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Abstract

In a housing market of Shapley and Scarf [48], each agent is endowed with one indivisible
object and has preferences over all objects. An allocation of the objects is in the (strong) core if
there exists no (weakly) blocking coalition. We show that for strict preferences the unique strong
core allocation “respects improvement”: if an agent’s object becomes more desirable for some other
agents, then the agent’s allotment in the unique strong core allocation weakly improves. We extend
this result to weak preferences for both the strong core (conditional on non-emptiness) and the set
of competitive allocations (using probabilistic allocations and stochastic dominance). There are no
counterparts of the latter two results in the two-sided matching literature. We provide examples
to show how our results break down when there is a bound on the length of exchange cycles.

Respecting improvements is an important property for applications of the housing markets
model such as kidney exchange: it incentivises each patient to bring the best possible set of donors
to the market. We conduct computer simulations using markets that resemble the pools of kidney
exchange programmes. We compare the game-theoretical solutions with current techniques (max-
imum size and maximum weight allocations) in terms of violations of the respecting improvement
property. We find that game-theoretical solutions fare much better at respecting improvements,
even when exchange cycles are bounded, and they do so at a low efficiency cost. As a stepping-
stone for our simulations, we provide novel integer programming formulations for computing core,
competitive, and strong core allocations.

Keywords: housing market; respecting improvement; core; competitive allocations; integer pro-
gramming; kidney exchange programmes

1 Introduction

Shapley and Scarf [48] introduced so-called “housing markets” to model trading in commodities that
are inherently indivisible. Specifically, in a housing market each agent is endowed with an object (e.g.,
a house or a kidney donor) and has ordinal preferences over all objects, including her own. The aim is
to find plausible or desirable allocations where each agent is assigned one object. A standard approach
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in the literature is to discard allocations that can be blocked by a coalition of agents. Specifically, a
coalition of agents blocks an allocation if they can trade their endowments so that each of the agents
in the coalition obtains a strictly preferred allotment. Similarly, a coalition of agents weakly blocks an
allocation if they can trade their endowments so that each of the agents in the coalition obtains a weakly
preferred allotment and at least one of them obtains a strictly preferred allotment. Thus, an allocation
is in the (strong) core if it is not (weakly) blocked. A distinct but also well-studied solution concept
is obtained from competitive equilibria, each of which consists of a vector of prices for the objects and
a (competitive) allocation such that each agent’s allotment is one of her most preferred objects among
those that she can afford. Interestingly, the three solution concepts are entwined: the strong core is
contained in the set of competitive allocations, and each competitive allocation pertains to the core.

In a separate line of research, Balinski and Sönmez [11] studied the classical two-sided college admis-
sions model of Gale and Shapley [23] and proved that the student-optimal stable matching mechanism
(SOSM) respects improvement of student’s quality. This means that under SOSM, an improvement of
a student’s rank at a college will, ceteris paribus, lead to a weakly preferred match for the student. The
natural transposition of this property to (one-sided) housing markets requires that an agent obtains a
weakly preferred allotment whenever her object becomes more desirable for other agents. We study the
following question: Do the most prominent solution concepts for Shapley and Scarf’s housing market
[48] “respect improvement”? We obtain several positive answers to this question, which we describe in
more detail in the next subsection.

The respecting improvement property is important in many applications where centralised clear-
inghouses use mechanisms to implement barter exchanges. A leading example are kidney exchange
programmes (KEPs), where end-stage renal patients exchange their willing but immunologically incom-
patible donors [42]. In the context of KEPs, the respecting improvement property means that whenever
a patient brings a “better” donor (e.g., younger or with universal blood type 0 instead of A, B, or AB)
or registers an additional donor, the KEP should assign her the same or a better exchange donor.1 In
other words, the respecting improvement property incentivises each patient to bring the best possible
set of donors to the market. However, in current KEPs, the typical objective is to maximise the number
of transplants and their overall qualities (see, e.g., [17]) which can lead to violations of the respecting
improvement property. As an illustration, consider the maximisation of the number of transplants in
Figure 1, where each node represents a patient-donor pair. A directed edge, from A to B say, indicates
the compatibility of the donor in node B with the patient in node A. Patients may have different levels
of preference over their set of compatible donors. Initially there are only continuous edges, where a

1

2
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Figure 1: The maximisation of the number of transplants does not respect improvement.

thick (thin) edge points to the most (least) preferred donor. For example, patient 3 has two compatible
donors: donors 1 and 4, and donor 1 is preferred to donor 4. Obviously, the unique way to maximise the
number of (compatible) transplants is obtained by picking the three-cycle (1,2,3). Suppose that patient
3 succeeds in bringing a second donor to the KEP and this donor turns out to be compatible for patient
4. Then, the discontinuous edge is included as patient-donor pair 3 “improves.” But now the unique
way to maximise the number of (compatible) transplants is obtained by picking the two two-cycles (1,2)

1Allowing for additional donors does not require an extension to a model where agents can be endowed with multiple
objects: an agent’s set of donors can only be assigned to one other agent and this agent can only “consume” its most
preferred element from the set.
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and (3,4), which means that patient 3 receives a kidney that is strictly worse than the kidney she would
have received initially.

Similarly, the allocations induced by the standard objectives of KEPs need not pertain to the core.
We refer to Example 1 for an illustration of this for the case of the maximisation of the number of
transplants. As a consequence, blocking coalitions may exist. This is an undesirable feature because
patient groups could make a potentially justified claim that the matching procedure is not in their best
interest. A particular instance could occur in the organisation of international kidney exchanges if a
group of patient-donor pairs, all citizens of the same country, learn that an internal (i.e., national)
matching would yield a better match for all of them.

Next, we describe our contributions and review the related literature.

1.1 Contributions

Section 3 contains our theoretical results on the respecting improvement property. First, we show that
for strict preferences (Section 3.1) the unique strong core allocation (which coincides with the unique
competitive allocation) respects improvement (Theorem 1).

In the case of preferences with ties (Section 3.2), we first analyze the set of competitive allocations.
Since typically multiple competitive allocations exist, we have to make setwise comparisons. Focusing
on the agent’s allotments obtained at competitive allocations, we establish a natural extension of our
first result by using stochastic dominance and probabilistic allocations (Theorem 2). As a corollary,
we obtain that the agent’s most preferred allotment in the new market is weakly preferred to her most
preferred allotment in the initial market; and similarly, her least preferred allotment in the new market
is weakly preferred to her least preferred allotment in the initial market (Corollary 1). Next, we focus
on the (possibly empty) strong core. We prove that when preferences have ties the strong core respects
improvement conditional on the strong core being non-empty. More precisely, under the assumption
that strong core allocations exist in both the initial and new markets, we show that the agent under
consideration weakly prefers each allotment in the new strong core to each allotment in the initial strong
core (Theorem 3 and Corollary 2).

Finally, in Section 3.3, we relax an important assumption in the housing market of Shapley and
Scarf, namely that allocations can contain exchange cycles of any length, i.e., cycles are unbounded.
The definition of core and strong core can be naturally adjusted to the requirement that the length
of exchange cycles does not exceed an exogenously given maximum. Wako [53] shows that the set of
competitive allocations coincides with the core based on a antisymmetric weak domination concept.
This equivalent definition, which we call the Wako-core, allows for a natural direct extension to the case
of bounded exchange cycles. Unfortunately, when exchange cycles are bounded the core (and hence also
the set of competitive allocations and the strong core) can be empty.2 Conditional on the existence of a
core, competitive, or strong core allocation, we show that even if preferences are strict, when the length
of exchange cycles is limited (upper bound 3 or higher), the core, the set of competitive allocations, and
the strong core do not respect improvement in terms of the most preferred allotment (Proposition 2).

In Section 4, we provide novel integer programming (IP) formulations for finding core, competitive,
and strong core allocations, which serves as a stepping-stone for our simulations in Section 5. For
unbounded length exchanges our novel edge-formulation is much more efficient than the IP solution
proposed by Quint and Wako [40]. Furthermore, our simple sets of constraints for the three solution
concepts clearly show the hierarchy between them by pinpointing the additional requirements needed
when moving from one solution concept to a stronger one. For bounded length exchanges, we obtain an
improvement of the Quint-Wako formulations by focusing only on the feasible cycles. Our formulations

2The corresponding decision problem is NP-hard [15, 26] even for tripartite graphs (also known as the cyclic 3D stable
matching problem [36]).
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are concise and useful for practical computations.
Section 5 complements our theoretical analysis and consists of computer simulations comparing core,

competitive, and strong core allocations with maximum size and maximum total weight3 allocations.
To carry out our simulations we draw markets from pools similar to those observed in KEPs and study
both unbounded and bounded length exchange cycles.4 The maximisation of the size and the weight
of the allocations correspond to the maximisation of the number of transplants and overall quality of
the transplants, respectively. In the simulations we use our novel IP formulations for unbounded length
exchanges and adjustments of the IP models developed in [27] for bounded length exchanges.

We first study the frequency of violations of the respecting improvement property (in terms of the
most preferred allotment) for all models. We observe a large number of violations for maximum size and
maximum weight allocations, while we only see a negligible amount of violations for core, competitive,
and strong core allocations for bounded length cycles. In view of these findings, we analyse the potential
trade-off between stability (no-blocking) requirements and the maximum number of transplants. We
find that when the size of the instances increases, the trade-off decreases significantly: core allocations
for instances with 150 patient-donor pairs yield a less than 1% reduction in the number of transplants.
We complement this analysis by studying the number of weakly blocking cycles (or equivalently, the
number of violated stability constraints). Thus, we obtain an estimation of how much deficiency in terms
of “robustness” / “fairness” we have to accept vis-à-vis the “ideal” (but potentially empty) strong core.

An important conclusion from our simulations is that when kidney exchange programmes are suffi-
ciently large, one can take into account agents’ preferences and largely ensure the respecting improve-
ment property without a significant reduction in the number of transplants. Finally, our simulations
also show that the novel IP formulations have a high potential of being used in practice as they prove
to be efficient at finding optimal allocations for problems of practical size.

1.2 Literature review

Housing markets. The non-emptiness of the core was proved in [48] by showing the balancedness
of the corresponding NTU-game, and also in a constructive way, by showing that David Gale’s famous
Top Trading Cycles algorithm (TTC) always yields competitive allocations. [41] later showed that for
strict preferences the TTC results in the unique strong core allocation, which coincides with the unique
competitive allocation in this case. However, if preferences are not strict (i.e., ties are present), the
strong core can be empty or contain more than one allocation, but the TTC still produces all competitive
allocations. Wako [51] showed that the strong core is always a subset of the set of competitive allocations.
Quint and Wako [40] provided an efficient algorithm for finding a strong core allocation whenever there
exists one. Their work was further generalised and simplified by Ceclárová and Fleiner [19] who used
graph models. Wako [53] showed that the set of competitive allocations coincides with the core based
on an antisymmetric weak domination concept, which we refer to as Wako-core in this paper. This
equivalence is key for our extension of the definition of competitive allocations to the case of bounded
exchange cycles.

3In the literature on KEPs it is often assumed that each edge has a weight representing the fit/quality of the donor’s
kidney for the receiving patient. The total weight of an exchange cycle is the sum of the weights associated with the edges
involved in the exchange. The total weight of an allocation is the sum of the weights of its exchange cycles. Details are
in Section 5.

4In KEPs, all transplants in the same exchange cycle are usually carried out simultaneously. Obviously, if the number
of surgical teams and operation rooms is small, some of the transplants have to be conducted in a non-simultaneous way.
In many countries, this “risky” solution is not allowed because of possible reneging [13]. Thus, in practice, exchange cycles
are usually bounded.
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Respecting improvement. For Gale and Shapley’s college admissions model [23] , Balinski and
Sönmez [11] proved that the student-optimal stable matching mechanism (SOSM) respects improvement
of student’s quality. Kominers [30] generalised this result to more general settings. Balinski and Sönmez
[11] also showed that SOSM is the unique stable mechanism that respects improvement of student
quality. Abdulkadiroglu and Sönmez [2] proposed and discussed the use of TTC in a model of school
choice, which is closely related to the college admissions model. Abdulkadiroğlu and Che [3] stated and
Hatfield et al. [25] formally proved that the TTC mechanism respects improvement of student quality.

Hatfield et al. [25] also focused on the other side of the market and studied the existence of mecha-
nisms that respect improvement of a college’s quality. The fact that colleges can match with multiple
students leads to a strong impossibility result: they proved that there is no stable nor Pareto-efficient
mechanism that respects improvement of a college’s quality. In particular, the (Pareto-efficient) TTC
mechanism does not respect improvement of a college’s quality.

In the context of KEPs with pairwise exchanges, the incentives for bringing an additional donor
to the exchange pool was first studied by Roth et al. [43]. In the model of housing markets their
donor-monotonicity property boils down to the respecting improvement property. They showed that
so-called priority mechanisms are donor-monotonic if each agent’s preferences are dichotomous, i.e.,
she is indifferent between all acceptable donors. However, if agents have non-dichotomous preferences,
then any mechanism that maximises the number of pairwise exchanges (so, in particular any priority
mechanism) does not respect improvement. This can be easily seen by means of Example 4 in Section 3.3.

IP formulations for matching. Quint and Wako [40] already gave IP formulations for finding core
and strong core allocations, but the number of constraints in their paper is highly exponential, as their
formulations contain a no-blocking condition for each set of agents and any possible exchanges among
these agents. Other studies provided IP formulations for other matching problems. In particular, for
Gale and Shapley’s college admissions model [23], Bäıou and Balinsi [9] already described the stable
admissions polytope, which can be used as a basic IP formulation. Further recent papers in this
line of research focused on college admissions with special features [5], stable project allocation under
distributional constraints [6], the hospital–resident problem with couples [14], and ties [32, 21].

Kidney exchange programmes. Starting with the seminal works [45] and [44], initial research on
KEPs focused on integer programming (IP) models for selecting pairs for transplantation in such a way
that maximum (social) welfare, generally measured by the number of patients transplanted, is achieved.
Authors in [20, 22, 33] proposed new, compact formulations that, besides extending the models in [45]
and [44] to accommodate non-directed donors and patients with multiple donors, also aimed to efficiently
solve problems of larger size. The reader is referred to [8] for a recent operations perspective on KEPs.

In Europe at least ten countries have active national kidney exchange programmes. Details of current
practices and optimisation aspects are summarised in [13] and [17], respectively. Furthermore, there are
already several international collaborations between European countries [28], which motivated a new line
of research on group-fairness, [18, 29, 35] where agents (e.g. hospitals, regional and national programmes)
can collaborate. Allowing agents to control their internal exchanges, Carvalho et al. [18] studied strategic
interaction using non-cooperative game theory. Specifically, for the two-agent case, they designed a game
such that some Nash equilibrium maximises the overall social welfare. Considering multiple matching
periods, Klimentova et al. [29] assumed agents to be non-strategic. Taking into account that at each
period there can be multiple optimal allocations, each of which can benefit different agents, the authors
proposed an integer programming model to achieve an overall fair allocation. Finally, Mincu et al. [35]
proposed integer programming formulations for the case where optimisation goals and constraints can
be distinct for different agents.

A recent line of research acknowledges the importance of considering patients’ preferences (associated
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with e.g. graft quality) over matches, raising the question of individual fairness. In the computer science
and OR literature, Biró and Cechlárová [16] considered a model for unbounded length kidney exchanges,
where patients most care about the quality of the graft they receive, but as a secondary factor they prefer
to be involved in an exchange cycle that is as short as possible. The authors showed that although core
allocations can still be found by the TTC algorithm, finding a core allocation with maximum number of
transplants is a computationally hard problem (inapproximable, unless P = NP ). In two independent
papers [15] and [26] stable exchanges were studied for bounded length cycles with NP-hardness results
for the case of 3-cycles. Recently, Klimentova et al. [27] provided integer programming formulations
for the case where each patient has preferences over the organs that she can receive. The authors
focused on allocations that among all (strong) core allocations have maximum cardinality. Moving
away from the (strong) core, they also analysed the trade-off between maximum cardinality and the
number of blocking cycles. As we show through simulations in this paper, core allocations do not create
a substantial number of violations of the respecting improvement property (for best allotments), and
thus incentivise the participation in KEPs.

In the economics and game theory literature, the preferences of the recipients were dichotomous (i.e.,
either acceptable or unacceptable) in the classical papers, starting with [43]. Abassi et al. [1] studied
a multi-object housing market under dichotomous preferences for both bounded and unbounded length
exchange cycles with the aim of maximising social welfare with truthful mechanisms in which it is
a dominant strategy for each agent to report the true private information on his own items offered
for exchange and his wish list. They showed that for the length-constrained variants the problem is
inapproximable. The first departure from this literature was by Nicolò and Rodŕıguez-Álvarez [37],
who considered a setting where the quality of potential transplants is given and each recipient can
set an acceptability threshold. They proved an impossibility result for pairwise exchanges (that they
later generalised in [38]) and they studied conditions under which truth-telling is the unique protective
strategy for the recipients. In a follow-up paper [39] they considered pairwise exchanges with age-based
preferences and ties, and they proposed a deterministic sequential priority rule that satisfies efficiency,
strategy-proofness, and non-bossiness. Andersson and Kratz [7] considered a model motivated by the
Swedish application, where (1) ABO-incompatible transplants are allowed in the exchanges and (2)
each ABO-incompatible recipient-donor pair only accepts a fully compatible donor. They studied a
priority matching rule on their trichotomous preference domain. Another proposal for giving incentives
to compatible pairs by prioritising patients in case of future graft failure was given by Sönmez, Ünver,
and Yenmez [49]. In a recent paper, Balbuzanov [10] considered bounded length exchange problems
under strict preferences. He showed that there is no deterministic mechanism that satisfies individual
rationality, ex-post efficiency, and weak strategy-proofness. He also provided a random mechanism for
pairwise exchanges that is individually rational, ordinally efficient, and anonymous.

2 Preliminaries

We consider housing markets as introduced by Shapley and Scarf [48]. Let N = {1, . . . , n}, n ≥ 2, be
the set of agents. Each agent i ∈ N is endowed with one object, which with some abuse of notation is
denoted by i. Thus, N also denotes the set of objects. Each agent i ∈ N has complete and transitive
(weak) preferences Ri over objects.

5 We denote the strict part of Ri by Pi, i.e., for all j, k ∈ N , jPik
if and only if jRik and not kRij. Similarly, we denote the indifference part of Ri by Ii, i.e., for all
j, k ∈ N , jIik if and only if jRik and kRij. Let R ≡ (Ri)i∈N . A (housing) market is a pair (N,R),
or if no confusion is possible, simply R.6 Object j ∈ N is acceptable to agent i ∈ N if jRii. Agent i’s

5In other words, an agent can be indifferent between objects, including her own endowment.
6Therefore, when keeping the set of agents fixed, we interchangeably refer to R as the profile of preferences and the

market.
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preferences are called strict if they do not exhibit ties between acceptable objects, i.e., for all acceptable
j, k ∈ N with j ̸= k we have jPik or kPij. A housing market has strict preferences if each agent has
strict preferences. A housing market where agents do not necessarily have strict preferences is often
referred to as a housing market with weak preferences.

Given a housing market M = (N,R) and a set S ⊆ N , the submarket MS is the housing market
where S is the set of agents/objects and where the preferences (Ri)i∈S are restricted to the objects in
S.

The acceptability graph of a housing market M = (N,R) is the directed graph GM = (N,E), or G for
short, where the set of nodes is N and where (i, j) is a directed edge in E if j is an acceptable object for
i, i.e., jRii. In particular, all self-cycles (i, i) are in the graph (but for convenience they are omitted in
all figures). Let Ñ ⊆ N and Ẽ ⊆ E ∩ (Ñ × Ñ). For each i ∈ Ñ , the set of agent i’s most preferred edges
in graph G̃ ≡ (Ñ , Ẽ) or simply Ẽ is the set ẼT,i ≡ {(i, j) : (i, j) ∈ Ẽ and for each (i, k) ∈ Ẽ, jRik}.
The most preferred edges in graph G̃ is the set ∪i∈Ñ ẼT,i.

Let M = (N,R) be a housing market. An allocation is a redistribution of the objects such that each
agent receives exactly one object, i.e., an allocation is a vector x = (xi)i∈N ∈ NN such that:

(1) for each i ∈ N , xi ∈ N denotes agent i’s allotment, i.e., the object that she receives, and

(2) no object is assigned to more than one agent, i.e., ∪i∈N{xi} = N.

We will focus on individually rational allocations, i.e., allocations where each agent receives an acceptable
object. Then, an allocation x can equivalently be described by its corresponding cycle cover Gx of the
acceptability graph G. Formally, Gx = (N,Ex) is the subgraph of G where (i, j) ∈ Ex if and only
if xi = j. Thus, the graph Gx consists of disconnected trading cycles or exchange cycles7 that cover
G. We will often write an (individually rational) allocation in cycle-notation, i.e., as a set of exchange
cycles (where we sometimes omit self-cycles). We refer to Example 1 for an illustration.

An allocation x Pareto-dominates an allocation z if for each i ∈ N , xiRizi, and for some j ∈ N ,
xjPjzj. An allocation is Pareto-efficient if it is not Pareto-dominated by any allocation. Two allocations
x, z are welfare-equivalent if for each i ∈ N , xiIizi.

Next, we recall the definition of solution concepts that have been studied in the literature. A
non-empty coalition S ⊆ N blocks an allocation x if there is an allocation z such that

(1) {zi : i ∈ S} = S and

(2) for each i ∈ S, ziPixi.

An allocation x is in the core8 of the market if there is no coalition that blocks x. For each market R,
let C(R) denote its core.

A non-empty coalition S ⊆ N weakly blocks an allocation x if there is an allocation z such that

(1) {zi : i ∈ S} = S,

(2) for each i ∈ S, ziRixi, and

(3) for some j ∈ S, zjPjxj.

7Note that a (trading/exchange) cycle is a non-empty directed path in which only the first and last nodes are equal.
A single node is a self-cycle, i.e., a degenerate cycle.

8In the literature the core is sometimes called the weak core or “regular” core.

7



An allocation x is in the strong core9 of the market if there is no coalition that weakly blocks x. For
each market R, let SC(R) denote its (possibly empty) strong core.

A price-vector is a vector p = (pi)i∈N ∈ RN where pi denotes the price of object i. A competitive
equilibrium is a pair (x, p) where x is an allocation and p is a price-vector such that:

(1) for each agent i ∈ N , object xi is affordable, i.e., pxi
≤ pi and

(2) for each agent i ∈ N , each object she prefers to xi is not affordable, i.e., jPixi implies pj > pi.

An allocation is a competitive allocation if it is part of some competitive equilibrium. Since there are n
objects, we can assume, without loss of generality, that prices are integers in the set {1, 2, . . . , n}.

Remark 1. If (x, p) is such that

(1) for each i ∈ N , pxi
≤ pi, or

(2) for each i ∈ N , pi ≤ pxi
,

then for each i ∈ N , pxi
= pi. This follows immediately by looking at each exchange cycle separately

(see, e.g., the proof of Lemma 1 in [19]). Hence, at each competitive equilibrium (x, p), for each i ∈ N ,
pxi

= pi. ⋄

[53] proved that the set of competitive allocations can be defined equivalently as a different type of
core. Formally, a non-empty coalition S ⊆ N antisymmetrically weakly blocks an allocation x if there is
an allocation z such that:

(1) {zi : i ∈ S} = S,

(2) for each i ∈ S, ziRixi,

(3) for some j ∈ S, zjPjxj, and

(4) for each i ∈ S, if ziIixi then zi = xi.

Requirements (1–3) say that coalition S weakly blocks x. The additional requirement (4) is that if an
agent in S is indifferent between her allotments at x and z then she must get the very same object, i.e.,
zi = xi. An allocation x is in the core defined by antisymmetric weak domination if there is no coalition
that antisymmetrically weakly blocks x. [53] proved that the set of competitive allocations coincides
with the core defined by antisymmetric weak domination. Henceforth, we will often refer to the set of
competitive allocations as the Wako-core, and for each market R we denote this set by WC(R). Note
that when preferences are strict, requirement (4) is redundant and the equivalence of strong core and
Wako-core follows immediately.

Note that the three blocking notions introduced above are “nested”: blocking implies antisymmetri-
cal weak blocking and antisymmetrical weak blocking implies weak blocking. Therefore, for each market
R, SC(R) ⊆ WC(R) ⊆ C(R).10

The following lemma is helpful for computations and is also used in our IP formulations and simu-
lations. It states that for each of the three cores, to check whether it contains a given allocation it is
not necessary to check blocking by any possible coalition. It is sufficient to check potential blocking by
coalitions that constitute cycles in the acceptability graph.11

9In the literature the strong core is sometimes called the strict core.
10[52] showed that the strong core coincides with the set of competitive allocations if and only if any two competitive

allocations are welfare-equivalent. Hence, whenever the set of competitive allocations is a singleton it coincides with the
strong core.

11This result and generalisations of it have appeared in the literature, see, e.g., Proposition 1.1.3 in [12]. We include a
short, self-contained proof.
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Lemma 1. The strong core, Wako-core, and core consist of individually rational allocations. Moreover,
each of the cores is equivalently characterised by the absence of blocking by cycles in the acceptability
graph G = (N,E). Formally, let x be an individually rational allocation. Then, x is in the strong core
/ Wako-core / core if there is no coalition {i1, . . . , ik} with for each l = 1, . . . , k (mod k), (il, il+1) ∈ E,
that weakly blocks x / antisymmetrically weakly blocks x / blocks x through some allocation z with for
each l = 1, . . . , k (mod k), zil = il+1.

Proof. Individual rationality is immediate. To prove the statement for the strong core, let x be an
individually rational allocation. Suppose there is a non-empty coalition T that weakly blocks x through
some allocation w. Let j ∈ T be such that wjPjxj. Let S ⊆ T be the agents that constitute the
exchange cycle, say (i1, . . . , ik), in w that involves agent j, i.e., j ∈ S. One immediately verifies that
S = {i1, . . . , ik} weakly blocks x through the allocation z defined by

zi ≡
{

wi if i ∈ S;
xi if i ̸∈ S.

This proves the statement for the strong core. The statements for the core and the Wako-core follow
similarly.

An individually rational allocation x is a maximum size allocation if for each individually rational
allocation z, |{i ∈ N : xi ̸= i}| ≥ |{i ∈ N : zi ̸= i}|. Below we provide an example to illustrate the
three cores and maximum size allocation.

Example 1. Let N = {1, . . . , 6} and let preferences be given by Table 1. Throughout the paper we do
not display agents’ unacceptable objects. For instance, agent 1 is indifferent between objects 2 and 3,
and strictly prefers both objects to object 5.

1 2 3 4 5 6
2,3 1 2 3 2 1
5 3 4 2 6 6
1 2 3 4 5

Table 1: Preferences

1

2

3

4

5

6

Figure 2: Acceptability graph

xa = {(1, 3, 2)}
xb = {(1, 2), (3, 4)}
xc = {(1, 5, 2), (3, 4)}
xd = {(1, 3, 4, 2)}
xe = {(1, 5, 6), (2, 3, 4)}

Table 2: Allocations

Figure 2 displays the induced acceptability graph.12 Here, a thick edge denotes the most preferred
object(s) and a thin edge denotes the second most preferred object (if any).

Consider the allocations defined in Table 2. For instance, xd (in cycle-notation, but without self-
cycles) is the allocation xd = (xd

1, x
d
2, x

d
3, x

d
4, x

d
5, x

d
6) = (3, 1, 4, 2, 5, 6). Using Lemma 1, it can be easily

verified that xa is the unique strong core allocation, xa and xb are the competitive allocations, while
xa, xb, xc, and xd form the core. Hence, the strong core is a singleton and a proper subset of the set of
competitive allocations, while the latter set is also a proper subset of the core. Finally, xe is the unique
maximum size allocation and does not pertain to the core. ⋄

Shapley and Scarf [48] (see also page 135 in [41]) showed that the set of competitive allocations
is non-empty and coincides with the set of allocations that are obtained through David Gale’s Top
Trading Cycles algorithm,13 which is discussed in Section 3.1. Roth and Postlewaite [41] showed that
if preferences are strict, then there is a unique strong core allocation which coincides with the unique

12Throughout the paper, self-cycles are omitted from the acceptability graphs in the examples.
13If preferences are not strict, then the Top Trading Cycles algorithm is applied to the preference profiles that can be

obtained by breaking ties in all possible ways.
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competitive allocation. In general, when preferences are not strict, the strong core can be empty (see,
e.g., Footnote 14) or contain more than one allocation (see, e.g., Example 1).

If preferences are strict, the unique competitive allocation is Pareto-efficient (because it is in the
strong core) and Pareto-dominates any other allocation (Lemma 1 in [41]); in particular, any other
core allocation is Pareto-inefficient. If preferences are not strict, it is possible that each competitive
allocation is Pareto-dominated by some allocation that is not competitive.14

Finally, competitive allocations need not be welfare-equivalent: in fact, different agents can strictly
prefer distinct competitive allocations (see, e.g., Footnote 14). However, Wako [52] showed that all
strong core allocations are welfare-equivalent. The latter result also immediately follows from Quint
and Wako’s algorithm [40], which is discussed in Section 3.2.

3 Respecting Improvement

Let R, R̃ be two preference profiles over objects N . Let i ∈ N . We say that R̃ is an improvement for i
with respect to R if the only difference between R and R̃ is that at R̃ object i is ranked weakly higher
by the other agents than at R.15 In other words,
(1) only agents different from i have possibly different preferences at R̃ and R;
(2) for each agent j ̸= i, object i can become preferred to some additional objects; and
(3) for each agent j ̸= i and for each pair of objects different from i, preferences remain unchanged.
Formally,

(1) R̃i = Ri;
(2) for all j ̸= i and all k with k Rj j, i Ij k =⇒ i R̃j k and i Pj k =⇒ i P̃j k; and
(3) for all j ̸= i and all k, l ̸= i, k Rj l⇐⇒ k R̃j l.

As a simple example withN = {1, 2, 3, 4, 5}, letR be any preference profile such that 4P5 1 I5 2 I5 3P55.
Let R̃ be the preference profile where agents 1, 2, 3, and 4 have the same preferences as at R and let R̃5

be defined by 1 I54P5 2 I5 3P55. Then, R̃ is an improvement for agent 1 with respect to R.

Let R be a domain of markets. A single-valued allocation rule (on R) is a map ϕ that associates with
each market R ∈ R an allocation ϕ(R). For each i ∈ N , let ϕi(R) denote agent i’s allotment at ϕ(R).
We say that ϕ respects improvement (on R) if for each i ∈ N and each pair of markets R, R̃ ∈ R such
that R̃ is an improvement for i with respect to R, we have that ϕi(R̃)Riϕi(R). Respecting improvement
is a natural and important property for applications of the housing markets model such as kidney
exchange programmes. If the programme employs an allocation rule that respects improvement, then
it incentivises all patients to bring the best possible set of donors to the market.

We also study a (generalized) respecting improvement property for multi-valued allocation rules. A
multi-valued allocation rule (on R) is a map Φ that associates with each market R ∈ R a (possibly
empty) set of allocations Φ(R).

Since multi-valued allocation rules yield sets of allocations, we will have to compare sets of allotments
for individual agents. Let X be a set of allocations and i ∈ N . The best allotments for agent i at X
are the objects that she weakly most prefers among all objects in {xi : x ∈ X}, denoted by X+

i .
Analogously, the worst allotments for i at X are the objects that she weakly least prefers among all
objects in {xi : x ∈ X}, denoted by X−

i .
Let Φ be a non-empty16 multi-valued allocation rule (on R). We say that Φ respects improvement

14Example 1 in [50], which is attributed to Jun Wako, is illustrative: N = {1, 2, 3} with 2P13P11, 1I23P22, 2P31P33.
The set of competitive allocations consists of x = {(1, 2), (3)} and x′ = {(1), (2, 3)}, which are Pareto-dominated by core
allocations {(1, 2, 3)} and {(1, 3, 2)}, respectively. Moreover, x1P1x

′
1 and x′

3P3x3. The strong core is empty.
15We could relax the definition by allowing for differences in the relative ranking of unacceptable objects, but since we

only study individually rational allocations, such a relaxation has no impact.
16In other words, for each R ∈ R, Φ(R) ̸= ∅.
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for the best allotments, or satisfies the RI-best property, if for each i ∈ N , each pair of markets R, R̃ ∈ R
such that R̃ is an improvement for i with respect to R, and each pair of allotments x̃i ∈ Φ+

i (R̃) and
xi ∈ Φ+

i (R), we have x̃iRixi. Similarly, we say that Φ respects improvement for the worst allotments,
or satisfies the RI-worst property, if for each i ∈ N , each pair of markets R, R̃ ∈ R such that R̃ is an
improvement for i with respect to R, and each pair of allotments x̃i ∈ Φ−

i (R̃) and xi ∈ Φ−
i (R), we have

x̃iRixi.
Finally, in the case of a multi-valued allocation rule Φ that for some markets can yield the empty

set, we say that it conditionally respects improvement if the above requirements hold conditional on
Φ(R),Φ(R̃) ̸= ∅.

In the following three subsections we state and prove our main theoretical results. For a complete
and transparent overview of all theoretical findings we refer to the summarising Table 14 in Section 6.

3.1 Strict preferences

We consider housing markets with strict preferences and weak preferences separately. The reason is that
when preferences are strict, the strong core is always a singleton (which consists of the unique competitive
allocation) so that the corresponding algorithm and notation are relatively simple. Tackling first the
case of strict preferences also facilitates the discussion of the (general) case of weak preferences in the
next subsection.

Before we present and prove our first main result, we describe the TTC algorithm for finding strong
core allocations when preferences are strict. The graphs defined in the algorithm are crucial tools for
the proof of Theorem 1.

Let M = (N,R) be a housing market with strict preferences. We will construct a subgraph GCP of
the acceptability graph G by using the Top Trading Cycles (TTC) algorithm of David Gale [48]. The
node set of GCP is N and its directed edges ECP = EC ∪EP are partitioned into two sets EC and EP ,
where EC consists of the edges in the TTC cycles and EP consists of all other edges that turn up during
the execution of the algorithm and that point to more preferred objects.

TTC algorithm – construction of GCP

Set EC ≡ ∅, EP ≡ ∅, and M1 ≡ M . Let G1 = (N1, E1) ≡ (N,E) denote the acceptability graph of
M1. We iteratively construct “shrinking” submarkets Mt (t = 2, 3, . . .) whose acceptability graph will
be denoted by Gt = (Nt, Et). Set t ≡ 1.
Step 1. Let ET

t be the set of most preferred edges in Gt.
Step 2. Let ct be a (top trading) cycle in (Nt, E

T
t ). Let Ct and Et denote the node set and edge set of

ct, respectively.
Step 3. Add the edges of ct to EC , i.e., EC ≡ EC ∪ Et.
Step 4. Let ET

t (C⃗t) denote the subset of edges of ET
t pointing to Ct from outside Ct. Formally,

ET
t (C⃗t) ≡ {(i, j) ∈ ET

t : i ∈ Nt \ Ct and j ∈ Ct}. Add ET
t (C⃗t) to EP , i.e., EP ≡ EP ∪ ET

t (C⃗t).
Step 5. If Nt = Ct, stop. Otherwise, let Nt+1 ≡ Nt \Ct, denote the submarket MNt+1 by Mt+1, and go
to step 1.

When the algorithm terminates the set of (top trading) cycles in EC is the unique competitive allocation
and hence the unique strong core allocation (see [41]). The following two facts about the graph GCP

are useful for later reference.

Fact 1. Cycles only contain edges in EC . Each path that is not part of a cycle has an edge in EP .
Fact 2. For any distinct ℓ, ℓ′ ∈ N , if there is a path from agent ℓ to agent ℓ′, then either the two agents
are in the same cycle or agent ℓ′ is removed from the market before agent ℓ.

For each profile of strict preferences R, let τ(R) denote the unique competitive allocation (or strong
core allocation). Theorem 1 below states that the allocation rule τ respects improvement. We provide a
direct proof (based on the TTC algorithm) that is helpful to understand the similar but more complicated
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Figure 3: Graph GCP (simplified) in the proof of Theorem 1. Each ellipse represents a top trading cycle.

proof of Theorem 3 (with weak preferences). An anonymous reviewer suggested an alternative proof
of Theorem 1 based on a two-sided matching model and by applying Theorem 9 in [25].17 We include
the details of the alternative proof in Appendix A as it discloses an interesting relationship between
one-sided and two-sided matching problems.

Theorem 1. When preferences are strict, the competitive allocation rule (or strong core allocation rule)
τ respects improvement.

Proof. Let i ∈ N and R, R̃ profiles of strict preferences such that R̃ is an improvement for i with respect
to R. Let x = τ(R) and x̃ = τ(R̃). We can assume that there is a unique agent j ̸= i with R̃j ̸= Rj

and prove that x̃iRixi. (If there is more than one such agent, we repeatedly apply the one-agent result
to obtain the result.) We can also assume that iR̃jxj. (Otherwise, xjP̃ji, in which case all steps of the
TTC algorithm are identical for R and R̃, so that x̃ = x.)

Consider graph GCP for market (N,R), i.e., the graph that is obtained in the TTC algorithm for x.
It follows from Facts 1 and 2 that agents i and j are related in (exactly) one of the following four ways:
(a). i and j are independent : there is no path from i to j nor from j to i;
(b). i and j are cycle-members : i and j are in the same (top trading) cycle;
(c). i is a (non-cycle) predecessor of j: there is a path from i to j with some edge in EP ;18 or
(d). j is a (non-cycle) predecessor of i: there is a path from j to i with some edge in EP .19

We distinguish among three cases, depending on the relation between agents i and j (see Figure 3).
In each case we describe if and how agent i’s trading cycle changes to prove that x̃iRixi.

Case I: (a) i and j are independent or (d) j is a predecessor of i.
Let F (i) be the set of followers of i in graph GCP , i.e., the nodes that can be reached from i through a
path in GCP (see Figure 3). We use the convention i ∈ F (i). From (a) and (d) it follows that j ̸∈ F (i).
Fact 2 implies that the TTC algorithm for R partitions the agents in F (i) into trading cycles. Since
for each agent ℓ ∈ F (i), R̃ℓ = Rℓ, it follows that the TTC algorithm for R̃ partitions the agents in F (i)
into the same trading cycles. Hence, x̃i = xi.

Case II: (b) i and j are cycle-members.
Let c be the cycle in graph GCP that contains i and j. Let p(i, j) be the unique path from i to j in

17We are very grateful to the reviewer for suggesting the alternative proof.
18It follows from Fact 2 that in this case j is removed from the market before i.
19It follows from Fact 2 that in this case i is removed from the market before j.
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the graph GCP (see Figure 3). Obviously, p(i, j) is part of c. Let N(i, j) be the nodes on p(i, j). (So,
i, j ∈ N(i, j).) Let F ∗(N(i, j)) be the followers outside of N(i, j) that can be reached by some path in
GCP that (1) starts from some node in N(i, j) and (2) does not contain edges in c. Fact 2 implies that
the TTC algorithm for R partitions the agents in F ∗(N(i, j)) into trading cycles. Since for each agent
ℓ ∈ F ∗(N(i, j)), R̃ℓ = Rℓ, it follows that the TTC algorithm for R̃ partitions the agents in F ∗(N(i, j))
into the same trading cycles. Then, since iR̃jxj and R̃j is obtained from Rj by shifting i up, the trading
cycle of agent i at x̃ is the cycle c̃ that consists of the path p(i, j) and the edge (j, i). Since p(i, j) is
part of the trading cycle c (where i points to object xi), it follows that agent i points to object xi in
trading cycle c̃, i.e., x̃i = xi.

Case III: (c) i is a predecessor of j.
We define the best path from i to j to be the path from i to j in GCP where at each node ℓ ̸= j on the
path, the path follows agent ℓ’s (unique) most preferred edge in

{(ℓ, ℓ′) ∈ ECP : there is a path from ℓ′ to j using edges in ECP}.

Let pb(i, j) denote the unique best path from i to j in GCP (see Figure 3).
Since for each ℓ ̸= j, R̃ℓ = Rℓ, iR̃jxj, and R̃j is obtained from Rj by shifting i up, it follows that at

some step in the TTC algorithm for R̃, agent j will start pointing to agent i and will keep doing so as
long as agent i is present.

Next, consider the agent l with (l, j) on path pb(i, j). Let k ∈ N with kPlj (see Figure 3). Since
(l, j) is an edge in GCP but agent l strictly prefers k to j, it follows that the TTC algorithm for R
removes agent k before agent j. Fact 2 implies that the TTC algorithm for R partitions the agents in
F (k) (i.e., the followers of k, where k ∈ F (k)) into trading cycles. Since j ̸∈ F (k) and for each ℓ ∈ F (k),
R̃ℓ = Rℓ, it follows that the TTC algorithm for R̃ partitions the agents in F (k) into the same trading
cycles. Recall that k is an arbitrary object with kPlj. Thus, we can conclude that at some step in the
TTC algorithm for R̃, agent l will start pointing to agent j and will keep doing so as long as agent j is
present.

We can repeat the same arguments until we conclude that each agent in the cycle c̃ formed by pb(i, j)
and the edge (j, i) will, at some step in the TTC algorithm for R̃, start pointing to its direct follower
and will keep doing so as long as the follower is present. Thus, cycle c̃ is a trading cycle at x̃. Let i′ be
the direct follower of i in c̃. Note that in graph GCP , (i, i′) ∈ EC or (i, i′) ∈ EP . If (i, i′) ∈ EC , then
i′ = xi, in which case x̃i = i′ = xi. If (i, i

′) ∈ EP , then by definition of EP , x̃i = i′Pixi.

3.2 Weak preferences

As discussed in Section 2, when preferences are weak, the strong core can be empty or contain more
than one allocation, and it can be different from the set of competitive allocations (which is always non-
empty). Therefore, the analysis of the case of weak preferences is divided into two parts accordingly.

Competitive allocations

For each market R, let T (R) denote the set of competitive allocations. We will show that the multi-
valued allocation rule T satisfies the RI-best and RI-worst properties. However, we first prove a stronger
result by focusing on probabilistic allocations. The RI-best and RI-worst properties then follow as a
corollary.

Given a profile of weak preferences R, the TTC algorithm can be applied if we first break ties.
Specifically, each indifference class in each agent’s ranking of the objects is replaced by a strict ranking
of the involved objects. Thus, different ways of breaking ties yield different profiles of strict preferences,
and hence also to potentially distinct outputs of the TTC algorithm. The set of allocations that can
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be generated by breaking ties and applying TTC equals the set of competitive allocations (see also
Footnote 14).

One could conjecture that if an agent’s object improves in the preferences of the other agents so that
at least one new competitive allocation is created, then at least one such allocation is weakly preferred
to some old-and-removed competitive allocation. Surprisingly, as the following example shows, this need
not be the case.

Example 2. Let N = {1, . . . , 7} and let the initial preferences R be given by Table 3, and let the new
preferences R̃ after the improvement of agent 7 be given by Table 4.

1 2 3 4 5 6 7
2,3 1 1 3 4 2 4

6 4,7 5 7 5
7 6

Table 3: Preferences R

1 2 3 4 5 6 7
2,3 1 1 3 4 2 4

6,7 7 5 7 5
4 6

Table 4: Preferences R̃

xa = {(1, 3), (2, 6), (4, 5)}
xb = {(1, 3), (2, 7, 6), (4, 5)}
xc = {(1, 2), (3, 4), (5, 7)}
xd = {(1, 2), (3, 7, 4)}

Table 5: Allocations

Consider the allocations defined in Table 5. It can be easily verified that the set of competitive
allocations at R and R̃ is T (R) = {xa, xc, xd} and T (R̃) = {xa, xb, xd}, respectively. Note that T (R̃) \
T (R) = {xb} and T (R) \ T (R̃) = {xc}. Since xc

7 = 5P7 6 = xb
7, it follows that for agent 7, each

new competitive allocation after the improvement (i.e., xb) is strictly worse than each old competitive
allocation that was removed from the set of competitive allocations (i.e., xc). ⋄

Suppose that ties in weak preferences are broken uniformly at random. Then, the resulting probabil-
ity distribution over profiles of strict preferences together with the TTC algorithm induce a probability
distribution over (competitive) allocations and hence over allotments for each of the individual agents.
Thus, we obtain a probabilistic allocation given by a doubly stochastic n×n matrix aTTC(R) and where
for each (i, j) ∈ N ×N , entry aTTC

ij (R) denotes the probability that agent i receives object j.
Let i ∈ N . Let Ri be agent i’s weak preferences. A probabilistic allocation a (first-order) stochasti-

cally dominates another probabilistic allocation a′ for agent i, denoted by a ⪰SD
Ri

a′, if for each object
j, agent i obtains j or any other weakly preferred object with a higher probability under a than under
a′, i.e.,

for each j ∈ N,
∑
kRij

aik ≥
∑
kRij

a′
ik.

A well-known important fact is that if agent i has a cardinal utility function over objects that is
consistent with her weak preferences Ri, then a ⪰SD

Ri
a′ implies that her expected utility at a is weakly

higher than at a′.

Theorem 2. Let i ∈ N . Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement
for i with respect to R. Then, aTTC(R̃) ⪰SD

Ri
aTTC(R).

Proof. It is sufficient to prove the result for the situation in which R̃ is a minimal improvement in the
ranking of only one of the other agents’, say j, i.e., (a) object i is in an indifference class in Rj and
moves right above it in R̃j, or (b) object i is in itself an indifference class in Rj and moves into the
indifference class right above it in R̃j. In particular, for each k ̸= j, R̃k = Rk. Any other improvement
can be obtained by a series of consecutive minimal improvements.

We first prove the statement for case (a). Let T = {i = i1, i2, . . . , it} with t ≥ 2 be the objects in the
indifference class in Rj of which i is a member. Let R∗ be the set of strict profiles (i.e., profiles of strict
preferences) generated by breaking all ties in R. Similarly, let R̃∗ be the set of strict profiles generated
by breaking all ties in R̃.
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We define a function f from R∗ to R̃∗ as follows. Formally, let R∗ ∈ R∗ be a strict profile generated
by breaking all ties in R. Then, define f(R∗) as the strict profile obtained from R∗ by moving object
i right above all other objects in T\{i} (possibly it is already there) in R∗

j . One easily verifies that

f(R∗) is a strict profile that can be generated by breaking all ties in R̃, i.e., f(R∗) ∈ R̃∗. Hence, f is
well-defined.

Let R∗ ∈ R∗. Note that there are exactly t − 1 other strict profiles generated by R that f maps
to f(R∗) as well. (The only difference between these t strict profiles is the rank of object i in agent
j’s preferences. Since there are t objects in T , object i can take up any of the positions 1, . . . , t in the
ranking restricted to objects in T .) Conversely, one easily verifies that f is surjective: for each strict
profile R̃∗ ∈ R̃∗, f−1(R̃∗) consists of exactly t strict profiles generated by breaking all ties in R.

Note that breaking all ties in R in all possible ways yields exactly t times more strict profiles than
breaking all ties in R̃ in all possible ways, i.e., |R∗| = t|R̃∗|. Since ties are broken uniformly at random,
this implies that the probability that a given strict profile R̃∗ is generated by breaking all ties in R̃
equals the sum of probabilities of each of the t strict profiles in f−1(R̃∗) being generated from R.

Let R̃∗ ∈ R̃∗. We complete the proof of case (a) by comparing the allotment of agent i when TTC is
applied to R̃∗ and when it is applied to any of the t profiles in f−1(R̃∗). Let R∗ ∈ f−1(R̃∗). Since R̃∗ is
an improvement for i with respect to R∗ and since both R̃∗ and R∗ are strict profiles, Theorem 1 yields
τi(R̃

∗)R∗
i τi(R

∗). Since R∗ ∈ f−1(R̃∗) is obtained from R by (only) breaking ties, we have that for all
objects ℓ, ℓ′ ∈ N , ℓR∗

i ℓ
′ ⇒ ℓRi ℓ

′. Hence, τi(R̃
∗)Ri τi(R

∗). In other words, agent i’s TTC allotment at
R̃∗ is weakly preferred to the TTC allotment at each of the t profiles in f−1(R̃∗). This, together with
the previous observation on the corresponding probabilities, implies that aTTC(R̃) ⪰SD

Ri
aTTC(R).

Next, we prove the statement for case (b). Let T = {i = i1, i2, . . . , it} with t ≥ 2 be the objects
in the indifference class in R̃j of which i is a member. Let R∗ be the set of strict profiles (i.e., profiles
of strict preferences) generated by breaking all ties in R. Similarly, let R̃∗ be the set of strict profiles
generated by breaking all ties in R̃.

We define a function g from R̃∗ to R∗ as follows. Formally, let R̃∗ ∈ R̃∗ be a strict profile generated
by breaking all ties in R̃. Then, define g(R̃∗) as the strict profile obtained from R̃∗ by moving object
i right below all other objects in T\{i} (possibly it is already there) in R̃∗

j . One easily verifies that

g(R̃∗) is a strict profile that can be generated by breaking all ties in R, i.e., g(R̃∗) ∈ R∗. Hence, g is
well-defined.

Let R̃∗ ∈ R̃∗. Note that there are exactly t − 1 other strict profiles generated by R̃ that g maps
to g(R̃∗) as well. (The only difference between these t strict profiles is the rank of object i in agent
j’s preferences. Since there are t objects in T , object i can take up any of the positions 1, . . . , t in the
ranking restricted to objects in T .) Conversely, one easily verifies that g is surjective: for each strict
profile R∗ ∈ R∗, g−1(R∗) consists of exactly t strict profiles generated by breaking all ties in R̃.

Note that breaking all ties in R̃ in all possible ways yields exactly t times more strict profiles than
breaking all ties in R in all possible ways, i.e., |R̃∗| = t|R∗|. Since ties are broken uniformly at random,
this implies that the probability that a given strict profile R∗ is generated by breaking all ties in R
equals the sum of probabilities of each of the t strict profiles in g−1(R∗) being generated from R̃.

Let R∗ ∈ R∗. We complete the proof of case (b) by comparing the allotment of agent i when TTC
is applied to R∗ and when it is applied to any of the t profiles in g−1(R∗). Let R̃∗ ∈ g−1(R∗). Since
R̃∗ is an improvement for i with respect to R∗ and since both R̃∗ and R∗ are strict profiles, Theorem 1
yields τi(R̃

∗)R∗
i τi(R

∗). Since R∗ is obtained from R by (only) breaking ties, we have that for all objects
ℓ, ℓ′ ∈ N , ℓR∗

i ℓ
′ ⇒ ℓRi ℓ

′. Hence, τi(R̃
∗)Ri τi(R

∗). In other words, each of agent i’s TTC allotments
at the t profiles in g−1(R∗) is weakly preferred to the TTC allotment at R∗. This, together with the
previous observation on the corresponding probabilities, implies that aTTC(R̃) ⪰SD

Ri
aTTC(R).
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Example 3. Consider again the markets and improvement discussed in Example 2. If, in line with
Theorem 2, we also consider the probabilities of obtaining the competitive allocations in each of the
two markets by breaking the ties in the TTC with uniform random probabilities, we get that for R,
Prob(xa|R) = 1

2
, Prob(xc|R) = 1

4
, and Prob(xd|R) = 1

4
, whilst for R̃, Prob(xa|R̃) = 1

4
, Prob(xb|R̃) = 1

4
,

and Prob(xd|R̃) = 1
2
. Since xa

7 = 7, xb
7 = 6, xc

7 = 5, xd
7 = 4, and 4P7 5P7 6P7 7, we obtain

aTTC(R̃) ≻SD
R7

aTTC(R), i.e., for agent 7, the probabilistic allocation at R̃ strictly stochastically dom-

inates the probabilistic allocation at R. Thus, at R̃ agent 7 has a higher expected utility than at R.
⋄

As a corollary to Theorem 2 we obtain that the competitive allocation rule T satisfies the RI-best
and the RI-worst properties.

Corollary 1. Let i ∈ N . Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement
for i with respect to R. Then,

• there is x̃ ∈ T (R̃) such that for each x ∈ T (R), x̃iRixi; and
• there is x ∈ T (R) such that for each x̃ ∈ T (R̃), x̃iRixi.

Proof. We first prove the first statement. Let xi ∈ T +
i (R). Then, there is some tie-breaking of R

such that the associated TTC allocation gives allotment xi to agent i. Hence,
∑

kRixi
aTTC
ik (R) > 0.

From Theorem 2,
∑

kRixi
aTTC
ik (R̃) ≥

∑
kRixi

aTTC
ik (R). So,

∑
kRixi

aTTC
ik (R̃) > 0. Hence, there is some

tie-breaking of R̃ such that the associated TTC allocation, say x̃ ∈ T (R̃), gives an allotment to agent i
that he weakly prefers to xi, i.e., x̃iRixi. Since xi is a best allotment for agent i among all allotments
in {yi : y ∈ T (R)}, the first statement follows.

Next, we prove the second statement. Let xi ∈ T −
i (R). Then, xi is a worst allotment for agent

i among all allotments in {yi : y ∈ T (R)}. Hence, all TTC allocations obtained after tie-breaking
of R give an allotment to agent i that he weakly prefers to xi. Hence,

∑
kRixi

aTTC
ik (R) = 1. From

Theorem 2,
∑

kRixi
aTTC
ik (R̃) ≥

∑
kRixi

aTTC
ik (R). So,

∑
kRixi

aTTC
ik (R̃) = 1. In other words, all TTC

allocations obtained after tie-breaking of R̃ give an allotment to agent i that he weakly prefers to xi.
Hence, agent i’s worst allotments in {yi : y ∈ T (R̃)} are weakly preferred to xi, and the second statement
follows.

Note that in general there is no competitive allocation where each agent receives her most preferred
allotment (among those that are obtained at competitive allocations), i.e., agents do not unanimously
agree on the “best” competitive allocation (see, e.g., agents 3 and 4 and competitive allocations xa and
xb in Example 1). Nonetheless, Corollary 1 implies that any optimistic agent who believes that she will
always receive the best possible allotment subscribes to the thesis that “the competitive correspondence”
will respect any of her potential improvements. A similar statement holds for any pessimistic agent who
believes that she will always receive the worst possible allotment.

Strong core

We now turn to the strong core, which in the case of weak preferences is a (possibly strict) subset of
the set of competitive allocations.

Similarly to the case of strict preferences, before we state and prove our generalization of Theorem 1
to the domain of weak preferences, we first describe the efficient algorithm of Quint and Wako [40] for
finding a strong core allocation whenever there exists one. The graphs defined in the algorithm are
crucial tools for the proof of Theorem 3.
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Let M = (N,R) be a housing market with weak preferences. We use the simplified interpretation
of [19] and construct a subgraph GSP of the acceptability graph G with node set N and edge set
ESP ≡ ES ∪ EP , which will be useful for our later analysis.

A strongly connected component of a directed graph is a subgraph where there is a directed path from
each node to every other node. An absorbing set is a strongly connected component with no outgoing
edge.20 Note that each directed graph has at least one absorbing set.

Quint-Wako algorithm – construction of GSP

Set ES ≡ ∅, EP ≡ ∅, and M1 = M . Let G1 = (N1, E1) ≡ (N,E) denote the acceptability graph of
M1. We iteratively construct “shrinking” submarkets Mt (t = 2, 3, . . .) whose acceptability graph will
be denoted by Gt = (Nt, Et). Set t ≡ 1.
Step 1. Let ET

t be the set of most preferred edges in Gt.
Step 2. Let St be an absorbing set in (Nt, E

T
t ). Let Nt(St) and ET

t (St) denote the node set and edge
set of St.
Step 3. Add the edges of St to ES, i.e., ES ≡ ES ∪ ET

t (St).

Step 4. Let ET
t (S⃗t) denote the subset of edges of E

T
t pointing to Nt(St) from outside Nt(St). Formally,

ET
t (S⃗t) ≡ {(i, j) ∈ ET

t : i ∈ Nt \Nt(St) and j ∈ Nt(St)}. Add ET
t (S⃗t) to EP , i.e., EP ≡ EP ∪ ET

t (S⃗t).
Step 5. If Nt = Nt(St), stop. Otherwise, let Nt+1 ≡ Nt \Nt(St), denote the submarket MNt+1 by Mt+1,
and go to step 1.

The following two facts about the graph GSP are useful for later reference.

Fact 1∗. Absorbing sets only contain edges in ES. Each path that is not part of an absorbing set has
an edge in EP .
Fact 2∗. For any distinct ℓ, ℓ′ ∈ N , if there is a path from agent ℓ to agent ℓ′, then either the two
agents are in the same absorbing set or agent ℓ′ is removed from the market before agent ℓ.

Quint and Wako [40] proved that there is a strong core allocation for M if and only if for each absorbing
set St defined in the above algorithm there exists a cycle cover, i.e., a set of cycles covering all the nodes
of St. See Figure 4 for an illustration. Finding a cycle cover, if one exists, can be done with the

No cycle cover Unique cycle cover Two cycle covers

Figure 4: Three absorbing sets

classical Hungarian method [31] for finding a perfect matching for the corresponding bipartite graph
where the objects are on one side, the agents are on the other side, and there is an undirected arc
between an object-agent pair if the object is among the agent’s most preferred objects (which might
include her own object). We refer to [4], [40], and [19] for further details on this reduction.

Remark 2. If for each absorbing set St defined in the above algorithm there exists a cycle cover, then
the set of cycle covers (one cycle cover for each absorbing set) constitutes a strong core allocation.
Conversely, as shown in the proof of Theorem 5.5 in [40], each strong core allocation can be written as
a set of cycle covers (one for each absorbing set St). Therefore, if the strong core is non-empty, all its
allocations can be obtained by selecting all possible cycle covers in the algorithm. ⋄

20In other words, there is no edge from a node in the absorbing set to a node outside the absorbing set.
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Remark 3. In the Quint-Wako algorithm, each agent obtains the same welfare at any two cycle covers
in which she is involved (because the agent is indifferent between any two of her outgoing edges in an
absorbing set). Together with Remark 2, this immediately proves Theorem 2(2) in [52], which states
that all strong core allocations are welfare-equivalent. ⋄

We can now show that the multi-valued allocation rule SC conditionally respects improvement.

Theorem 3. Let i ∈ N . Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement
for i with respect to R. If SC(R),SC(R̃) ̸= ∅, then for each x̃ ∈ SC(R̃) and each x ∈ SC(R), x̃iRixi.

Proof. Let x ∈ SC(R). It follows from Remark 3 that it is sufficient to show that there exists x̃ ∈ SC(R̃)
with x̃iRixi. We can assume that there is a unique agent j ̸= i with R̃j ̸= Rj. (If there is more than
one such agent, we repeatedly apply the one-agent result to obtain the result.) We can also assume that
iR̃jxj. (Otherwise, xjP̃ji, in which case all steps of the Quint-Wako algorithm are identical for R and
R̃, so that x ∈ SC(R) = SC(R̃).)

Consider graph GSP for market (N,R), i.e., the graph that is generated in the Quint-Wako algorithm
to obtain x. It follows from Facts 1∗ and 2∗ that agents i and j are related in (exactly) one of the following
four ways:
(a). i and j are independent : there is no path from i to j nor from j to i;
(b). i and j are absorbing set members : i and j are in the same absorbing set;
(c). i is a predecessor of j: there is a path from i to j in GSP with some edge in EP ;21 or
(d). j is a predecessor of i: there is a path from j to i in GSP with some edge in EP .22

We distinguish among three cases, depending on the relation between agents i and j.

Case I: (a) i and j are independent or (d) j is a predecessor of i.
Let F (i) be the followers of i in graph GSP , i.e., the nodes that can be reached through a path in GSP .
We use the convention i ∈ F (i). From (a) and (d) it follows that j ̸∈ F (i). Fact 2∗ implies that the
Quint-Wako algorithm for R partitions the agents in F (i) into a collection of absorbing sets. Since for
each agent k ∈ F (i), R̃k = Rk, it follows that the Quint-Wako algorithm for R̃ partitions the agents in
F (i) into the same collection of absorbing sets. Since SC(R̃) ̸= ∅, it follows from Remark 2 that there
exists x̃ ∈ SC(R̃) such that for each agent k ∈ F (i), x̃k = xk. In particular, x̃i = xi.

Case II: (b) i and j are absorbing set members.
Let St be the absorbing set that contains i and j in the Quint-Wako algorithm for R. Note that (i, xi)
is an edge in the edge set ET

t (St) of the absorbing set St (possibly xi = i). Let F ∗(Nt(St)) be the
followers outside of Nt(St) that can be reached by some path in GSP that starts from a node in Nt(St).
Then, xi ̸∈ F ∗(Nt(St)). Fact 2∗ implies that the Quint-Wako algorithm for R partitions the agents in
F ∗(Nt(St)) into a collection of absorbing sets. Since for each agent ℓ ∈ F ∗(Nt(St)), R̃ℓ = Rℓ, it follows
that the Quint-Wako algorithm for R̃ partitions the agents in F ∗(Nt(St)) into the same absorbing sets.
Then, since iR̃jxj and R̃j is obtained from Rj by shifting i up, when the Quint-Wako algorithm is
applied to R̃, the absorbing set that contains i will again contain xi and j and its edge set will again
contain (i, xi). Thus, at each x̃ ∈ SC(R̃) ̸= ∅, agent i will receive an object x̃i such that x̃i Iixi.

Case III: (c) i is a predecessor of j.
A path from i to j in GSP is said to be a best path from i to j if at each node ℓ ̸= j on the path, the
path follows one of agent ℓ’s most preferred edges in

{(ℓ, ℓ′) ∈ ESP : there is a path from ℓ′ to j using edges in ESP}.

Let P b(i, j) denote the set of best paths from i to j in GSP .

21It follows from Fact 2∗ that in this case j was removed from the market before i.
22It follows from Fact 2∗ that in this case i was removed from the market before j.
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Since for each ℓ ̸= j, R̃ℓ = Rℓ, iR̃jxj, and R̃j is obtained from Rj by shifting i up, it follows that at
some step in the Quint-Wako algorithm for R̃, agent j will start pointing to agent i and will keep doing
so as long as agent i is present.

Next, let pb(i, j) ∈ P b(i, j) be any best path. Consider the agent l with (l, j) on path pb(i, j). Let
k ∈ N with kPlj. Since (l, j) is an edge in GSP but agent l strictly prefers k to j, it follows that the
Quint-Wako algorithm for R removes agent k before agent j. Fact 2∗ implies that the Quint-Wako
algorithm for R partitions the agents in F (k) (i.e., the followers of k, where k ∈ F (k)) into absorbing
sets. Since j ̸∈ F (k) and for each ℓ ∈ F (k), R̃ℓ = Rℓ, it follows that the Quint-Wako algorithm for R̃
partitions the agents in F (k) into the same absorbing sets. Recall that k is an arbitrary object with
kPlj. Thus, we can conclude that at some step in the Quint-Wako algorithm for R̃, agent l will start
pointing to agent j and will keep doing so as long as agent j is present.

We can repeat the same arguments until we conclude that each agent in the cycle formed by pb(i, j)
and the edge (j, i) will, at some step, start pointing to its direct follower and will keep doing so as long
as the follower is present. Hence, at some step of the algorithm the cycle formed by pb(i, j) and the edge
(j, i) is part of an absorbing set. Let ib be the direct follower of agent i in path pb(i, j). Thus, at each
x̃ ∈ SC(R̃) ̸= ∅, agent i will receive an object x̃i such that x̃i Iii

b. Note that in graph GSP , (i, ib) ∈ ES

or (i, ib) ∈ EP . If (i, ib) ∈ ES, then ibIixi, in which case x̃iIixi. If (i, i
b) ∈ EP , then by definition of EP ,

ibRixi, in which case x̃iRixi.

An immediate corollary to Theorem 3 is that the strong core satisfies the conditional RI-best and
RI-worst properties.

Corollary 2. For each i ∈ N and each pair of profiles of preferences R, R̃ such that SC(R),SC(R̃) ̸= ∅
and R̃ is an improvement for i with respect to R,

• there is x̃ ∈ SC(R̃) such that for each x ∈ SC(R), x̃iRixi; and
• there is x ∈ SC(R) such that for each x̃ ∈ SC(R̃), x̃iRixi.

3.3 Bounded length exchange cycles

Motivated by kidney exchange programmes, we consider housing markets where the length of allowed
exchange cycles in allocations is limited. We provide several examples to demonstrate the possible
violations of the respecting improvement property (or variants/extensions of the property) in the setting
of bounded length exchanges.

Definitions

Let M = (N,R) be a housing market. Let k be an integer that indicates the maximum allowed length
of exchange cycles. An allocation is a k-allocation if each exchange cycle has length at most k, i.e.,
there exists a partition of N = S1 ∪ S2 ∪ · · · ∪ Sq such that for each p ∈ {1, . . . , q}, |Sp| ≤ k and
{xi : i ∈ Sp} = Sp. Assuming that blocking coalitions are subject to the same length of allowed
exchange cycles, the definition of the three cores can be adjusted accordingly as well.23 Specifically, the
k-core consists of the k-allocations for which there is no blocking coalition of size at most k; the strong
k-core consists of the k-allocations for which there is no weakly blocking coalition of size at most k; the
Wako-k-core consists of the k-allocations that are not antisymmetrically weakly dominated through a
coalition of size at most k.

23For the core and strong core see also [15]. In view of Wako’s result [53], we similarly adjust the set of competitive
allocations by using the (equivalent) Wako-core.

19



Similarly to the unbounded case, the three blocking notions are “nested.” Hence, the strong k-core
is a subset of the Wako-k-core and the Wako-k-core is a subset of the k-core. Moreover, again similarly
to the unbounded case, it follows easily that for strict preferences the strong k-core coincides with the
Wako-k-core.

To keep notation as simple as possible, whenever the context is clear, we will omit “k” from k-
allocation, k-core, etc. and instead refer to k-housing markets to invoke the above restriction on exchange
cycles, blocking coalitions, allocations, and cores.

The practically important case of pairwise exchanges, i.e., k = 2, is known as the stable roommates
problem (introduced in [23]):

• strict preferences: the strong core, Wako-core, and core coincide and correspond to the set of stable
matchings ;
• weak preferences: the Wako-core and core coincide and correspond to the set of weakly stable match-
ings, whilst the strong core corresponds to the set of strongly stable matchings.

We refer to [34] for more details. It is important to note that any of the cores can be empty when
exchange cycles are bounded, even if preferences are strict. Therefore, the analysis below necessarily
concerns conditional respecting improvement properties.

Pairwise exchanges (k = 2)

As mentioned in Section 1, the maximisation of the number of pairwise exchanges does not respect
improvement. Example 4 below proves this formally. A consequence is that the priority mechanisms
studied by Roth et al. [43] need not be donor-monotonic if agents’ preferences can be non-dichotomous.

Example 4. Let N = {1, 2, 3, 4}. Let the initial preferences R be given by Table 6 and the new
preferences R̃, where object 1 becomes acceptable for agent 3, by Table 7.

1 2 3 4
2 1 3 2
3 4 4
1 2

Table 6: Preferences R

1 2 3 4
2 1 1 2
3 4 3 4
1 2

Table 7: Preferences R̃

1

2

3

4

Figure 5: Acceptability graph

Initially, at R, there are two ways to maximise the number of pairwise exchanges, namely by picking
either of the two-cycles (1, 2) and (2, 4). Assume, without loss of generality, that (1, 2) is selected.
(In case (2, 4) is selected, similar arguments can be employed.) Now, suppose the discontinuous edge
(in Figure 5) is included so that agent 1 “improves” and we obtain R̃. Then, the unique way to maximise
the number of pairwise exchanges is obtained by picking the 2 two-cycles (1,3) and (2,4), which means
that agent 1 is strictly worse off than in the initial situation. ⋄

The following example shows that the (strong, Wako-) core violates the conditional RI-worst property
even if preferences are strict.

Example 5. Let N = {1, 2, 3, 4}. Let the initial preferences R be given by Table 8 and the new
preferences R̃, where object 1 becomes acceptable for agent 3, by Table 9.
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1 2 3 4
2 4 4 3
3 1 3 2
1 2 4

Table 8: Preferences R

1 2 3 4
2 4 1 3
3 1 4 2
1 2 3 4

Table 9: Preferences R̃

1

2

3

4

Figure 6: Acceptability graph

Initially, at R, the unique (strong, Wako-) core allocation is xa = {(1, 2), (3, 4)}. Now, suppose the
discontinuous edge (in Figure 6) is included so that agent 1 “improves” and we obtain R̃. Then, another
(strong, Wako-) core allocation is created, xb = {(1, 3), (2, 4)}, which is strictly worse for agent 1. Hence,
the (strong, Wako-) core violates the conditional RI-worst property under strict preferences. ⋄

The next example shows that when preferences are weak, the core / Wako-core also violates the
conditional RI-best property.

Example 6. Let N = {1, 2, 3, 4}. Let the initial preferences R be given by Table 10 and the new
preferences R̃, where object 4 becomes acceptable for agent 1, by Table 11.

1 2 3 4
3 4 1,4 1
1 2 3 3

2
4

Table 10: Preferences R

1 2 3 4
3 4 1,4 1
4 2 3 3
1 2

4

Table 11: Preferences R̃

1 2

3 4

Figure 7: Acceptability graph

Initially, at R, there exist two (Wako-) core allocations xa = {(3, 4)} and xb = {(1, 3), (2, 4)}. The best
allotment for agent 4 is object 3, obtained at allocation xa. Now, suppose the discontinuous edge in
Figure 7 is included so that agent 4 “improves” and we obtain R̃. Then, the new cycle (1, 4) blocks
allocation xa, while (1, 3) blocks the (unique) new feasible allocation xc = {(1, 4)}. Thus, the (Wako-
) core consists of the unique allocation xb. Hence, agent 4’s allotment at the unique (Wako-) core
allocation (xb

4 = 2) is strictly worse than the best allotment (xa
4 = 3) initially. Hence, the (Wako-) core

violates the conditional RI-best property under weak preferences. ⋄

We summarise the above two findings in the following statement.

Proposition 1. Under strict preferences and pairwise exchanges, the (strong, Wako-) core violates
the conditional RI-worst property. Under weak preferences and pairwise exchanges, the (Wako-) core
violates the conditional RI-best property.

Three-way and longer bounded exchanges (k ≥ 3)

In the following example we exhibit two housing markets and we prove that for each housing market the
three cores coincide (and are non-empty). Subsequently, we will use the example to show that the three
cores do not conditionally respect improvement for the best allotments when the maximum allowed
length of exchange cycles is 3.

Example 7. Throughout the example we focus on the core. However, since all blocking arguments can
be replaced by weak blocking arguments, all statements also hold for the strong core, and hence also for
the Wako-core. Let N = {1, . . . , 10} be the set of agents. We consider two housing markets that only
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differ in preferences. First, consider the housing market (N,R), or simply R for short, with “cyclic”
strict preferences given in Table 12.

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1
10 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10

Table 12: Preferences R

Since only directly neighbouring objects (and one’s own object) are acceptable, it follows that the
only exchange cycles where each agent is assigned an acceptable object are the 10 self-cycles and the 10
two-cycles (i, i + 1) (mod 10) where agents i and i + 1 swap their objects.24 The core C(R) = {xa, xb}
consists of the following two allocations:

xa = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)} and
xb = {(10, 1), (2, 3), (4, 5), (6, 7), (8, 9)}.

Next, we create an extended housing markets Rb by inserting one three-cycle in R. Preferences Rb

are provided in Table 13, where the changes with respect to R are bold-faced and depicted in Figure 8.

1 2 3 4 5 6 7 8 9 10
4 3 4 5 6 7 8 1 10 1
2 1 2 8 4 5 6 9 8 9
10 2 3 3 5 6 7 7 9 10
1 4 8

Table 13: Preferences Rb

2

3

5

6

7

9

10

1

4

8

Figure 8: Acceptability graph for Rb

Apart from the earlier mentioned self-cycles and two-cycles, the only additional exchange cycle with
only acceptable objects in Rb is cb = (1, 4, 8). Allocation xb is in the core of Rb because cb does not
block xb: agent 4 obtains object 8 in cb, which is strictly less preferred than her assigned object 5 at xb.
In fact, xb is the unique core allocation of Rb. To see this, note first that xa is not in the core of Rb as
cb blocks it. And second, the only new exchange cycle created in Rb, i.e., cb, cannot be part of a core
allocation, because if it were, then to avoid blocking cycle (4, 5), the next two-cycle (5, 6) would have to
be part of the allocation, in which case 7 would remain unmatched (i.e., be a self-cycle) and cycle (6, 7)
would block the allocation. Therefore, xb is the unique core allocation of Rb, i.e., C(Rb) = {xb}. ⋄

Using the above example we can easily prove that when k = 3, the strong core, Wako-core, and core
violate the conditional RI-best property, even if preferences are strict.

Proposition 2. Suppose the maximum allowed length of exchange cycles is 3. Then, there are 3-housing
markets with strict preferences (N,R) and (N, R̃) with

• X(R) ≡ SC(R) =WC(R) = C(R) ̸= ∅ and
• X(R̃) ≡ SC(R̃) =WC(R̃) = C(R̃) ̸= ∅

24So, the core coincides with the set of stable matchings of the corresponding “roommate problem” [23].
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such that for some i ∈ N , R̃ is an improvement for i with respect to R but

• X(R̃) ⊆ X(R),
• for the unique x ∈ X(R)\X(R̃) and for the unique x̃ ∈ X(R̃)\X(R), xi Pix̃i.

Proof. Let (N, R̃) be the 3-housing market with N = {1, . . . , 10} and R̃ = Rb from Example 7. Let
(N,R) be the 3-housing market that is obtained from (N, R̃) by making object 1 unacceptable for agent
8. Obviously, R̃ is an improvement for agent 1 with respect to R. As shown in Example 7, SC(R̃) =
WC(R̃) = C(R̃) = {xb} ≠ ∅. One also easily verifies that SC(R) = WC(R) = C(R) = {xa, xb} ≠ ∅.
Finally, agent 1’s most preferred allotment in SC(R) = WC(R) = C(R) is object 2, while agent 1’s
unique (hence, most preferred) allotment in SC(R̃) = WC(R̃) = C(R̃) is object 10. Since agent 1
strictly prefers object 2 to object 10, the result follows.

Remark 4. Example 7 and the proof of Proposition 2 can be adjusted to demonstrate the violation of
the conditional RI-best property for any larger upper bound k on the length of the exchange cycles as
follows. We keep the structure of the example with the double outer cycle and the embedded 3-cycle,
but we extend the length of the outer cycle, so that we do not create any new cycle of length at most
k, while also keeping the parity of the highest two nodes of the embedded 3-cycle. That is, if 1 is the
starting node and i, j are the other two nodes of the embedded 3-cycle, then both i and j remain even.
For example, for k = 4, we extend the double outer cycle to consist of 14 vertices and we have an inner
3-cycle that consists of agents 1, 6, and 10. ⋄

Remark 5. When k = 3, the strong core, Wako-core, and core also violate the conditional RI-worst
property, even if preferences are strict. This follows from Example 5 and the observation that there is
no three-cycle with only acceptable objects. ⋄

Remark 6. Motivated by kidney exchange programmes, we have considered a limitation on the length of
allowed exchange cycles. All results (Examples 4, 5, 6, and 7 and Propositions 1 and 2) are negative, i.e.,
we have shown violations of (adjusted versions of the) respecting improvement property. However, there
could exist different types of restrictions (instead of bounded length) for instance due to technological
or logistical reasons which may exclude specific cyclical exchanges. We conjecture that such restrictions
lead to additional negative results, but leave an in-depth study for future research. ⋄

4 Integer Programming Formulations

In this section we propose new integer programming (IP) formulations for the core, the set of competitive
allocations (i.e., the Wako-core), and the strong core. First, we propose novel edge-formulations for the
unbounded case for all three solution concepts. Second, we improve the formulations in [40] by giving
alternative cycle-formulations for the core and strong core. Third, we provide a new formulation for
the Wako-core for the case of bounded length exchange cycles. The novel IP formulations serve as a
stepping-stone for our computational experiments in Section 5.

4.1 Novel edge-formulations

Let (N,R) be a housing market and G ≡ G(N,R) = (N,E) its acceptability graph. Since all three cores
only contain individually rational allocations, we can restrict attention to the edges of the acceptability
graph. Specifically, with each edge (i, j) ∈ E we associate a variable yij as follows:

yij =

{
1 if agent i receives object j;
0 otherwise.
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Then, the base model reads as follows: ∑
j:(i,j)∈E

yij = 1 ∀i ∈ N (1)

∑
j:(j,i)∈E

yji = 1 ∀i ∈ N (2)

yij ∈ {0, 1} ∀(i, j) ∈ E (3)

Constraints (1) guarantee that agent i receives exactly one (acceptable) object (possibly her own).
Constraints (2) guarantee that object i is given to exactly one agent. Each vector (yij)(i,j)∈E that

satisfies (1), (2), and (3) yields an allocation x defined by xi = j if and only if yij = 1. Moreover, each
allocation can be obtained in this way. So, there is a one-to-one correspondence between allocations
and vectors that satisfy (1), (2), and (3).

We introduce for each i ∈ N an additional integer variable pi that represents the price of object i.
pi ∈ {1, . . . , n} ∀i ∈ N (4)

In what follows we give our IP formulations for the general case of weak preferences and explain
how they can be simplified for strict preferences. We tackle the core, the set of competitive allocations
(i.e., the Wako-core), and the strong core (in this order), by subsequently adding constraints. Given
an allocation x, we say that x dominates an edge (i, j) in the acceptability graph G if agent i weakly
prefers her allotment xi to object j, i.e., xi Ri j.

IP for the core

It follows from Lemma 1 that an individually rational allocation x is in the core if and only if each cycle
in G contains an edge that is dominated by x. Or equivalently, there exists no cycle in G that consists
of undominated edges. Note that the undominated edges in G form a cycle-free subgraph of G if and
only if there is a topological order of the objects in the subgraph of G that consists of the undominated
edges. The existence of this topological order is equivalent to the existence of prices of the objects such
that for each undominated edge (i, j), pi < pj. Therefore, an allocation x is in the core if and only if
there exist prices (pi)i∈N such that

(i, j) ∈ E is not dominated by x =⇒ pi < pj. (*)

Thus, core allocations are characterised by constraints (1)–(4) together with (5) below:

pi + 1 ≤ pj + n ·
∑
k:kRij

yik ∀(i, j) ∈ E (5)

Proposition 3. Let x be an allocation. Let y be the corresponding vector that satisfies (1), (2), and
(3). Allocation x is in the core if and only if there are prices (pi)i∈N such that (4) and (5) hold.

Proof. First observe that for each (i, j) ∈ E,

(i, j) is dominated by x ⇐⇒ xi Ri j

⇐⇒ there is k ∈ N with k Ri j and yik = 1

⇐⇒
∑
k:kRij

yik = 1. (**)
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Suppose x is in the core. Then, there exist prices (pi)i∈N that satisfy (4) and (*). We verify that (5)
holds. Let (i, j) ∈ E. If (i, j) is not dominated by x, then (5) follows immediately from (*). Suppose
(i, j) is dominated by x. From (**),

∑
k:kRij

yik = 1. Hence,

pi + 1 ≤ n+ 1 ≤ pj + n = pj + n ·
∑
k:kRij

yik.

Suppose that there exist prices (pi)i∈N such that (4) and (5) hold. We verify that (*) holds. Let
(i, j) ∈ E and suppose it is not dominated by x. From (**),

∑
k:kRij

yik = 0. Hence, from (5),
pi + 1 ≤ pj + n · 0, i.e., pi < pj.

IP for the set of competitive allocations (Wako-core)

The set of competitive allocations is characterised by constraints (1)–(5) together with (6) below:

pi ≤ pj + n · (1− yij) ∀(i, j) ∈ E (6)

Proposition 4. Let x be an allocation. Let y be the corresponding vector that satisfies (1), (2), and
(3). Allocation x is competitive if and only if there exist prices (pi)i∈N such that (4), (5), and (6) hold.
Moreover, if such prices exist, then together with x they constitute a competitive equilibrium.

Proof. Suppose x is competitive. Let (pi)i∈N be prices such that (x, p) is a competitive equilibrium.
Then, (4) and (*) hold. From the first part of the proof of Proposition 3 it follows that (5) holds. We now
prove that (6) holds as well. Let (i, j) ∈ E. If yij = 0, then immediately pi ≤ pj + n = pj + n · (1− yij).
If yij = 1, then xi = j, and since (x, p) is a competitive equilibrium it follows from Remark 1 that
pi = pxi

= pj.
Suppose that there exist prices (pi)i∈N such that (4), (5), and (6) hold. We verify that (x, p)

is a competitive equilibrium. First, it follows from (6) that for each i ∈ N , taking j = xi yields
pi ≤ pxi

+ n · (1− 1) = pxi
, i.e., pi ≤ pxi

. Hence, from Remark 1, for each i ∈ N , pi = pxi
. Second, let

j ∈ N be an object such that j Pi xi. Then, (i, j) ∈ E is not dominated by x. From the second part of
the proof of Proposition 3 it follows that (*) holds. Hence, we obtain pi < pj.

IP for the strong core

The strong core is characterised by constraints (1)–(6) together with (7) below:

pi ≤ pj + n ·

(∑
k:kPij

yik

)
∀(i, j) ∈ E (7)

Proposition 5. Let x be an allocation. Let y be the corresponding vector that satisfies (1), (2), and
(3). Allocation x is in the strong core if and only if there exist prices (pi)i∈N such that (4), (5), (6), and
(7) hold. Moreover, if such prices exist, then together with x they constitute a competitive equilibrium.

Proof. Suppose x is in the strong core. By Remark 2, x can be obtained in the Quint-Wako algorithm
by choosing for each absorbing set in the algorithm a particular cycle cover. Hence, there exist price
(pi)i∈N such that (i) constraints (4) are satisfied, (ii) all objects in the same absorbing set have the
same price, and (iii) an absorbing set that is processed earlier by the algorithm has a strictly higher
associated price (of its objects). It is easy to verify that (x, p) is a competitive allocation. Hence, from
the first part of the proof of Proposition 4 it follows that (5) and (6) hold. Finally, to see that (7) holds
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note that from the definition of the prices it follows that (i) if jRixi then pi ≤ pj and (ii) if xiPij then
pi ≤ n = n(

∑
k:kPij

yik).
Suppose that there exist prices (pi)i∈N such that (4), (5), (6), and (7) hold. It follows from Propo-

sition 4 that (x, p) is a competitive equilibrium. We prove that x is a strong core allocation. Suppose
there is a coalition S that weakly blocks x through an allocation z. From Lemma 1 it follows that we
can assume, without loss of generality, that S = {1, . . . , r} and that for each i = 1, . . . , r− 1, zi = i+1,
zr = 1, and z1P1x1. Since x is individually rational, r > 1. Since (x, p) is a competitive equilibrium,
p1 < p2. Since 3 = z2R2 x2, we have

∑
k:kP23

y2k = 0. Hence, from (7),

p2 ≤ p3 + n ·

( ∑
k:kP23

y2k

)
= p3.

So, p2 ≤ p3. By repeatedly applying the same arguments we find p2 ≤ p3 ≤ · · · ≤ pr ≤ p1. Since
p1 < p2, we obtain a contradiction. Therefore, there is no coalition that weakly blocks x. Hence, x is a
strong core allocation.

Remark 7. We note that in the case of strict preferences, constraints (7) are satisfied by any competitive
equilibrium (x, p). To see this note that if yij = 1 then (6) implies (7), since 1− yij = 0, and hence

pi ≤ pj + n · (1− yij) = pj ≤ pj + n ·

(∑
k:kPij

yik

)
.

Otherwise, if yij = 0 then (5) implies (7), since for strict preferences
∑

k:kPij
yik =

∑
k:kPij

yik + yij =∑
k:kRij

yik, and hence

pi < pi + 1 ≤ pj + n ·

(∑
k:kRij

yik

)
= pj + n ·

(∑
k:kPij

yik

)
.

Therefore, in either case, constraints (7) are satisfied. This reflects the fact that for strict preferences
the strong core is a singleton that consists of the unique competitive allocation. ⋄

4.2 Quint and Wako’s IP formulations

To compare our IP formulations with the IP formulations for the core and the strong core given by
Quint and Wako [40], we describe the latter IP formulations using our notation.

First, for both the core and the strong core, Quint and Wako [40] used the “basic” constraints (1),
(2), and (3). We refer to their formulas (9.2), (9.3), (9.4), as well as (8.2), (8.3), (8.4), together with an
integrality condition.

Next, to obtain the core, Quint and Wako [40] imposed the following additional no-blocking condition
(see (9.1) in [40]):

∑
i∈S

( ∑
j:jRiπi

yij

)
≥ 1 ∀S ⊆ N, π ∈ ΠS (8)

Finally, to obtain the strong core, Quint and Wako [40] imposed the following additional no-blocking
condition (see (8.1) in [40]):

∑
i∈S

( ∑
j:jPiπi

yij +
1

|S|
∑
j:jIiπi

yij

)
≥ 1 ∀S ⊆ N, π ∈ ΠS, (9)
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where ΠS is the set of allocations in the submarket MS (so that π is an allocation in MS).
Constraints (8) and (9) directly describe that no coalition S can block / weakly block through an

allocation π, respectively. Both sets of constraints are highly exponential (in the number of agents),
since they are required not only for all subsets S of N , but also for all possible redistributions within
each S.

Alternative cycle-formulations

In view of Lemma 1, it is sufficient to impose constraints (8) and (9) for the cycles of the acceptability
graph G. Based on this observation and results in [27], we will describe alternative cycle-formulations
for the core and the strong core. Furthermore, we will provide a new proposition and IP formulation
for the Wako-core.

Let M = (N,R) be a housing market. Let K denote the set of exchange cycles in G(N,R). For a
cycle c ∈ K, let N(c) and A(c) denote the set of nodes and edges in c, respectively, and let |c| denote the
size/length of c. We write ci = j if agent i receives object j in the exchange cycle c, i.e., (i, j) ∈ A(c).

Proposition 6 ([27]). An allocation x is in the core if and only if for each cycle c ∈ K, for some agent
i ∈ N(c), xiRici.

The corresponding IP constraints, which reduce the constraints (8) to cycles, are as follows:∑
(i,j)∈A(c)

∑
k:kRij

yik ≥ 1 ∀c ∈ K (10)

Next, we describe the alternative cycle-formulation for the strong core. First we focus on the special
case of strict preferences.

Proposition 7 ([27]). Suppose preferences are strict. Then, an allocation x is in the strong core if and
only if for each cycle c ∈ K, c is an exchange cycle in x or for some agent i ∈ N(c), xiPici.

Proposition 7 leads to the following constraints:

∑
(i,j)∈A(c)

yij + |c| ·

 ∑
(i,j)∈A(c)

∑
k:kPij

yik

 ≥ |c| ∀c ∈ K (11)

The alternative cycle-formulation for the strong core in the general case (where preferences can have
ties) is as follows.

Proposition 8 ([27]). An allocation x is in the strong core if and only if for each cycle c ∈ K,
(i) c is an exchange cycle in x, or
(ii) for some agent i ∈ N(c), xiPici, or
(iii) for each agent i ∈ N(c), ciIixi.

The corresponding IP constraints, which reduce the constraints (9) to cycles, are as follows:

∑
(i,j)∈A(c)

∑
k:kIij

yik + |c| ·

 ∑
(i,j)∈A(c)

∑
k:kPij

yik

 ≥ |c| ∀c ∈ K (12)

Finally, similarly to the core and strong core, we provide a new alternative characterisation for the
Wako-core.
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Proposition 9. An allocation x is in the Wako-core if and only if for each cycle c ∈ K,
(i) c is an exchange cycle in x, or
(ii) for some agent i ∈ N(c), xiPici, or
(iii) for some agent i ∈ N(c), ciIixi and ci ̸= xi.

The proof of Proposition 9 is omitted as it can be shown in a similar way as Proposition 8 (see [27]).
Proposition 9 leads to the following constraints, which can be used to find competitive allocations

(i.e., allocations in the Wako-core):

∑
(i,j)∈A(c)

yij + |c| ·

 ∑
(i,j)∈A(c)

∑
k:kRij,k ̸=j

yik

 ≥ |c| ∀c ∈ K (13)

To see the correctness of this new formulation, observe that the first term of (13) is equal to |c| if
condition (i) of Proposition 9 is satisfied and less than |c| otherwise; and the second term has value at
least |c| if condition (ii) or (iii) of Proposition 9 is satisfied and 0 otherwise. Therefore, constraint (13)
is satisfied if and only if at least one of the three conditions of Proposition 9 holds.

4.3 Bounded length exchange cycles

Note that the above cycle-formulations are not very practical due to the exponentially large number
of cycles. In fact, this justified the novel IP formulations proposed in Section 4.1. However, the cycle-
formulations are practical for the case of bounded length exchange cycles.

One easily verifies that Lemma 1 can be extended to bounded length exchange cycles in a natural
way: the strong core, Wako-core, and core of a k-housing market can be defined equivalently by the
absence of corresponding blocking cycles of size at most k. In fact, Klimentova et al. [27] provided IP
formulations for the core and the strong core by adapting constraints (10) and (12) to bounded exchange
cycles. One can similarly adapt constraints (13) to obtain an IP formulation for the Wako-core of a
k-housing market. In our simulations we used the most efficient cycle-edge formulations by Klimentova
et al. (see the detailed description in Section 3.3 of [27]).

5 Computational Experiments

This section is dedicated to computer simulations that use the IP formulations proposed in Section 4 and
[27]. The main objective is the comparison of different solution concepts, in particular with respect to
the respecting improvement property. The simulations for strict and weak preferences were conducted
separately, especially in view of our theoretical findings in Section 3.

Throughout, we consider two objective functions, namely (1) the maximisation of the size of the
allocation (corresponding to the maximisation of the number of transplants in the context of KEPs)
and (2) the maximisation of the total weight (where weights of edges can be interpreted as the scores
given to the corresponding transplants in a KEP, i.e., reflecting the quality of the transplants). Note
that we use and distinguish between the two objectives for each of the cores as well, as in each of the
cores the allocations that yield a maximum number of transplants may be different from the allocations
that yield maximum total weight.

The remainder of this section is organized as follows. In Section 5.1, we provide an overview of the
test instances used for computational analysis and discuss the most relevant implementation details.
In Section 5.2, we present our results on the frequency of violations of the (conditional) respecting
improvement property for the best allotments with respect to all models. One important finding is
that the strong core, Wako-core, and core perform much better than the size and weight maximisation
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models. Then, to analyse the potential trade-off between stability requirements and size/weight, we
study in Section 5.3 the reduction in size/weight of maximum size/weight allocations when ever more
stringent stability (no-blocking) requirements are imposed, i.e., moving to core, then to competitive
/ Wako-core, and finally to strong core allocations. For the unbounded case, we furthermore analyse
the price of fairness. Finally, as a counterpart to the analysis in Section 5.3, Section 5.4 computes for
each model the average number of weakly blocking cycles. Thus, we obtain an estimation of how much
“robustness” / “fairness” we have to give up vis-à-vis the strong core.

5.1 Test instances and implementation details

Test instances were generated with the generator proposed in [46, 29] to mimic the pools observed
in KEPs and are available from https://doi.org/10.25747/xh4y-2r05. The generator creates com-
patibility (acceptability) graphs for KEPs, with the set of agents N consisting of incompatible pairs
and non-directed-donors (NDDs), i.e., donors with no associated recipient. Dummy edges were created
from a NDD to each node to handle chains initiated by NDDs in the same way as cycles are operated.
Thus, the preferences of the NDDs represent the interest of the patients on the waiting list. The size
of an instance (i.e., number of agents/nodes |N |) ranged from 20 to 150; 50 instances of each size were
generated. The weights associated with the edges of the graph were generated randomly within the in-
terval (0, 1), and preferences were assigned in accordance with the weights: the higher the weight of an
outgoing edge of a given node, the more preferred the corresponding (pointed) object for the (pointing)
agent is. To generate instances with weak preferences, outgoing edges with weights within each interval
of length 1

|N | were considered equally preferable.
For unbounded length exchange cycles, in order to speed up the running time of the IP formulations

we implemented the TTC algorithm and used its output as a starting allocation for all models. Even if
this starting allocation was infeasible for the IP formulation (which can happen for the strong core) it
was accepted by the solver.

All programs were implemented using Python programming language and tested using Gurobi as op-
timisation solver [24]. The code is available at https://gitlab.com/xenia.klimentova/housemarket_
pub. Tests were executed on a MacMini 8 running macOS version 10.14.3 in a Intel Core i7 CPU with
6 cores at 3.2 GHz and 8GB of RAM. Average CPU times required to solve an instance of a given size
for each of the formulations in Section 4 are presented in Appendix C.

5.2 Violations of the respecting improvement property

In this subsection, we conduct a computational analysis on how often the (conditional) respecting im-
provement (RI) property is violated for the best allotments under different models, for both unbounded
and bounded exchange cycles. For the unbounded case we considered only the size and weight max-
imisation models, i.e., not the strong core, Wako-core, and core. The reason is that Theorem 1 and
Corollary 2 show that the strong core satisfies the (conditional) RI-best property; Theorem 1 and Corol-
lary 1 show that the Wako-core (competitive allocations) satisfies the RI-best property; and Schlotter
et al. [47] proved that the core satisfies the RI-best property (for weak preferences).

For each model and for instances with 20 and 30 nodes we run Algorithm 1 to determine the number
of violations of the (conditional) RI-best property. The algorithm proceeds as follows. For each pair
of distinct agents i and j, and starting from the original preferences, we let object i make consecutive
improvements by moving it up in the preference list of agent j (until it is at the top). Specifically, let k
be the lowest (least preferred) object that agent j strictly prefers to i. In the case of strict preferences,
at each step of the while loop, object i is swapped with object k. In the case of ties (weak preferences),
object i first becomes tied with (equally preferred to) object k. After each such improvement, the
allocations (for the model under consideration) that provide the best allotments for i for the original

29

https://doi.org/10.25747/xh4y-2r05
https://gitlab.com/xenia.klimentova/housemarket_pub
https://gitlab.com/xenia.klimentova/housemarket_pub


(R) and “improved” (R̃) preferences are compared. If such an allocation does not exist for R̃, the
algorithm continues with the next iteration of the while loop. If such an allocation does exist for R̃,
then we check whether there is a violation of the RI-best property (i.e., whether agent i obtains a strictly
worse allotment in the allocation for R̃).

In the formal description of the algorithm we use the following definition and notation. For any
agent i and for any preferences Ri, we define for each object ℓ a rank riℓ ∈ {1, . . . , |N |} such that for all
objects ℓ, ℓ′ we have riℓ ≤ (<,=) riℓ′ if and only if ℓRi(Pi, Ii)ℓ

′. In other words, objects with a smaller
rank are more preferred.

Algorithm 1 Procedure for checking the RI-best property
Ensure: M number of violations of the RI-best property
1: M ← 0;
2: for i ∈ N , j ∈ N , i ̸= j do
3: Let R be the current preferences of agents;
4: Find an allocation with a best allotment for i with respect to R, denote the allocation by y;
5: For yiℓ = 1, denote r = riℓ;

6: while ∃kPji do
7: Let k be the first strictly preferred object for j that precedes i in Rj ;

8: if strict preferences then
9: Swap i with k in the preferences of j;

10: end if

11: if weak preferences then
12: Let i become equally preferred for j as k (i.e., rji ← rjk);
13: end if

14: Denote the modified preferences by R̃;
15: Find an allocation with a best allotment for i with respect to R̃, denote allocation by ỹ;

16: if core/Wako-core/strong core is empty then
17: continue;
18: end if

19: For ỹiℓ̃ = 1, denote r̃ = ri
ℓ̃
;

20: if r < r̃ then
21: The RI-best property is violated: M ←M + 1;
22: end if

23: r ← r̃; R← R̃;
24: end while

25: end for

Figures 9 and 10 present box plots (where outliers are omitted) for the number of violations of the
RI-best property for strict and weak preferences, respectively, for models where the RI-best property
is violated at least once. Max-w refers to maximum weight allocations, and Max-t to allocations with
maximum size, i.e., maximum number of transplants. Similarly, Core-{t,w}, W.-Core-{t,w}, and S.Core-
{t,w}, refer to the core, Wako-core and strong core, respectively.25 Models that lead to the same result,
independently of the considered objective, are plotted together. This is the case, for example, for Core-t
and Core-w with k = 3 and strict preferences (see Figure 9) and W.-Core and Core with k = 2, 3 and
weak preferences (see Figure 10).

25Recall that we use and distinguish between the objectives/suffixes t and w for each of the cores as well, as in each of
the cores the allocations that yield a maximum number of transplants may be different from the allocations that yield
maximum total weight.
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Figure 9: Total number of violations of the RI-best property of all instances of a given size with strict
preferences.
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Figure 10: Total number of violations of the RI-best property of all instances of a given size with weak
preferences.
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It can be immediately observed that the (Wako-, strong) core models produced only a few cases of
violations of the RI-best property. To give an indication, the total number of violations for all instances
with weak preferences, |N | = 30, and k = 3 was 4549 for Max-t and 3145 for Max-w, but only 10
for Core-{t,w}, 20 for W.-Core-{t,w}, and 2 for S.Core-{t,w}. For maximum size and maximum weight
allocations (Max-t and Max-w, respectively), both for the unbounded and the bounded cases, one can
observe a significant number of violations. These numbers increase with instance size. Interestingly, for
the unbounded case, the number of violations for Max-t was lower than that for Max-w. This can be
explained by the fact that the former (size objective) problem usually induces multiple allocations that
yield the same allotment for some agent, while the latter (weighted objective) problem usually induces
a unique allocation. On the contrary, for the bounded case, maximum weight allocations tend to violate
the RI-best property less often than maximum size allocations. A further inspection of the data shows
that this difference between the unbounded and bounded case is mostly due to a higher number of
violations for Max-t in the bounded case; the number of violations for Max-w is rather constant.26

5.3 Impact of stability on the number of transplants

The most important finding in Section 5.2 is that in terms of respecting improvement, the strong core,
Wako-core, and core perform much better than the size and weight maximisation models. Next, we
analyse the potential trade-off between stability requirements and size/weight.

Focusing on the case of unbounded exchange cycles and weak preferences, Figure 11 depicts average
maximum size and average maximum weight when increasingly stringent stability requirements are
imposed. Starting off with no stability requirements (Max), we consecutively add the constraints required
for core, competitive, and strong core allocations. We refrain ourselves from presenting the results for the
case of strict preferences as all curves are similar (also recall that for strict preferences the competitive
and strong core allocations coincide).

As expected, both the number of transplants and total weight decrease by increasing the number
of constraints: when moving from Max to Core, then to Competitive, and finally to Strong Core, the
corresponding curves shift downwards. The Strong Core curve is non-monotonic, which is explained by
the non-existence of strong core allocations for several instances. Next to the curve we indicate the
number of instances (out of the total 50) where a strong allocation existed.

Figure 12 makes a similar analysis for the bounded case, when k = 2 and k = 3, indicated as [k]
next to the name of the curves. If the core, Wako-core, or the strong core turned out to be empty, then
we computed an allocation that minimises the number of associated blocking cycles in the same way as
described in [27].27

To facilitate the comparison between the bounded and unbounded cases, Figure 12 also contains the
two curves of the unbounded case from Figure 11 associated with maximum size/weight (Max), denoted
by Max[∞], which provide upper bounds. Unsurprisingly, the curves associated with k = 2 are located
below those associated with k = 3. We can observe that the maximum number of transplants for k = 3
and for unbounded k are very similar (see Figure 12 (left)). Notice also that even though some curves
overlap and seem identical, there are minor differences among them, except for the case k = 2 where
the core and Wako-core coincide. As before, we present results for weak preferences only, as this is the
more general case. In the case of strict preferences, for k = 3 the curves are similar, whilst for k = 2,
the core, Wako-core, and strong core coincide.

26We conjecture that this is related to the impact of objects that move up from being unacceptable to being acceptable.
In the bounded case the potential new trading cycles induced by a new acceptable object can easily increase the maximum
size allocation, but less easily the maximum weight allocation. Since a change of allocation brings along possibilities of
violations of the RI-best property, Max-t is more likely to experience an increase.

27Note that in the IP formulations the stability requirements are written for each cycle; hence, the minimisation of the
number of blocking cycles is equivalent to the minimisation of the number of violated constraints.
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Figure 11: Average number of transplants (left) and average total weight of transplants (right) for
unbounded length and weak preferences. Each number indicates the number of instances (out of 50)
where a strong core allocation existed.
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the curves) and weak preferences. Solid lines are used for the unbounded case ([∞]), dotted lines for
k = 2, and dashed lines for k = 3.
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From a practical point of view, an interesting question to explore is the impact of (core) stability
requirements on the achievable number of transplants. Although KEPs have many other key perfor-
mance indicators, the achievable number of transplants is unarguably the most relevant one, as this
criterion is optimised as a first objective in all European KEPs [17]. Figure 13 depicts our findings on
the price of fairness for unbounded exchange cycles. The price of fairness is calculated as the average
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Figure 13: Price of fairness with respect to the maximum number of transplants for maximum weight
allocations as well as core, competitive, and strong core allocations with maximum number of trans-
plants (-t) and maximum total weight (-w) objectives; for strict (left) and weak (right) preferences and
unbounded exchange cycles. Solid lines are used for models that maximise the number of transplants
and dash-dotted lines for those that maximise the total weight.

percentage loss in the number of transplants for maximum weight allocations as well as for core, com-
petitive, and strong core allocations under both objectives, when compared to the maximum number
of transplants achievable. Since the strong core can be empty for weak preferences, the corresponding
curves in Figure 13 (right) are based on the instances (out of the 50 instances of each size) with a non-
empty strong core. Note that for strict preferences (Figure 13, left) there exists a unique competitive
equilibrium which is also the unique strong core allocation. Therefore, the curves that correspond to the
two objectives and both types of allocations (Compet.-t, Compet.-w, S.Core-t, and S.Core-w) coincide.
For weak preferences (Figure 13, right), even though there may exist multiple strong core allocations,
for all instances in our simulations the number of transplants turns out to be the same for the two
objectives. So, the corresponding curves S.Core-t and S.Core-w coincide again.

As can be observed, the price of fairness for competitive and strong core allocations is significantly
higher than for core allocations. It decreases with problem size for all allocation models and for both
objective functions. In particular, for the core with the maximum number of transplants objective
(Core-t), when the size of instances is larger than 50 the loss in the number of transplants is less than
3% (decreasing to 1% for instances of size 150). This finding is of major practical relevance as it implies
that when kidney exchange programmes are sufficiently large, one can take into account preferences
without a significant reduction in the number of transplants.
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5.4 Analysis of the number of blocking cycles

Finally, as a counterpart to the analysis in Section 5.3, we compute for each model the average number of
weakly blocking cycles. Thus, we obtain an estimation of how much deficiency in terms of “robustness”
/ “fairness” we have to accept vis-à-vis the “ideal” (but potentially empty) strong core.

Specifically, we analyse the average number of weakly blocking cycles when their length can be up to
l = 2, 3, 4, 5. When also the length of exchange cycles of allocations is bounded, say by k, the analysis
is naturally restricted to the case l ≤ k. Results on blocking cycles are very similar and hence omitted.

Figure 14 shows the average number of weakly blocking cycles of length l = 2 for Max, core, com-
petitive / Wako-core, and strong core allocations. Figures for l = 3, 4, 5 are relegated to Appendix B,
as the conclusions drawn for these cases are similar to those for l = 2. If the core, Wako-core, or the

20 30 40 50 60 70 80 90 100 110 120 130 140 150
|N|

100

101

102

#w
ea

kl
y 

bl
oc

ki
ng

 c
yc

le
s

Max #transplants

20 30 40 50 60 70 80 90 100 110 120 130 140 150
|N|

Max total weight

Max[ ]
Core[ ]

Compet.[ ]
Max[3]

Core[3]
W.-Core[3]

S.Core[3]
Max[2]

Core[2]
W.-Core[2]

S.Core[2]

Figure 14: Average number of weakly blocking cycles of length l = 2 for allocations with maximum
number of transplants (left) and maximum total weight of transplants (right), for unbounded exchange
cycles ([∞]) and exchange cycles of length up to k = 2 and k = 3 for weak preferences. Solid lines are
used for the unbounded case, dotted lines for k = 2, and dashed lines for k = 3.

strong core turned out to be empty, then we computed an allocation that minimises the number of
associated blocking cycles in the same way as described in [27]. In particular, for the strong core in
the case of bounded exchange cycles, following the same procedure as in [27], the corresponding two
curves (k = 2, 3) are based on counting the minimum number of weakly blocking cycles28 (hence, we
register 0 weakly blocking cycles if and only if an instance has a non-empty strong core). In the case of
unbounded exchange cycles the structure of the formulation is such that it prevents us from efficiently
minimising the number of weakly blocking cycles for the instances with an empty strong core. For that
reason, the corresponding strong core curve is omitted altogether from our analysis.

Interestingly, the “unstability” of the allocations that maximise the number of transplants (curves
Max[∞], Max[2], Max[3] in Figure 14 (left)) barely depends on the maximum allowed length of exchange
cycles. This is not true for the Core: the number of weakly blocking cycles is considerably smaller for
k = 2. For this and all the remaining cases, the average number of weakly blocking cycles is very low;

28Among the allocations with the maximum number of transplants and maximum total weight of transplants in Figure 14
(left) and (right), respectively.
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in most cases below 1. It is worth noting that the average number of weakly blocking cycles tends to be
smaller when the objective is to maximise the total weight (Figure 14 (right)). A possible explanation
for this is that weights reflect patients’ preferences and therefore an objective function that takes into
account weights will tend to create less weakly blocking cycles (which are determined by preferences).

Although the findings above are already insightful, Figure 15 complements the analysis by focusing
on the average number of agents that strictly prefer their allotments in at least one weakly blocking cycle
(i.e., the number of patients that can receive a strictly better kidney). An important conclusion that
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Figure 15: Weak preferences. Conditional on the existence of at least one weakly blocking cycle, average
number of agents that receive a strictly better allotment in at least one weakly blocking cycle. The grey
line is a reference line showing the number of nodes in an instance.

can be drawn from the figure is that the maximisation of total weight yields a lower number of agents
that can obtain a better allotment in some weakly blocking cycle when compared to the maximum size
allocations (compare curves Max in Figure 15 (left) and (right)). Comparing Figure 15 with Figure 13
gives insights into the reduction of the total number of transplants that would be necessary to meet a
certain level of patients’ preferences.

6 Conclusion

This paper advances the current state of the art in several lines of research on Shapley-Scarf housing
markets. We prove that in the case of strict preferences the strong core (containing the unique compet-
itive allocation) respects improvement. More importantly, we provide several extensions of the result
to the case of weak preferences, for which there do not seem to exist parallel results in other matching
models.

In a very recent paper, Schlotter et al. [47] tackled some of the questions that we left open in our
current paper. They proved that the core satisfies the RI-best property for unbounded exchanges and
weak preferences (and also for a more general domain of partial orders), but that it violates the RI-worst
property even for strict preferences. Similarly, they also showed that the (strong, Wako-) core satisfies
the conditional RI-best property for strict preferences.

36



We summarise our main theoretical findings and the additional results from [47] in Table 14.

housing market (k = ∞) roommates problem (k = 2) k = 3

Strict preferences
Strong core RI (Th 1) cond. RI-best ([47]), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)
Wako-core RI (Th 1) cond. RI-best ([47]), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)

Core RI-best, no RI-worst ([47]) cond. RI-best ([47]), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)

Weak preferences
Strong core cond. RI (Th 3, Cor 2) no cond. RI-best ([47]), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)
Wako-core RI-best/worst (Th 2, Cor 1) no cond. RI-best (Ex 6), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)

Core RI-best, no RI-worst ([47]) no cond. RI-best (Ex 6), no cond. RI-worst (Ex 5) no cond. RI (Prop 2, Rm 5)

Table 14: Summary of main theoretical results and one conjecture on the respecting improvement
property.

We also contribute to the computation of the core, strong core, and set of competitive allocations by
providing Integer Programming models that do no longer involve an exponential number of constraints.
These models assume that there is no limit on the size of an exchange cycle. However, since there are
applications where this assumption is unrealistic (for instance in Kidney Exchange Programmes) we
also propose alternative IP models for bounded length cycles.

Finally, our new IP formulations constitute a practical stepping-stone for our computational ex-
periments which provide several insights in the properties of allocation rules for Kidney Exchange
Programmes. If a limit is set to the length of exchange cycles, then the proposed game theoretical
solutions need not satisfy the respecting improvement property. However, our computer simulations
results show that violations of the property are remarkably less frequent for the (Wako-, strong) core
than for maximum size and maximum weight allocations. In view of these findings, we analyse the
potential trade-off between stability requirements and the maximum number of transplants. We find
that when the size of the instances increases, the trade-off decreases significantly: core allocations for
instances with 150 patient-donor pairs entail a less than 1% reduction in the number of transplants.
An important implication is that when kidney exchange programmes are sufficiently large, one can
take into account agents’ preferences and largely ensure the respecting improvement property without
a significant reduction in the number of transplants.

Appendices

A Alternative proof of Theorem 1

We prove that when preferences are strict, the competitive allocation rule (or strong core allocation rule)
τ respects improvement by associating a two-sided school choice problem with each one-sided housing
market and applying Theorem 9 in the On-line Appendix of [25].

We first provide some intuition / a sketch of the proof. There is a “standard” connection between the
(classical) TTC for the housing market and the generalised TTC for the school choice model. Specifically,
replace each agent i with a student-school pair (si, ci), let each student inherit the preferences (of the
corresponding agent) over the schools, and let each school have its student on the top of the priority
list. It is well-known that the two top trading algorithms produce essentially the same outcome. Now
consider a “reversed” construction, where each student has his school as top choice and each school
inherits the preferences of the original corresponding agent as priorities. Again, the very same cycles
will be created in the TTC for this reversed school choice problem, only with the difference that now
each student will be assigned to her own school. The proof of Theorem 1 that is presented below
combines the above two reductions, by having the standard version for one agent only, say agent i, and
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the reversed version for all other agents. It is obvious that the very same cycles will occur again as long
as agent i is not involved. The key part of the proof is to show that in the combined reduction, student
si is assigned to the school that corresponds to the object agent i receives in the original housing market.

Formally, let i ∈ N . Let R, R̃ be two profiles of strict preferences over objects N such that R̃ is an
improvement for i with respect to R.

Consider housing market (N,R). We construct an associated two-sided (school choice) problem
(S,C,R′,≻) with outside option ∅ as in [25] as follows. First, S = {sk : k ∈ N} is the set of students.
Second, C = {ck : k ∈ N} is the set of schools, each of which has capacity 1. Third, strict preferences
R′ = (R′

sk
)
sk∈S

and strict priority rankings ≻= (≻ck)ck∈C satisfy the following conditions:

• student si has strict preferences R′
si
over schools C and the outside option ∅ such that for all k, l ∈ N ,

ckR
′
si
cl if and only if kRil and for all k ∈ N , ckP

′
si
∅;

• for each j ∈ N\{i}, student sj has strict preferences R′
sj
over schools C and the outside option ∅ such

that cj is the most preferred school (and preferred to ∅);
• school ci is endowed with a strict priority ranking ≻ci over students S such that si is the agent with
highest priority; and
• for each j ∈ N\{i}, school cj is endowed with a strict priority ranking ≻cj over students S such that
for all k, l ∈ N , sk ≻cj sl if and only if kRjl.

We similarly associate a problem (S,C,R′,≻′) with housing market (N, R̃) such that the only (pos-
sible) difference between problems (S,C,R′,≻′) and (S,C,R′,≻) is that for some j ∈ N\{i}, ≻′

cj
̸=≻cj .

(This follows from the fact that that the only (possible) difference between the two housing markets
(N, R̃) and (N,R) is that for some j ∈ N\{i}, R̃j ̸= Rj.)

Next, we relate the top trading cycles algorithm τ for housing markets (N,R) and (N, R̃) with the

top trading cycles algorithm φTTC for the associated two-sided problems (S,C,R′,≻) and (S,C,R′,≻′)

(for the definition of φTTC we refer to Section 2.1.3 in [25]).

Claim. Let k ∈ N . Then, φTTCsi
(S,C,R′,≻) = ck if and only if τi(N,R) = k. Similarly, φTTCsi

(S,C,R′,≻′

) = ck if and only if τi(N, R̃) = k.

The difference between (S,C,R′,≻) and (S,C,R′,≻′) is that student si is ranked higher (i.e., has higher
priority) by some schools at (S,C,R′,≻′) relative to (S,C,R′,≻). Theorem 9 in the On-line Appendix
of [25] states that the top trading cycles algorithm for two-sided problems respects improvements of
student quality. Hence,

φTTCsi
(S,C,R′,≻′)R′

si
φTTCsi

(S,C,R′,≻). (14)

Moreover, note that R′
si
finds all schools acceptable and that at both (S,C,R′,≻) and (S,C,R′,≻′) the

number of school seats equals the number of students. Hence,

φTTCsi
(S,C,R′,≻′) ̸= ∅ ̸= φTTCsi

(S,C,R′,≻). (15)

Hence, (14), (15), the Claim, and the definition of R′
si

yield τi(N, R̃)Ri τi(N,R). So, τ respects im-
provement.

Proof of the Claim. It is sufficient to show that

for all k ∈ N, φTTCsi
(S,C,R′,≻) = ck if and only if τi(N,R) = k. (16)

(The statement that φTTCsi
(S,C,R′,≻′) = ck if and only if τi(N, R̃) = k follows similarly.)

We apply TTC to two-sided problem (S,C,R′,≻) as well as to housing market (N,R). We show that
as long as agent i (in the housing market) or, equivalently, student si and college ci (in the two-sided
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problem) are present, at each step of the algorithm there is a one-to-one correspondence between cycles
of the two-sided problem and cycles of the housing market.

Consider the initial situation. We distinguish among three types of cycles.
First, if (si, ci) is a cycle at (S,C,R′,≻), then ci is student si’s most preferred school and hence i is

a self-cycle at (N,R). Similarly, if i is a self-cycle at (N,R), then (si, ci) is a cycle at (S,C,R′,≻). In
particular, (16) holds.

Second, let j ∈ N\{i}. If (sj, cj) is a cycle at (S,C,R′,≻), then student sj has highest priority at
school cj and hence j is a self-cycle at (N,R). Similarly, if j is a self-cycle at (N,R), then (sj, cj) is a
cycle at (S,C,R′,≻). Obviously, removing these cycles is equivalent to removing student sj, school cj,
and agent j.

Third, let c = (si1 , ci2 , si3 , . . . , ciℓ) with ℓ > 2 be a cycle at (S,C,R′,≻). Note that ℓ is even and
ci ̸∈ {ci2 , ci4 , . . . , ciℓ} (otherwise we are in the case of cycle (si, ci) because at the initial step, student si
is present, the only student that can point to ci is student si, and school ci points to si).

Case I: si ∈ {si1 , si3 , si5 , . . . , siℓ−1
}. Without loss of generality, we can assume that i1 = i. Then, at

cycle c,
• student si1 = si points to his most preferred school ci2 ;
• school ci2 points to his highest priority student si3 ;
• i3 = i4 because student si3 points to school ci4 but ci3 is his most preferred school (which is present
at the initial step), i.e., ci4 = ci3 , which implies that i3 = i4;
• school ci4 points to his highest priority student si5 ;
• i5 = i6 (because of a similar argument);
• ...;
• school ciℓ−2

points to his highest priority student siℓ−1
;

• iℓ−1 = iℓ;
• school ciℓ points to his highest priority student si1 = si.
Thus, (i1, i2, i4, i6, . . . , iℓ) is a cycle at (N,R).

Case II: si ̸∈ {si1 , si3 , si5 , . . . , siℓ−1
}. Then, at cycle c,

• i1 = i2;
• school ci2 points to his highest priority student si3 ;
• i3 = i4;
• school ci4 points to his highest priority student si5 ;
• i5 = i6;
• ...;
• school ciℓ−2

points to his highest priority student siℓ−1
;

• iℓ−1 = iℓ;
• school ciℓ points to his highest priority student si1 .
Thus, (i2, i4, i6, . . . , iℓ) is a cycle at (N,R).

Reversely, if (i1 = i, i2, i4, i6, . . . , iℓ) with ℓ > 2 is a cycle at (N,R), then c = (si1 , ci2 , si4 , ci4 ,
si6 , ci6 , . . . , siℓ , ciℓ) is a cycle at (S,C,R′,≻) (Case I). Similarly, if (i2, i4, i6, . . . , iℓ) with ℓ > 2 is a cycle
at (N,R) and i ̸∈ {i2, . . . , iℓ}, then c = (si2 , ci2 , si4 , ci4 , . . . , siℓ , ciℓ) is a cycle at (S,C,R′,≻) (Case II).

In Case I, we obtain (16). In Case II, removing the cycle at (N,R) and the associated cycle
at (S,C,R′,≻) is equivalent to removing students si1 , si2 , . . . , siℓ , schools ci1 , ci2 , . . . , ciℓ , and agents
i1, i2, . . . , iℓ.

We can repeatedly apply similar arguments (as in the three types of cycles) to the reduced two-sided
problem and the reduced housing market, remove cycles, etc., until we obtain (16). □
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B Analysis of the number of weakly blocking cycles of length

3, 4, 5

Figure 16 extends the results presented in Figure 14 by considering weakly blocking cycles of length up
to l = 3. The conclusions drawn for l = 2 remain valid for this case.
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Figure 16: Average number of weakly blocking cycles of length up to l = 3 for allocations with maximum
number of transplants (left) and maximum total weight of transplants (right), for unbounded exchange
cycles ([∞]) and exchange cycles of length up to k = 3 for weak preferences.

For the unbounded case, the number of weakly blocking cycles is larger, since one must consider also
the cases when l > 3. Figure 17 provides information on the number of weakly blocking cycles of length
up to 4 and up to 5 (indicated by suffixes 4 and 5). We do not present results for l > 5 as searching
for these larger weakly blocking cycles would lead to excessively long CPU time.

C CPU time for unbounded models

In Table 15, we present the average CPU time for solving an instance of a given size with one of the
three newly proposed IP models for the unbounded case. Recall that the allocation obtained by the
TTC algorithm was used as a starting allocation for all formulations.

In the case of weak preferences, CPU times are much longer for the core and, especially, the compet-
itive allocations. However, finding strong core allocations for weak preferences is faster than doing so
for strict preferences. Moreover, surprisingly, finding the strong core is the most time-consuming task
for strict preferences, while it is the least time-consuming task for weak preferences. Finally, we notice
that the models for finding core and strong core allocations perform (with respect to CPU time) within
the same ranges of magnitude compared with the corresponding models for the bounded case, analysed
in [27].
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Figure 17: Average number of weakly blocking cycles of length up to l = 4 and l = 5, indicated as l
next to the name of a curve, for allocations with maximum number of transplants (left) and maximum
total weight of transplants (right), for unbounded exchange cycles and weak preferences.

Max # transplants Max total weight Max # transplants Max total weight
|N | Core Compet. S.Core Core Compet. S.Core Core Compet. S.Core Core Compet. S.Core

Strict preferences Weak preferences
20 0.00 0.03 0.01 0.00 0.02 0.01 0.00 0.04 0.01 0.00 0.03 0.01
30 0.03 0.13 0.04 0.02 0.11 0.03 0.02 0.28 0.04 0.02 0.17 0.03
40 0.08 0.48 0.12 0.06 0.25 0.11 0.09 0.63 0.10 0.06 0.44 0.08
50 0.24 1.74 0.38 0.16 0.58 0.34 0.20 2.15 0.25 0.17 1.06 0.21
60 0.47 2.39 0.87 0.28 0.91 0.79 0.52 6.03 0.44 0.26 2.87 0.39
70 1.06 3.91 1.94 0.66 2.29 1.50 0.84 16.99 1.09 0.53 7.35 0.77
80 1.62 6.54 3.26 0.82 3.39 2.32 1.41 32.21 1.63 0.76 17.47 1.01
90 3.14 36.34 5.31 3.27 5.38 3.59 3.29 167.15 2.36 1.82 80.88 1.49
100 3.53 16.19 19.26 2.43 6.15 9.81 4.51 188.35 8.87 3.08 95.39 4.62
110 8.73 21.42 28.26 4.97 9.01 13.79 6.68 331.64 16.40 5.92 159.12 7.24
120 17.84 72.87 57.36 6.81 15.36 24.32 20.14 392.88 19.60 6.79 218.58 10.87
130 14.34 46.92 84.49 14.24 22.68 34.11 14.78 586.27 21.75 12.32 438.23 10.42
140 29.50 61.99 110.82 21.51 34.33 46.67 41.59 708.92 40.97 16.43 539.56 14.89
150 41.99 161.10 214.32 30.66 52.61 70.77 57.13 786.43 61.79 27.82 682.99 23.91

Table 15: Average CPU time (in seconds) for solving an instance of a given size with the proposed
formulation.
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P. Biró gratefully acknowledges financial support from the Hungarian Scientific Research Fund, OTKA,
Grant No. K129086, and the Hungarian Academy of Sciences, Momentum Grant No. LP2021-2. F. Klijn
gratefully acknowledges financial support from AGAUR–Generalitat de Catalunya (2017-SGR-1359 and
2021-SGR-00416) and the Spanish Agencia Estatal de Investigación (AEI) through grants ECO2017-
88130-P and PID2020-114251GB-I00 (funded by MCIN/ AEI /10.13039/501100011033) and the Severo
Ochoa Programme for Centres of Excellence in R&D (Barcelona School of Economics CEX2019-000915-
S). Research visits related to this work were financed by COST Action CA15210 ENCKEP, supported
by COST (European Cooperation in Science and Technology) – http://www.cost.eu/.

References

[1] Zeinab Abbassi, Nima Haghpanah, and Vahab Mirrokni. Exchange market mechanisms without
money. Working paper, 2007.
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[17] Péter Biró, Joris van de Klundert, David Manlove, William Pettersson, Tommy Andersson,
Lisa Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline Hemke,
Rachel Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits
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[19] Kataŕına Cechlárová and Tamás Fleiner. Housing markets through graphs. Algorithmica, 58(1):19–
33, 2010.

[20] Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. New insights on integer-
programming models for the kidney exchange problem. European Journal of Operational Research,
231(1):57–68, 2013.
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[39] Antonio Nicolò and Carmelo Rodŕıguez-Álvarez. Age-based preferences in paired kidney exchange.
Games and Economic Behavior, 102:508–524, 2017.

[40] Thomas Quint and Jun Wako. On houseswapping, the strict core, segmentation, and linear pro-
gramming. Mathematics of Operations Research, 29(4):861–877, 2004.

[41] Alvin E. Roth and Andrew Postlewaite. Weak versus strong domination in a market with indivisible
goods. Journal of Mathematical Economics, 4(2):131–137, 1977.

[42] Alvin E. Roth, Tayfun Sönmez, and M Utku Ünver. Kidney exchange. Quarterly Journal of
Economics, 119(2):457–488, 2004.
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