Table D.1 presents the resulting hyperparameters employed in the three models.

Preferred Hyperparameters Values

ntrees nvars depth var min obs per leaf

Model 1 180 1 25 .0001 7
Model 2 180 8 35 .0001 3
Model 3 180 6 35 .0005 1

Table D.1. Hyperparameter values generating the lowestMSE in the three RF models.

D.2. Variable importance. Table D.2 shows the most informative predictors in models RF-2

and RF-3. The most important variable in both models is whether a cell is located in the

desert. Nightlights variables are important in RF-2, and CO2 emissions, population density,

the disease environment, and variables related to a cell’s location are important in both models.

D.3. Further evaluation of prediction accuracy. Figure D.1 displays the MSE and the R2

from RF-1 through RF-3 using all 85 out-of-sample sets of forecasts. Both panels show that

prediction accuracy varies across surveys. But this is especially true for RF-1. Focusing on

panel (a), RF-1 generates a very large MSE for some surveys and substantial dispersion of
11



Relative Variable Importance

Ranking RF-2 RF-3

1 Desert ecosystem (1) Desert ecosystem (1)
2 NLs (3 yr mean) (.34) CO2 (.25)
3 CO2 (.27) Population Density (.16)
4 Population Density (.16) Latitude (.08)
5 Latitude (.14) Grassland ecosystem (.08)
6 Grassland ecosystem (.11) Longitude (.07)
7 NL(VIIRS) (.10) Remoteness (.07)
8 Longitude (.09) Disease (.06)
9 Disease (.09) Malaria Incidence (.05)
10 NL(DSMP, blur) (.09) Grassland ecosystem (.05)

Table D.2. Variable importance. This table provides the 10 most important predictors for models RF-2 and RF-3, together
with their relative importance. Importance is relative to the most informative one (whose importance is normalized to 1).

the MSE across the surveys. In RF-2 and RF-3, by contrast, there are a half-dozen surveys

that have especially poor performance (though much better than the MSE in RF-1), and the

remaining MSEs are concentrated in quite low values, especially in our main model, RF-2.

__________________________________________________________________________________________________________________________________________________________________
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__

__

__

______________________________________________________________________________________________________________________________________________________________
__
__
______
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______________________________________________________________________________________________________________________________________________________________
______
__
__

__
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RF Model

(a) MSE, RF models

__
________________________________________________________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________
__

__
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.2
.4

.6
.8

1
R

2

1 2 3
RF Model

(b) R2, RF models

Figure D.1. Out-of-sample prediction accuracy. This figure provides the MSE and R2 for the 85 out-of-sample sets of
predictions, corresponding to each of the surveys in our sample. Box and Whisker plots are displayed in red.

D.4. Understanding the poor performance of NL-only models. To understand the poor

performance of the nightlights model, Figure D.2 depicts the squared correlation between

the out of sample predictions and the training data (R2) from RF-1 (NL only) and RF-2 (the

full model) when increasing the number of deciles of data, X, used in estimation. For X=2,

for instance, the graph depicts the value of the R2 obtained when only the first two deciles
12
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Figure D.2. Performance for increasing shares of data used in estimation. The figure plots the R2s from models estimated
on the X smallest deciles of the training data. E.g., if X=2, estimation is carried out on the first 2 deciles of the data.

of the training variable are used.6 The graph shows that RF-1 forecast accuracy is basically

zero when as much as the first six deciles are used for estimation, and it remains quite low

until 90% of the observations are employed. The graph therefore confirms that nightlights

alone have no power to predict variation in economic well-being for almost 60% of the data.

What nightlights make possible is to distinguish the 90% of poorest clusters from the 10%

of richest ones. This is unsurprising given the vast areas of populated darkness described

in the Introduction. By contrast, the performance of RF-3 is is stronger across the deciles,

with an R2 around .5 for these first five deciles, which then grows by over 20% when the

remaining deciles are included in the estimation sample. This graph therefore highlights that

in comparison to the NL-only models, the models with a richer set of predictors not only have

power to distinguish the poor from the rich, but also to distinguish the poor from the very

poor.

D.5. Comparison with previous benchmarks: Yeh et al. (2020). Yeh et al (2020) present

an innovative method based on combining nightlights and daytime imagery to predict an

asset wealth index, which is computed using 43 DHS surveys across almost 20,000 African

clusters. They train a convolutional neural network (CNN) to predict the cluster-specific

6Out-of-sample predictions are obtained as follows: (1) the clusters in the training data are divided into ten
“decile” data sets, each including the clusters in the decile and all lower deciles; (2) for each decile data set, RF-1
and RF-2 are estimated, but omitting the data from a held out survey; (3) out-of-sample predictions are obtained for
the held-out clusters in each decile data set; (4) the R2 for each decile data set is obtained using the out-of-sample
predictions.
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measure of wealth using temporally and spatially matched multispectral daytime imagery

and nightlights as inputs. Based on prediction performance on held out locations, they show

that (1) the median squared correlation coefficient between their training variable and the

(out-of-sample) predictions is 70% in their best models, and (2) a simple K-nearest neighbor

(KNN) model whose only predictor is nightlights has similar performance to a CNN with

both nightlights and (the much heavier) daylight imagery.

Our framework is similar to that of Yeh et al. (2020), but there are several differences:

(1) they use a different training variable (a unitless index of asset wealth, computed as the

first principal component in a sample that pools all DHS surveys), (2)) their sample is much

smaller (43 surveys versus 85, in our case), and (3) their country composition is different.

Consequently, the results presented in section 4.3 are not directly comparable to the results in

Yeh et al. To investigate the relative performance of both approaches, in this section we use

random forest models with a large number of variables to predict the training variable from

the Yeh et al data set. This allows us to attribute any performance differences to the different

methods and predictors we employ.

MSE and R2 (median value))

MSE R2

Yeh, KNN .191 .691
Yeh, CNN .179 .687
Random forest, with rich set of predictors .168 .724

Table D.3. Comparing predictions results from Yeh et al (2020) with those from random forest models using the Yeh
et al training data. Table provides model results when using the training variable from the Yeh et al data set. TheYeh,
KNN and Yeh, CNN results are obtained from the Yeh et al replication materials.

For the results from Yeh et al, we focus on (a) their model with best performance, a CNN

that uses both NLs and daylight imagery as inputs, and (b) their KNN model that includes

only NLs (as the latter is much less computationally intensive, and Yeh et al. conclude that

its performance is very similar to that of more complex models). We compare performance to

a random forest model that includes a rich set of cell-level predictors, as we do in RF-2. All

results are based on held-out locations, as described in the main text. Table D.3 presents the

results.
14



Two conclusions stand out. First, when the preferred MSE metric is employed, the

performance of the CNN model is significantly better than that of the simpler KNN model (an

improvement of 6% in the median MSE). Second, the random forest model with a rich set of

predictors outperform those in Yeh et al. (2020), producing a MSE that is 12% smaller than that

of the KNN model and 6% smaller than that of the CNN model. Importantly, these improved

results are achieved at a much lower computational cost. The use of daytime imagery together

with the CNN algorithm is a very expensive computational approach. This complexity and

computational expense make it extremely challenging to scale up the predictions to compute

maps for the whole of Africa over time. By contrast, the random forest models with a large

number of predictors can easily be run in STATA on a personal computer.

E. Estimating cell-level poverty rates

This section provides further details about the nonparametric approach we propose for

estimating cell poverty rates. We must first classify clusters into K groups, and then estimate

the poverty rate of clusters belonging to group k, for k = 1 . . .K. We do this in three steps:

(1) We assume K = 100. To allocate clusters to groups we could use clustering methods,

such as k-means. However, we will assume that all clusters in group k have nearly

identical average consumption, making it natural to use consumption to assign clusters

to groups. Therefore, groups are defined as percentiles of the distribution of ŷ∗rct. We

use the percentile values of each group to identify the cut-points dividing a group from

its adjacent groups. For example, the 75th group includes all clusters that have a value

of ŷ∗rct between 7.194 and 7.227. Like group 75, the range of cluster mean consumption

in each group is very narrow, with an average range that is 0.031.

(2) We assign each of the roughly 920,000 respondents in the DHS surveys to the group

associated with the respondent’s cluster mean income. Since the 75th group includes

all clusters that have a value of ŷ∗rct between 7.194 and 7.227, if a DHS survey respondent

resides in a cluster, for example, with ŷ∗rct= 7.21, the respondent would be placed in the

75th group, along with all other respondents across all surveys who reside in a cluster
15



with a value of ŷ∗rct between 7.194 and 7.227. This particular group has 8,790 individual

DHS respondents, which is a typical number of survey respondents in each group.

(3) We use all the DHS respondents in a group (such as the 8,790 in group 75) to calculate

the poverty line for the group. Our focus will be on the $1.90 per day used with

2011 PPP dollars. Using the 8,790 estimates of ŷ∗rct in group 75, we find that 19.1% of

the households are below the poverty line of $1.90 per day using 2011 PPP dollars.

Thus, the poverty rate for group 75 is 19.1% and all clusters assigned to this group are

assigned this same poverty rate.

Panel (a) in Figure E.1 shows the histogram of cluster-level poverty rates based on ŷ∗rct.

The blue histogram uses the naive approach, and the stark binary nature of the distribution

is what motivates the nonparametric method. The red histogram uses the nonparametric

approach to generate the poverty rates, and though there is still slightly more mass at the tails

of the distribution, there is a relatively even distribution across the range of poverty rates.
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Figure E.1. The distribution of cluster-level poverty rates using naive and non-parametric approaches. Panel (a)
depicts the histogram of poverty rates in DHS clusters using the naive and non-parametric approaches. The poverty line
is $1.90 a day using 2011 PPP dollars. Panel (b) presents scatterplots of log consumption versus (transformed) asset-based
indices, along with the 45-degree line.

By aggregating these rates to the country level using using DHS weights, we can gain

further insights into how the two approaches differ. We have calculated the national level

poverty rates based on the individual-level data, ŷ∗ict. Panel (b) in Figure E.1 compares

these poverty rates (the y-axis) with the poverty rates based on applying the naive and non-

parametric approaches to the cluster-level data. When aggregated to the national level, both
16



approaches use the cluster-level data to produce national poverty rates that are close to those

from the individual-level data. But the naive approach tends to underestimate poverty at the

higher end of the poverty distribution, and especially, to overestimate poverty at the lower end

of the poverty distribution. The same patterns do not exist for the non-parametric estimates.

As noted, the goal of the non-parametric approach is to produce fine-grained estimates of

poverty rates for cell-level analyses. The evidence here suggests that by doing so, we also

replicate national poverty rates more accurately than does the naive approach.

17



F. Additional results from re-estimating models in MP13 and MP14 using SED data

This section presents additional results related to re-analysis of MP13 and MP14 models.

Additional MP14 models. Tables F.1 to F.3 present results from models in MP14. Each

table states the models from MP14 that are being re-estimated, and the reader is referred

the tables in MP14 for model specifics. Together, Tables F.1 to F.3 show that there is no

robust relationship between national institutions and nightlights, as in MP14. By contrast, the

results for rule of law are positive and precisely estimated in every model, and the results

for control of corruption are precisely estimated in all models except the spatial regression

discontinuity models in MP 14 Table VI.
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Dep. variable is NL
rule of law 0.0994*** 0.0168 0.1031** 0.0159

(0.0384) (0.0181) (0.0407) (0.0162)
control of corruption 0.1292*** 0.0269 0.1346*** 0.0197

(0.0471) (0.0259) (0.0492) (0.0210)
Adj. R-squared 0.134 0.319 0.137 0.345 0.144 0.319 0.149 0.345
N 21289 21289 13408 13408 21289 21289 13408 13408

Panel B: Dep. variable is consumption, RF-2
rule of law 0.4474*** 0.2382*** 0.4365*** 0.2139***

(0.1677) (0.0800) (0.1590) (0.0768)
control of corruption 0.5823*** 0.2794*** 0.5650*** 0.2367**

(0.1598) (0.1017) (0.1530) (0.0982)
Adj. R-squared 0.227 0.773 0.230 0.784 0.295 0.770 0.296 0.780
N 20441 20441 12869 12869 20441 20441 12869 12869

Ethnicity fixed effects No Yes No Yes No Yes No Yes
Population density and area Yes Yes Yes Yes Yes Yes Yes Yes
Location controls. No No Yes Yes No No Yes Yes
Geographic controls No No Yes Yes No No Yes Yes

Table F.1. Re-estimatingMP14 Table V, panel B. This table re-estimates MP14 Table 5, panel B.
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Additional MP13 models. Tables F.4 to F.7 present results from models in MP13 to

demonstrate there is no robust relationship between jurisdictional hierarchy when SED

consumption is used as the outcome variable. Each table describes the model being re-

estimated and the reader can find details about model specifics in MP13.

(1) (2) (3) (4) (5)

Panel A: Dep. variable is continuous lights

jurisdictional hierarchy 0.1343 0.1529* 0.1029** 0.1176*** 0.0793***
(0.0969) (0.0886) (0.0450) (0.0454) (0.0305)

Adjusted R-squared 0.01 0.19 0.28 0.32 0.33
Observations 61359 61359 61359 61015 61015

Table F.4. Re-estimatingMP13, Table V panelA. This table re-estimates MP13 Table V, Panel A using the MP13 measure of
log of nightlights as outcome variable.
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(1) (2) (3) (4) (5)

Panel A: Dep. variable is NL

Petty Chiefdoms 0.0120 0.0459 0.0290 0.0194 0.0113
(0.0231) (0.0346) (0.0225) (0.0182) (0.0137)

Paramount Chiefdoms 0.0538 0.0843* 0.0602* 0.0642** 0.0464**
(0.0340) (0.0507) (0.0311) (0.0306) (0.0187)

Pre-Colonial States 0.0853 0.0990* 0.0638** 0.0625*** 0.0383**
(0.0647) (0.0511) (0.0252) (0.0223) (0.0176)

Adj. R-squared 0.008 0.182 0.268 0.288 0.294
N 61359 61359 61359 61015 61015

Panel B: Dep. variable is consumption from RF-2

Petty Chiefdoms -0.1631* 0.0487 0.0333 0.0012 0.0070
(0.0949) (0.0463) (0.0439) (0.0397) (0.0427)

Paramount Chiefdoms -0.1040 -0.0147 -0.0368 -0.0221 -0.0096
(0.1530) (0.0691) (0.0626) (0.0337) (0.0331)

Pre-Colonial States -0.0434 0.0076 -0.0246 -0.0425 -0.0505
(0.1842) (0.0629) (0.0696) (0.0567) (0.0624)

Adj. R-squared 0.007 0.778 0.793 0.832 0.836
N 61359 61359 61359 61015 61015

Country Fixed effects No Yes Yes Yes Yes
Population Density No No Yes Yes Yes
Controls at the Pixel level No No No Yes Yes
Controls at the Ethnic-Country level No No No No Yes
Observations 61359 61359 61359 61015 61015

Table F.5. Re-estimating MP13, Table V panel B. This table re-estimates MP13 Table V, Panel B using the transformed
consumption variable from RF-2.
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Should we get rid of the NL rows in the tables that follow?
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Dependent Variable: Consumption

< 100 km of < 150 km of < 200 km of
ethnic border ethnic border ethnic border

(1) (2) (3)

Panel A: Pre-Colonial Ethnic Institutions and Regional Development Within Contiguous Ethnic
Homelands in the Same Country Pixel-Level Analysis in Areas Close to the Ethnic Border

Panel 1: Border Thickness: Total 50 km (25 km from each side of the ethnic boundary)

jurisdictional hierarchy 0.0168 0.0094 0.0105
(0.0173) (0.0158) (0.0158)

Adj. R-squared 0.908 0.898 0.897
N 6237 9476 11920

Panel 2: Border Thickness: Total 100 km (50 km from each side of the ethnic boundary)

jurisdictional hierarchy 0.0117 0.0032 0.0066
(0.0178) (0.0161) (0.0166)

Adj. R-squared 0.906 0.896 0.896
N 4053 7292 9736

Panel B: Pre-Colonial Ethnic Institutions and Regional Development Within Contiguous Ethnic
Homelands in the Same Country Pixel-Level Analysis in Areas Close to the “Thick” Ethnic Border
Border Controlling for a Fourth-order RD-Type Polynomial in Distance to the Ethnic Border

Panel 1: Border Thickness—Total 50 km (25 km from each side of the ethnic boundary)
jurisdictional hierarchy 0.0104 0.0145 0.0205

(0.0272) (0.0248) (0.0231)
Adj. R-squared 0.909 0.899 0.898
N 6237 9476 11920

Panel 2: Border Thickness—Total 100 km (50 km from each side of the ethnic boundary)

jurisdictional hierarchy 0.0128 0.0174 0.0220
(0.0397) (0.0337) (0.0302)

Adj. R-squared 0.906 0.896 0.896
N 4053 7292 9736

RD-Type Polynomial Yes Yes Yes
Adjacent-Ethnic-Groups Yes Yes Yes
Fixed Effects
Population Density Yes Yes Yes
Controls at the Pixel level Yes Yes Yes

Table F.7. Re-estimatingMP13, Table VIII using consumption. This table re-estimates the first three models (which use all
observations) from MP13 Table VIII. The dependent variable is consumption from RF-2.
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