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Abstract

We study the multiple-partners game (Sotomayor, 1992), the simplest many-

to-many generalization of the assignment game. Our main result is that the

Shapley value of a replicated multiple-partners game converges to a competitive

equilibrium payoff when the number of replicas tends to infinity. Furthermore,

the result also holds for a large subclass of semivalues since we prove that they

converge to the same value as the replica becomes large. In the proof of our

theorem, we use properties of the “multiple-partners game with types,” where

several agents are of each type. We show, in particular, that every competitive
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equilibrium outcome of a “large” game with types satisfies equal treatment of

equals and equal treatment of partnerships.

Keywords: Assignment game; Shapley value; Replica; Semivalues

JEL Classification: C78; C71; D78

1 Introduction

We study the multiple-partners game, introduced by Sotomayor (1992), which is the

simplest many-to-many generalization of the assignment game (Shapley and Shubik,

1972). In this two-sided matching market, a set of possibly heterogeneous players from

one side meet with another set of possibly heterogeneous players from the other side.

Each player in a multiple-partners game has a quota and can have as many partnerships

with different players from the other side as her quota allows. If two players form a

partnership, they produce a gain, which can be divided between them in any manner

they decide. The total surplus of a player is the sum of the surpluses she obtains in all

her partnerships. This model can represent markets with sellers and buyers, firms and

workers, or venture capital firms and startups.

An outcome of the multiple-partners game is a matching, which specifies a set of

partners for each player respecting the quotas, and a payoff vector that stipulates the

sharing of the surplus in each partnership. Stability and competitive equilibrium are

the main solution concepts in matching models. In a competitive equilibrium outcome

(Sotomayor, 2007), the objects a seller offers have associated a non-negative price, and,

given the price vector, each buyer chooses a bundle that maximizes her total surplus.

Sotomayor (2007) proved that a competitive equilibrium is a stable outcome where each

seller obtains the same payoff in each transaction.

By considering the multiple-partners game as a coalitional game with transferable

utility (a TU game), one can also apply to this game single-valued solution concepts for
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TU games. The Shapley value (Shapley, 1953) is the most popular value in TU games.

It has been studied in assignment games by Hoffmann and Sudhölter (2007) and van

den Brink and Pinter (2015).1 A major drawback of the Shapley value of an assignment

game (hence, also of a multiple-partners game) is that it may not be a stable payoff.

The main purpose of our paper is to show that this drawback may be fixed through

replication of the game.

We prove that the Shapley value of a replicated multiple-partners game converges

to a competitive equilibrium payoff (hence, to a stable payoff) when the number of

replicas tends to infinity. Thus, our result generalizes Shapley and Shubik’s (1969) and

Liggett, Lippman, and Rumelt’s (2009) theorems on the asymptotic behavior of the

Shapley value of expanding 1-to-1 glove markets and expanding 1-to-k glove markets.

Furthermore, our result applies to a large subclass of semivalues (Dubey, Neyman,

and Weber, 1981), which are single-valued solutions obtained by relaxing the axioms

that characterize the Shapley value, mainly the efficiency of the value.2 Our theorem

states that all the semivalues of this subclass of a replicated game converge to the same

value as the replica becomes large, and the players’ payoffs converge to a competitive

equilibrium payoff.

For the proof of our theorem, we introduce and study the multiple-partners game

with types, which is a game where several agents are identical, and we provide properties

of large multiple-partners games with types, where the number of players of any type is

1 Núñez and Rafels (2019) reviewed the contributions that study the Shapley value in the assignment

game. The nucleolus (Schmeidler, 1969) is another popular solution concept for TU games that has

been considered for the assignment game, e.g., Llerena, Núñez, and Rafels (2015).
2 Dubey, Neyman, and Weber (1981) showed that the prescription of each semivalue is the players’

expected marginal contribution to a random coalition, where the probability of each coalition can

be expressed using a probability distribution λ over the interval [0, 1]. Our result applies to all the

semivalues that puts probability zero in the boundaries, that is, λ({0, 1}) = 0. The Shapley value and

the Banzhaf value (Banzhaf, 1965), for instance, satisfy this condition.
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larger than any players’ quota. We show, for instance, that every competitive equilib-

rium outcome of a large game with types satisfies equal treatment of equals (that is, two

identical players obtain the same vector of payoffs) and equal treatment of partnerships

(that is, the payoff obtained by a player is the same in all her partnerships).3

The line of research on the value-equilibrium convergence was initiated by Shap-

ley (1964), who showed the convergence of the Shapley value of replicated exchange

economies with transferable utility to a competitive allocation.4 Champsaur (1975)

proved that the Non-TU Shapley value payoffs (Shapley, 1967) are asymptotically in-

cluded in the set of competitive payoffs for exchange economies with production (see

also Shapley and Shubik, 1969, and Mas-Colell, 1977).5 Relatedly, Wooders and Zame

(1987) formulated a fairly general class of games with transferable utility and proved

that the Shapley value payoffs can get arbitrarily close to an allocation in the core for

sufficiently large games.

In the multiple-partners game, Sotomayor (2019) introduced multi-stage cooperative

games, defined the concepts of sequential stability and perfect competitive equilibrium,

and studied the effect of the replications of the market on the cooperative and the

competitive structures of the extended markets. She proved, in particular, that the sets

of stable and competitive equilibrium allocations shrink to the set of stable allocations

that satisfy equal treatment of equals and equal treatment of partnerships when the

3 The equal treatment of partnerships for the sellers holds in any competitive equilibrium outcome,

by definition. Our results for large multiple-partners games with types generalize previous results by

Sotomayor (2010), who showed that the replicated market satisfies equal treatment of equals and equal

treatment of partnerships.
4 See Hart (2002) for a survey on this topic.
5 In parallel with the asymptotic approach, the equivalence between the Shapley value payoffs and

the set of competitive payoffs is proved for economic environments with a continuum of agents. In

particular, Aumann and Shapley (1974) established the equivalence for market games with a continuum

of traders. Aumann (1975) obtained a similar result for pure exchange economies with a continuum of

traders.
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replica is large.6 In contrast, our focus is the convergence of the Shapley value and

other semivalues to a competitive payoff.

The remainder of the paper is organized as follows. Section 2 describes the environ-

ment and the solution concepts that we will study. Section 3 introduces the concept

of the multiple-partners game with types, and Section 4 states and proves properties

of the competitive equilibria for those games. The theorem that states and proves our

convergence result is in Section 5. Section 6 concludes the paper. All the proofs except

the one for the theorem are in the Appendix.

2 The multiple-partners game

2.1 The model

We study the multiple-partners game, introduced by Sotomayor (1992), a generalization

of the assignment game (Shapley and Shubik, 1972). In this model, there are two finite

and disjoint sets of players: a set of buyers B = {b1, . . . , bnb
} and a set of sellers

S = {s1, . . . , sns}. We use b and s to represent, generically, any element of B and S,

respectively.

Each player has a quota representing the maximum number of partnerships he/she

can enter. Each buyer can only acquire one object from each seller. Thus, the quota

r(b) > 0 of buyer b ∈ B is an integer representing the maximum number of objects

buyer b can acquire (or the maximum number of sellers he can buy from). Similarly,

each seller s ∈ S owns r(s) > 0 identical objects. Hence, the quota r(s) > 0 represents

the maximum number of buyers the seller s can sell to.7 We denote by r ≡ (r(i))i∈B∪S

6 See Massó and Neme (2014) for a class of theorems regarding the finite convergence of the set of

competitive allocations and other stability concepts for a different type of many-to-many assignment

game.
7 A multiple-partners game is an assignment game if r(b) = 1 for all b ∈ B and r(s) = 1 for all
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the vector of all the quotas. Since the objects owned by each seller are identical,

occasionally, we use s also to refer to an object sold by seller s.

Without loss of generality, we assume that every player has a reservation utility

of 0; that is, a seller assigns a worth of 0 to any object that she does not sell, and

a buyer obtains a worth of 0 from any unfilled spot in his quota. Players can obtain

non-negative payoffs when they form partnerships. For each pair (b, s) ∈ B × S, there

is a non-negative number abs ≥ 0, representing the worth generated from a partnership

between the buyer b and the seller s. We denote by a ≡ (abs)(b,s)∈B×S the matrix

of all these numbers. The surplus abs can be shared between b and s any way they

decide. If buyer b acquires the object s at the price pbs, then his individual payoff in

this transaction is ubs = abs − pbs whereas seller s receives pbs. Finally, we assume that

players’ preferences are separable across pairs in that the payoff from a partnership

does not depend on the other partnerships formed.

The market described above is M := ⟨B, S, a, r⟩. It will often be denoted by M

when this simplification does not lead to confusion.

A feasible matching for M assigns at most r(b) distinct sellers to each buyer b and

at most r(s) distinct buyers to each seller s. We represent it through a matrix.

Definition 1. A feasible matching for M = ⟨B, S,a, r⟩ is a nb × ns matrix x =

(xbs)(b,s)∈B×S of non-negative integer entries such that xbs ∈ {0, 1} for all b ∈ B and

s ∈ S. Furthermore,
∑

b∈B xbs ≤ r(s) for all s ∈ S and
∑

s∈S xbs ≤ r(b) for all b ∈ B.

We denote by A(B, S, r) the set of feasible matchings between B and S.

For each feasible matching x forM , we denote by Cb(x) the set of partners assigned

to buyer b according to x. Formally, for a given x ∈ A(B, S, r), we define Cb(x) = {s ∈

S | xbs = 1}. Similarly, we define by Cs(x) the set of partners assigned to seller s at

x. Therefore, Cb(x) has a most r(b) elements, for each b ∈ B, and Cs(x) has at most

s ∈ S.
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r(s) elements, for each s ∈ S. The set of pairs (b, s) ∈ B × S that are assigned to each

other at x is denoted by C(x). That is, (b, s) ∈ C(x) if xbs = 1. We say that buyer

b and seller s are (respectively, are not) matched at x if (b, s) ∈ C(x) (respectively,

(b, s) /∈ C(x)).

An outcome of the market M involves not only a matching but also a vector of

payoffs:

Definition 2. A feasible outcome forM = ⟨B, S,a, r⟩, denoted by (u,v;x), is a feasible

matching x and a pair of payoff vectors (u,v), where u,v ∈ RC(x)
+ satisfy ubs ≥ 0,

vbs ≥ 0, and ubs + vbs = abs for all (b, s) ∈ C(x).

Definition 3. A feasible payoff vector (u,v) for M = ⟨B, S,a, r⟩ is the projection of

some feasible outcome (u,v;x) for M on RC(x)
+ × RC(x)

+ .

In a feasible outcome (u,v;x), the individual payoffs of each b ∈ B and s ∈ S are

given by the arrays of numbers ubs ≥ 0 and vbs ≥ 0, respectively, only defined if and

only if xbs = 1.

Given a feasible outcome (u,v;x), we denote by ub,min(x) and vs,min(x) the min-

imum payoff of buyer b and seller s, respectively, among his/her payoffs. That is,

ub,min(x) := mins∈Cb(x) ubs if Cb(x) ̸= ∅ and ub,min(x) = 0 otherwise. Similarly,

vs,min(x) := minb∈Cs(x) vbs if Cs(x) ̸= ∅ and vs,min(x) otherwise. The total payoff of

buyer b and seller s are given by
∑

s∈Cb(x)
ubs and

∑
b∈Cs(x)

vbs, respectively.

2.2 Stability and competitive equilibrium

Stability is a natural solution concept for the multiple-partners game. Sotomayor (1992)

proved that the notion of setwise-stability8 is equivalent to the following notion of

8 A feasible outcome is setwise-stable if there is no coalition of players who, by forming new

partnerships only among themselves—possibly dissolving some partnerships to remain within their

quotas and possibly keeping other partnerships—can all obtain a higher payoff.
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pairwise stability, which we will refer to simply as stability :

Definition 4. The feasible outcome (u,v;x) for M = ⟨B, S,a, r⟩ is stable if ub,min(x)+

vs,min(x) ≥ abs for all b ∈ B and all s /∈ Cb(x).

The interpretation of Definition 4 is standard: For a feasible outcome (u,v;x) to

be stable, there cannot exist some pair of players (b, s) who are not matched at x but

who could both get a higher payoff by forming a partnership while at the same time

dissolving one of their current partnerships, if it is necessary to stay within their quotas.

Another natural solution concept for the multiple-partners game is the competi-

tive equilibrium (Sotomayor, 2007). Under the competitive approach, each object s

is associated with a non-negative price ps.
9 We denote by p = (ps)s∈S ∈ RS

+ a price

vector.

In a competitive equilibrium, given a price vector p, each buyer b maximizes his

total payoff over the sets of objects that are feasible to him. We say that a set Q is

feasible to buyer b if it has at most r(b) elements. Therefore, we define buyer b’s demand

set Db(p) as:

Db(p) := argmax
Q feasible to b

∑
s∈Q

(abs − ps).

Thus, in a competitive equilibrium, every agent is assigned a set of partners in their

demand set, and the competitive pressure leads the price of every unsold object to be

zero:

Definition 5. A competitive equilibrium (CE) of M = ⟨B, S,a, r⟩ is a pair (p,x),

where p ∈ RS
+ and x is a feasible matching for M , such that:

1. Cb(x) ∈ Db(p) for all b ∈ B and

9 The prices of two objects owned by the same seller in a competitive equilibrium must be the

same. If two objects owned by the same seller had different prices, no buyer would demand the more

expensive one.
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2. ps = 0 if |Cs(x)| < r(S).10

Each competitive equilibrium (p,x) of M is a projection of some feasible outcome

(u,p;x), where we only keep one copy of each seller’s price ps and ubs = abs − ps if

s ∈ Cb(x). We refer to such an outcome as a CE outcome of M . Similarly, a CE payoff

vector (u,p) is a projection of some CE outcome (u,p;x). We say that the matching

x is compatible with the payoff vector (u,p). The set of CE payoff vectors for M is

denoted by CE(M).

Sotomayor (2007) proved that the set of CE outcomes is a subset of the set of stable

outcomes. She characterized a CE outcome as a stable outcome where all the prices of

the objects a seller owns are equal.11

2.3 Representation as a TU game and semivalues

Amultiple-partners game may be viewed as a coalitional game with transferable utilities

(TU game). Therefore, solution concepts proposed for TU games can also be used in

the multiple-partners game.

A TU game is a pair (N, v) where N is the player set and the function v : 2N → R

satisfies that v(∅) = 0. Given (N, v), a subset T of N is called a coalition, and v(T )

represents the worth of T . For any player i ∈ N and coalition T ⊆ N \ {i}, player i’s

marginal contribution to T is Di v(T ) := v(T ∪ {i})− v(T ).

The most important single-valued solution for TU games is the Shapley value (Shap-

ley, 1953). It was originally defined as the unique single-valued solution satisfying

efficiency, additivity, equal treatment, and null player.12

10 |A| denotes the number of elements of the set A.
11 Sotomayor (2007) also proved that the sets of stable outcomes and CE outcomes are endowed

with a complete lattice structure.
12 Let ψ be a single-valued solution. Efficiency of ψ requires

∑
i∈N ψi(N, v) = v(N) for any (N, v).

The solution ψ is additive if ψ(N, v + v′) = ψ(N, v) + ψ(N, v′) for any two games (N, v) and (N, v′).

It satisfies the null player axiom if ψi(N, v) = 0 for any null player i in (N, v) (that is, for a player
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Dubey, Neyman, and Weber (1981) relaxed the axiom system of the Shapley value

and defined the class of semivalues. A semivalue is a single-valued solution satisfying

positivity, additivity, equal treatment, null player, and null player out.13 Interestingly,

each semivalue can be uniquely identified by a probability distribution λ over [0, 1]. The

prescription of the semivalue ψλ to a player i in a TU game (N, v) can be expressed as

i’s expected marginal contribution, which depends on the distribution λ over [0, 1]:

ψλ
i (N, v) = E[Di v(T̃ )], (1)

where the random coalition T̃ follows the probability distribution

P (T̃ = T ) =

∫
[0,1]

z|T |(1− z)|N\(T∪{i})|λ(dz) (2)

for all T ⊆ N \ {i}. We can interpret the previous expressions as follows. Suppose that

a player i ∈ N joins a random coalition T̃ leading to an increment in the worth of T̃ .

The composition of T̃ is determined in two stages: first, choose z ∈ [0, 1] according to

a probability distribution λ ∈ ∆([0, 1]); second, select each player k ∈ N \ {i} indepen-

dently as a member of T̃ with probability z. Then player i’s prescription according to

ψλ is equal to the expectation of the increment to T̃ . Clearly, the prescription of ψλ

hinges on the choice of λ. In particular, when λ is the Lebesgue measure, ψλ is the

Shapley value.

Consider the multiple-partners game M = ⟨B, S, a, r⟩. We may associate M with a

TU game (B ∪ S, vM) by letting

vM(T ) := max
x∈A(T∩B,T∩S,r)

∑
b∈T∩B

∑
s∈Cb(x)

abs (3)

i ∈ N such that Di v(T ) = 0 for any T ⊆ N \ {i}), for any (N, v). We introduce the equal treatment

property at the end of this section.
13 The single-valued solution ψ satisfies the null player out property if ψj(N \ {i}, v) = ψj(N, v) for

any j ∈ N \ {i} if i is a null player in (N, v), for any game (N, v). The Shapley value satisfies the null

player out property.
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for all T ∈ 2B∪S \ {∅} and setting vM(∅) = 0. That is, vM(T ) is the maximum surplus

the coalition T can obtain by forming feasible partnerships between the set of buyers

in T (i.e., T ∩B) and the set of sellers in T (i.e., T ∩ S).

The prescription of a semivalue ψλ to the buyer b ∈ B in M (denoted as ψλ
b (M)) is

defined as the semivalue of the player b in the induced TU game (B ∪ S, vM):

ψλ
b (M) := ψλ

b (B ∪ S, vM). (4)

The prescription ψλ
s (M) to a seller s is defined similarly, for all s ∈ S.

We close this section by introducing and discussing the equal treatment properties

in the multiple-partners game. We adapt the definition of the property for TU games.

In a TU game (N, v), two distinct players i, j ∈ N are said to be equal players if

v(T ∪ {i}) = v(T ∪ {j}) for all T ⊆ N \ {i, j}. That is, two players are equal if they

have the same vector of marginal contributions. This binary relation can be easily

adapted for the multiple-partners game.

Two distinct buyers b, b′ ∈ B are said to be equal buyers in M if r(b) = r(b′) and

abs = ab′s for all s ∈ S. Similarly, two distinct sellers s, s′ ∈ S are said to be equal

sellers in M if r(s) = r(s′) and abs = abs′ for all b ∈ B. Notice that the notions of

equal players for TU games and multiple-partners games are compatible: If two distinct

buyers (or sellers) are equal in the gameM , they are also equal in the induced TU game

(B ∪ S, vM).

We introduce some notation to state the definition of equal treatment of equals.

Consider a feasible outcome (u,v;x). We denote by ub the buyer b’s vector of payoffs.

That is, ub has r(b) components, including the payoffs (ubs)s∈Cb(x) and as many zeros

as unfilled positions in the buyer’s quota, if any. For convenience, we list the individual

payoffs in non-increasing order. Similarly, we denote by vs the (r(s)-component) seller

s’s vector of payoffs, where the individual payoffs are listed in non-increasing order.

Definition 6. A feasible outcome (u,v;x) forM = ⟨B, S,a, r⟩ satisfies equal treatment
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of equals if ub = ub′ for all equal buyers b and b
′ and vs = vs′ for all equal sellers s and

s′.

We also define equal treatment of partnerships. For the buyers, for instance, we say

that a feasible outcome satisfies the property if any buyer obtains the same payoff in

all their partnerships.

Definition 7. Consider a feasible outcome (u,v;x) for M = ⟨B, S,a, r⟩:

(a) (u,v;x) satisfies equal treatment of partnerships among buyers if ubs = ubs′ for

all b ∈ B and all s, s′ ∈ Cb(x).

(b) (u,v;x) satisfies equal treatment of partnerships among sellers if vbs = vb′s for all

s ∈ S and all b, b′ ∈ Cs(x).

(c) (u,v;x) satisfies equal treatment of partnerships if it satisfies equal treatment of

partnerships among buyers and sellers.

We note that CE outcomes satisfy equal treatment of partnerships among sellers

since the price is the same for all the objects owned by a seller.

2.4 The related simple assignment game

In this last subsection, we follow Sotomayor (1992) and briefly explain how to connect

a multiple-partners game M and a simple (one-to-one) assignment game M̂ . We will

use this connection in the proofs of some of our results.

GivenM = ⟨B, S, a, r⟩, we split each buyer into several agents with unitary demand

and each seller into several indivisible objects. We denote B̂ := {(b, l) | b ∈ B and l =

1, . . . , r(b)} and Ŝ := {(s, f) | s ∈ S and f = 1, . . . , r(s)} the sets of agents and objects,

respectively. Each agent (b, l) is identified by the buyer b and her index l in b’s quota.

Similarly, each object (s, f) is identified by its owner s and its index f .
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Moreover, given a feasible matching x ∈ A(B, S, r), it is possible to construct a

one-to-one feasible matching x̂ ∈ A(B̂, Ŝ, r).14 Then, given M = ⟨B, S, a, r⟩ and x ∈

A(B, S, r), we define the simple assignment game M̂ = ⟨B̂, Ŝ, â⟩, where:

â(b,l)(s,f) =


0 if xbs = 1 and x̂(b,l)(s,f) = 0

abs otherwise.

3 The multiple-partners game with types

The main objective of this paper is to study the replicated multiple-partners game. In

such a replicated game, for each player in the original game, we add a new player who

is an equal to him/her. We say these two equal players are of the same “type.” In

this section, we introduce a notation that can conveniently represent multiple-partners

games where several players are of the same type. In the replica of a game, the numbers

of players of each type are the same. However, in the proof of our main result (Theo-

rem 1), we require properties of games where the numbers of players of each type are

different. Moreover, we use properties of a specific class of games with types that we

call “uneven multiple-partners games with types.” Hence, we also define these games.

In a multiple-partners game with types, there are two finite and disjoint sets of types:

a set of buyer types B = {b1, . . . , btb} and a set of seller types S = {s1, . . . , sts}. Hence,

the numbers of types in B and S are tb and ts, respectively. We use b and s to represent

a generic member of B and S, respectively. There can be several buyers or sellers of

the same type. If two distinct buyers are of type b, they are equal: their quotas are

equal, and their surplus with any seller is identical. Similarly, if two distinct sellers are

of type s, then the number of their objects are the same and their worth for any buyer

is also the same. We indicate the number of buyers and sellers that are of a certain type

through the function y : B∪S → Z+, and y(b) and y(s) represent the number of type-b

14 See Sotomayor (1992) for details.
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buyers and the number of type-s sellers, respectively. Therefore, the total numbers of

buyers and sellers in the game are
∑

b∈B y(b) and
∑

s∈S y(s), respectively.

The multiple-partners game with types is denoted as M = ⟨B, S,y, a, r⟩, where

a = (abs)b∈B,s∈S is the matrix that represents the surplus from a partnership between

any buyer of type b and any seller of type s, r(b) > 0 is the maximum number of objects

each buyer of type b can acquire, and r(s) > 0 is the number of identical objects owned

by each seller of type s.

In the multiple-partners game with types M , each type-b buyer is denoted by b(h),

where h = 1, . . . , y(b), and each type-s seller is denoted by s(g), where g = 1, . . . , y(s).

We also denote Bb = {b(h) | h = 1, . . . , y(b)} as the set of type-b buyers and Ss =

{s(g) | g = 1, . . . , y(s)} as the set of type-s sellers.

The simplest example of a multiple-partners game with types is a glove market (in

fact, the glove market is an assignment game with types):

Example 1. A glove market satisfies that B = {b1}, S = {s1}, r(b1) = r(s1) = 1, and

ab1s1 = 1. The number of buyers of the unique buyer type is y(b1), and the number of

sellers of the unique seller type is y(s1). The interpretation of a glove market is that

each buyer owns a left glove, while each seller owns a right glove. A single glove is

worthless. Pairing a left glove with a right glove generates one unit of worth.

We notice that we have not introduced a new class of games but just a notation.

We have seen that a multiple-partners game with types can be easily written as a

multiple-partners game where the set of players is larger: Given M = ⟨B, S,y, a, r⟩, we

can define the game M = ⟨B, S, a, r⟩, with B =
⋃

b∈B Bb, S =
⋃

s∈S Ss, and abs = abs,

r(b) = r(b), and r(s) = r(s) if b ∈ Bb and s ∈ Ss. On the other hand, a multiple-

partners game with no equal agents is a multiple-partners game with types where the

number of each type of player is one.

We now introduce the concept of an “uneven game,” which will play a key role

in proving our convergence result. This concept will facilitate the decomposition of
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the asymptotic semivalues because, as we will show, every asymptotic semivalue is

representable as a convex combination of marginal contributions to different uneven

games.

Definition 8. A multiple-partners game with types M = ⟨B, S,y,a, r⟩ is uneven if∑
b∈H

y(b)r(b) ̸=
∑
s∈G

y(s)r(s) (5)

for all non-empty H ⊆ B and all non-empty G ⊆ S.

In an uneven game, for any sets of buyer types and seller types, the total number

of partnerships that the buyers (of those buyer types) can make is different from the

total number of partnerships that the sellers (of those seller types) can make.

Remark 1. For fixed sets of buyer and seller types B and S, the unevenness of a

multiple-partners game is determined by a finite number of inequalities, which is less

than (2tb − 1)(2ts − 1).

4 Properties of the competitive equilibria of the

large multiple-partners game with types

In this section, we provide properties of the CE of the multiple-partners game with types

when the number of buyers and sellers of each type is large. We will henceforth refer

to such a game as the “large multiple-partners game with types.” The main objective

of this section is to state the characteristics of such large games, which constitute

important building blocks for the proof of our convergence theorem. Of special interest

are the characteristics of large multiple-partners games with types that are uneven.

Formally, for a game M = ⟨B, S,y, a, r⟩, we denote by rmax the greatest quota

among the types in M , that is, rmax := max{rmax
b , rmax

s }, where rmax
b := max{r(b) | b ∈

B} and rmax
s := max{r(s) | s ∈ S}. Also, we denote by ymin the smallest number of
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players of a given type among the types in M , that is, ymin := min{ymin
b , ymin

s }, where

ymin
b := min{y(b) | b ∈ B} and ymin

s := min{y(s) | s ∈ S}. Then, we say that M is large

if the number of players of any type is higher than the greatest quota of all the players:

Definition 9. A multiple-partners game with typesM = ⟨B, S,y,a, r⟩ is large if ymin >

rmax.

We notice that two players of the same type can obtain different payoff vectors

in a CE. However, Proposition 1 ensures that two buyers of the same type, or two

sellers of the same type, have the same payoff vectors if the multiple-partners game is

large. Moreover, not only each seller obtains the same payoff vector in her partnerships

in a CE, but also each buyer obtains the same payoff vector in all his partnerships.

This result generalizes lemmas 3.1 and 3.2 in Sotomayor (2019), who showed that the

property holds if the number of players of each type is the same.

Proposition 1. Every CE outcome of a large multiple-partners game with types M =

⟨B, S,y,a, r⟩ satisfies equal treatment of equals and equal treatment of partnerships.

Proposition 1 allows a characterization of the CE payoff vectors of the large multiple-

partners game with types, which we state in Remark 2:

Remark 2. Combining Proposition 1 and Sotomayor’s (2007) characterization of a CE

payoff vector as a stable payoff vector satisfying equal treatment of partnerships among

sellers, we obtain a symmetric characterization of CE payoff vectors for large games:

every CE payoff vector of a large multiple-partners game with types is a stable payoff

vector satisfying equal treatment of equals and equal treatment of partnerships.

As a consequence of Proposition 1, we can succinctly simplify the notation for a

CE outcome of a large multiple-partners game with types since a seller’s price and a

buyer’s utility in a transaction only depend on their types; they do not depend on

the identity of the player (as long as their type is the same) or the identity of their
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partner. Therefore, we denote a CE outcome of a large game M by (u,p;x), where

u = (ub)b∈B ∈ RB and p = (p
s
)s∈S ∈ RS. Similarly, we regard the set CE(M) of CE

payoff vectors for M as a set of vectors in RB × RS, when M is large.

To introduce our next result, we go back to the example of the glove market (Ex-

ample 1). Remark 3 provides helpful information about the CE outcomes of some glove

markets.

Remark 3. Let us call a glove market asymmetric if it satisfies y(b1) ̸= y(s1); that

is, the number of buyers (of the unique type) is different from the number of sellers.

It is easy to check that the CE payoff vector of an asymmetric glove market is unique.

Moreover, the dependence of the stable payoff vector on y(b1) and y(s1) is ordinal rather

than cardinal. Indeed, (ub1 , vs1) = (1, 0) if y(b1) < y(s1) whereas (ub1 , vs1) = (0, 1) if

y(b1) > y(s1).

In the example of the glove market, we could say, for instance, that the glove market

with a number of buyers and sellers given by y is “equivalent” to the glove market

characterized by y′ if y(b1) < y(s1) and y
′(b1) < y′(s1) because their CE payoff vector

is the same. Our next result also relates CE payoffs of the multiple-partners game

depending on the number of players of each type. For this purpose, we first define an

equivalence relation in the set of multiple-partners games.

We partition the set of multiple-partners games with a fixed set of buyer and seller

types into equivalence classes using inequalities in the form of equation (5). Formally,

fix B, S, and r. Two distinct games M and M ′ may differ on the number of each type

of buyer and seller, that is, y and y′ may be different (differences in the matrixes of

worth a and a′ are not relevant for our next definition). We define the equivalence

relation ∼ on multiple-partners games as follows:

Definition 10. Let M = ⟨B, S,y,a, r⟩ and M ′ = ⟨B, S,y′,a′, r⟩ be two multiple-

partners games with types. We say that M and M ′ are “equivalent,” and we write
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M ∼M ′, if:

∑
b∈H

y(b)r(b) ≤
∑
s∈G

y(s)r(s) ⇐⇒
∑
b∈H

y′(b)r(b) ≤
∑
s∈G

y′(s)r(s)

for all H ∈ 2B \ {∅} and all G ∈ 2S \ {∅}.

The equivalence relation ∼ induces a partition on the set of multiple-partners games

with types, given (B, S, r). We denote this partition by T (B, S, r). Each cell M ∈

T (B, S, r) is referred to as a class of games.

Proposition 2 will show that large multiple-partners games with types of the same

class have the same CE payoff vectors if their matrices of worths are the same. The

proof of the proposition appeals to Hall’s theorem, and we provide a version of this

theorem as Lemma 1.15

Lemma 1 (Hall, 1935). Given B and S such that |B| ≤ |S|, let φ : B ⇝ S be a

correspondence. φ satisfies the Hall condition: |P | ≤ |
⋃

b∈P φ(b)| for all P ∈ 2B \ {∅}

if and only if there exists a function η : B → S satisfying (i) η(b) ∈ φ(b) for all b ∈ B;

(ii) η(b) ̸= η(b′) for all b, b′ ∈ B such that b ̸= b′.

We now state the property that the CE payoff vectors of two large games of the

same class are the same if the worth of any buyer-seller partnership is the same. That

is, the CE payoff vector does not depend on the number of players of each type in the

two games as long as they are of the same equivalence class.

Proposition 2. Consider two large multiple-partners games with typesM = ⟨B, S,y, a, r⟩

and M ′ = ⟨B, S,y′, a, r⟩ of the same class. Then CE(M) = CE(M ′).

Next, we discuss the question of the uniqueness of the CE payoff vector of the

multiple-partners games. Not every multiple-partners game has a unique CE payoff

15 Hall’s theorem was first used by Demange, Gale, and Sotomayor (1986) to characterize stable

payoff vectors for an assignment game.
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vector. However, we have seen that asymmetric glove markets only have one CE out-

come. Clearly, an asymmetric glove market is an uneven multiple-partners game with

types. Hence, enquiring whether uneven games have a unique CE payoff vector is natu-

ral. Proposition 3 shows that if the uneven multiple-partners game with types is large,

it indeed has a unique CE as an asymmetric glove market.

Proposition 3. The CE payoff vector (u,p) of a large uneven multiple-partners game

with types M = ⟨B, S,y,a, r⟩ is unique.

Using Proposition 3, we know that the correspondence CE restricted to large uneven

multiple-partners games with types is a function. Hence, we can write the CE payoff

vector of such a game M as (u(M),p(M)). Moreover, Proposition 2 states that this

function does not make full use of the information in y. It suffices to know, for all

H ∈ 2B \ {∅} and all G ∈ 2S \ {∅}, whether
∑

b∈H y(b)r(b) <
∑

s∈G y(s)r(s) or∑
b∈H y(b)r(b) >

∑
s∈G y(s)r(s) (remember that the equality is not possible if the game

is uneven). Therefore, we can view a class M ∈ T (B, S, r), if restricted to uneven

games, as a specification of (2|B|−1)(2|S|−1) inequalities. We state this fact in Remark

4.

Remark 4. Fix the sets of buyer types and seller types B and S and the vector r.

A class M ∈ T (B, S, r), restricted to uneven games, specifies, for all H ∈ 2B \ {∅}

and all G ∈ 2S \ {∅}, either
∑

b∈H y(b)r(b) <
∑

s∈G y(s)r(s) or
∑

b∈H y(b)r(b) >∑
s∈G y(s)r(s).

We close this section by studying the effect of the entrance of a new player of an

existing type in a game. Take a large uneven game M . We know that the CE(M) is

a singleton. Consider the entrance of one player with an existing type (who can be

matched with at most rmax players from the other side of the market); call M ′ the new

game. According to Proposition 2, we are sure that the unique equilibrium outcome of
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M is the unique equilibrium outcome ofM ′ if the games are equivalent. This is certainly

the case (that is, all the equivalences in Definition 10 hold) ifM is “sufficiently uneven”:

Definition 11. A multiple-partners game with types M = ⟨B, S,y,a, r⟩ is sufficiently

uneven if

min
H∈2B\{∅},
G∈2S\{∅}

∣∣∣∣∑
b∈H

y(b)r(b)−
∑
s∈G

y(s)r(s)

∣∣∣∣ > rmax.

The game is sufficiently uneven if, after including at most rmax players of an existing

type, the new game belongs to the same class as the original game. Therefore, if M

is sufficiently uneven, the entrance of a player of an existing type does not change the

original CE payoff vector. We state this comparative statics phenomenon in Corollary

1 when the additional player is a buyer; a similar corollary can be stated when the

additional player is a seller.

Corollary 1. Let M = ⟨B, S,y, a, r⟩ be a large sufficiently uneven game and take

b ∈ B. Consider M ′ = ⟨B, S,y′, a, r⟩ that satisfies y′(b) = y(b) + 1, y′(b′) = y(b′) for

all b′ ∈ B \ {b}, and y′(s) = y(s) for all s ∈ S. Then CE(M ′) = CE(M) and it is a

singleton.

Corollary 2 expresses an interesting implication of Corollary 1 in the framework of

TU games. It states that the marginal contribution of an entrant (a buyer, in this case)

to a large sufficiently uneven multiple-partners game is the CE payoff of a player of the

same type as the entrant in the uneven game.

Corollary 2. Let b, M , and M ′ be the same as in Corollary 1. Denote by B̄ and S̄

the sets of buyers and sellers in M , respectively. Let (u,p) be the CE payoff vector

for M . Then the marginal contribution of the buyer b(y(b) + 1) to the game M ′ is

Db(y(b)+1) vM
′
(B̄ ∪ S̄) = r(b)ub.

Corollary 2 holds because the players inM keep their CE payoffs inM ′ and the new
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buyer b obtains his CE payoff in each of his r(b) partnerships. Hence, the additional

surplus in the game is r(b)ub.

5 Equilibrium-value convergence

In this section, we study the replicas of the multiple-partners game. We use the results

of Section 4 to analyze the convergence of the Shapley value and other semivalues as

the number of replicas goes to infinity. We show our convergence theorem, which states

that the semivalues converge to the same CE payoff vector.

First, we formally define the replica of a multiple-partners game and apply the

results obtained in the previous section to the replicas.

Definition 12. Consider the multiple-partners game M = ⟨B, S,a, r⟩, where B =

{b1, . . . , bnb
} and S = {s1, . . . , sns}. The k-fold replica Mk of M is a multiple-partners

game with types ⟨B, S,yk, a, r⟩, where B = {b1, . . . , bnb
}, S = {s1, . . . , sns

}, the charac-

teristics of each buyer of type b (respectively, each seller of type s) in Mk are the same

as those of the buyer b (respectively, seller s) in M , and yk(b) = yk(s) = k for all b ∈ B

and all s ∈ S.

The replica of a multiple-partners game is a multiple-partners game with types

where the number of buyers and sellers of each type is the same. In the replica Mk of

the game M = ⟨B, S, a, r⟩, ymin = k. Therefore, Mk is a large multiple-partners game

with types if k > rmax. In this case, we say that Mk is a large replica of M .

In a CE payoff vector of a replica Mk, two buyers of the same type, or two sellers

of the same type, may have different payoff vectors. Also, a buyer can have different

payoffs in different partnerships. However, after Proposition 1, these facts can only

happen if the replica is not large. This result was also proven by Sotomayor (2019).

We state it here for completeness.
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Corollary 3. Every CE outcome of a large replica Mk of the multiple-partners game

M = ⟨B, S,a, r⟩ satisfies equal treatment of equals and equal treatment of partnerships.

Unlike market games and pure exchange economies, the set of CE outcomes of

the multiple-partners game is not replication invariant.16 However, as a corollary of

Proposition 2, it follows that the set of CE outcomes of multiple-partners games will

eventually become constant through replication since two replicas of the same game

always belong to the same equivalence class. As the previous corollary, this result is

also derived in Sotomayor (2019).

Corollary 4. Consider the multiple-partners game M = ⟨B, S,a, r⟩ and denote K ≡

rmax + 1. Then, CE(Mk) = CE(MK) for all k ≥ K.

To introduce our main result, consider the replica Mk of the game M = ⟨B, S, a, r⟩

and any distribution λ over [0, 1]. Since the semivalue ψλ satisfies equal treatment of

equals, the semivalues of all the k replicas of a player are the same, for any player.

Hence, as we do for the CE outcomes of large multiple-partners game with types, we

simplify the notation and write ψλ
b (M

k) to indicate the semivalue of any of the agents

of the type b ∈ B (that is, any of the replicas of the buyer b ∈ B) and similarly for

ψλ
s (M

k).

Theorem 1 states that all the semivalues ψλ(Mk) with λ({0, 1}) = 0 of the replica

Mk converge to the same value as the replica becomes large. Moreover, the players’

payoffs in these semivalues (in particular, the Shapley value payoffs) converge to a CE

payoff.

16 To see that replication invariance does not hold, consider a multiple-partners game M =

⟨{b}, {s}, r(b) = r(s) = 2, abs = 1⟩. It is easy to check that, in the associated TU game, vM ({b, s}) = 1,

but vM
2

({b(1), b(2), s(1), s(2)}) = 4. Therefore, the sum of the players’ payoffs in a CE of M2 is four

times the sum of the payoffs in a CE of M , whereas it should be two times if the set of CE outcomes

was replication invariant.
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Theorem 1. Consider the multiple-partners game M = ⟨B, S,a, r⟩ and denote K ≡

rmax + 1. There exists (uK ,pK) ∈ CE(MK) such that:

lim
k→+∞

ψλ
b (M

k) = r(b)uKb and lim
k→+∞

ψλ
s (M

k) = r(s)pK
s

for all b ∈ B, s ∈ S, and λ ∈ ∆([0, 1]) such that λ({0, 1}) = 0.

The sketch of the proof of Theorem 1 is the following. We use that the prescription

of a semivalue ψλ to a player can be represented as this player’s expected marginal

contribution to a random coalition (see equation (1)). With the aid of equation (2), we

can connect the distribution of this random coalition to a binomial distribution with

unknown parameter z. It will follow from the law of large numbers and the central limit

theorem that this random coalition converges to a random large sufficiently uneven

game as the original game expands through replication. This will allow us to use the

properties of large uneven games that we have stated in Section 4. Moreover, we will

show that the limit distribution of this random uneven game is independent of the

parameter λ, and the players’ expected contributions to this random game correspond

to a CE payoff vector.

We now present the proof of the theorem.

Proof. Given the gameM = ⟨B, S, a, r⟩, consider the k-fold replicaMk = ⟨B, S,yk, a, r⟩,

with k ≥ K. Let Bk
b = {b(h) | h = 1, . . . , k} be the set of buyers of type b ∈ B and

Sk
s = {s(g) | g = 1, . . . , k} the set of sellers of type s ∈ S. Moreover, denote by Bk

and Sk the sets of buyers and sellers in Mk, respectively, that is, Bk =
⋃

b∈B B
k
b and

Sk =
⋃

s∈S S
k
s .

Without loss of generality, choose an arbitrary buyer type b∗ ∈ B and take the

type-b∗ buyer b∗(1). Given any λ ∈ ∆([0, 1]), with λ({0, 1}) = 0, we want to compute

limk→+∞ ψλ
b∗(M

k), which, because of the equal treatment property of the semivalues, is

equal to limk→+∞ ψλ
b∗(1)(M

k). First,

ψλ
b∗(1)(M

k) =ψλ
b∗(1)(B

k ∪ Sk, vM
k

)
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=
∑

T⊆(Bk\{b∗(1)})∪Sk

[ ∫
[0,1]

z|T |(1− z)k(nb+ns)−|T |−1λ(dz)

]
Db∗(1) vM

k

(T )

=

∫
[0,1]

∑
T⊆(Bk\{b∗(1)})∪Sk

z|T |(1− z)k(nb+ns)−|T |−1Db∗(1) vM
k

(T )λ(dz), (6)

where the first equality follows from equation (4), the second from equations (1) and

(2), and the third from the linearity of the integration.

To continue the analysis of the previous expression, we construct, for any parameter

z ∈ (0, 1) and for each type of buyer and each type of seller, a coalition-valued random

variable using binomial distributions on the sets of players of that type, excluding the

player b∗(1). The probability of each player’s presence in the random coalition is z.

That is, we define the random variable B̃k
b∗ by P (B̃k

b∗ = T ) = z|T |(1 − z)k−|T |−1 for all

T ⊆ Bk
b \{b

∗(1)}; the random variable B̃k
b by P (B̃k

b = T ) = z|T |(1−z)k−|T | for all T ⊆ Bk
b

and buyer type b ∈ B\{b∗}; and the random variable S̃k
s by P (S̃k

s = T ) = z|T |(1−z)k−|T |

for all T ⊆ Sk
s and seller type s ∈ S.17 Moreover, we use the previous random variables

on the sets of players of the same type to construct a new random variable, which we

denote Ñk,b∗(1), on the subsets of the set of all the players except b∗(1), that is, on the

subsets of (Bk \ {b∗(1)}) ∪ Sk. We take the players’ presences in any of the previous

random coalitions as mutually independent; hence, the random variable is the following:

Ñk,b∗(1) =

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)
. (7)

The probability distribution of Ñk,b∗(1) is as follows:

P (Ñk,b∗(1) = T ) =

(∏
b∈B

P (B̃k
b = T ∩Bk

b )

)(∏
s∈S

P (S̃k
s = T ∩ Sk

s )

)
=z|T |(1− z)k(nb+ns)−|T |−1, (8)

for all T ⊆ (Bk \ {b∗(1)}) ∪ Sk. Given this probability distribution, we proceed to the

17 To lighten the notation, we do not indicate that the random variables depend on z.
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analysis of limk→+∞ ψλ
b∗(M

k), using (6):

lim
k→+∞

∫
[0,1]

∑
T⊆(Bk\{b∗(1)})∪Sk

z|T |(1− z)k(nb+ns)−|T |−1Db∗(1) vM
k

(T )λ(dz)

= lim
k→+∞

∫
[0,1]

∑
T⊆(Bk\{b∗(1)})∪Sk

P (Ñk,b∗(1) = T )Db∗(1) vM
k

(T )λ(dz)

= lim
k→+∞

∫
[0,1]

E[Db∗(1) vM
k

(Ñk,b∗(1))]λ(dz)

= lim
k→+∞

∫
[0,1]

E
[
Db∗(1) vM

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
λ(dz)

=

∫
[0,1]

lim
k→+∞

E
[
Db∗(1) vM

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
λ(dz)

=

∫
(0,1)

lim
k→+∞

E
[
Db∗(1) vM

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
λ(dz)

where the first equality follows from equation (8), the second from the definition of

the expectation operator over the random variable Ñk,b∗(1), the third from equation (7),

the fourth from the uniform convergence of the functions z 7→ E[Db∗(1) vM
k
((
⋃

b∈B B̃
k
b )∪

(
⋃

s∈S S̃
k
s ))] as k → +∞,18 and the last from λ({0, 1}) = 0. Thus, we have

lim
k→+∞

ψλ
b∗(M

k) =

∫
(0,1)

lim
k→+∞

E
[
Db∗(1) vM

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
λ(dz). (9)

Next, we use the coalition-valued random variable (
⋃

b∈B B̃
k
b )∪ (

⋃
s∈S S̃

k
s )) to define

the game-valued random variable M̃k, which is a multiple-partners game with a random

population:

M̃k := ⟨B, S, ỹk, a, r⟩,

where the random vector ỹk = (ỹk(b1), . . . , ỹ
k(bnb

); ỹk(s1), . . . , ỹ
k(sns

)) is defined by

ỹk(b) = |B̃k
b | for all b ∈ B and ỹk(s) = |S̃k

s | for all s ∈ S. The components in ỹk are

mutually independent, and their probability distributions are

P (ỹk(b∗) = y) =

(
k − 1

y

)
zy(1− z)k−y−1, (10)

18 Notice that the k-th function z 7→ E[Db∗(1) vM
k

((
⋃

b∈B B̃
k
b )∪(

⋃
s∈S S̃

k
s ))] is continuous and defined

on a compact set [0, 1] for every k ∈ Z+.
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for all y = 0, . . . , k − 1, and

P (ỹk(b) = y) = P (ỹk(s) = y) =

(
k

y

)
zy(1− z)k−y, (11)

for all b ∈ B \ {b∗}, s ∈ S, and y = 0, . . . , k.

Consider a realization (
⋃

b∈B B̄
k
b ) ∪ (

⋃
s∈S S̄

k
s ) of the random variable (

⋃
b∈B B̃

k
b ) ∪

(
⋃

s∈S S̃
k
s ) and let ȳk be the corresponding realization of the variable ỹk. Denote by

M̄k := ⟨B, S, (ȳk)′, a, r⟩ the game corresponding to (ȳk)′, where (ȳk)′(b∗) = ȳk(b∗) + 1,

(ȳk)′(b) = ȳk(b) for all b ∈ B \ {b∗}, and (ȳk)′(s) = ȳk(s) for all s ∈ S.19 The cooper-

ative game associated with M̄k is a subgame of the game associated with Mk. Hence,

Db∗(1) vM̄
k(
(
⋃

b∈B B̄
k
b )∪ (

⋃
s∈S S̄

k
s )
)
= Db∗(1) vM

k(
(
⋃

b∈B B̄
k
b )∪ (

⋃
s∈S S̄

k
s )
)
. Therefore, we

can rewrite equation (9) as:

lim
k→+∞

ψλ
b∗(M

k) =

∫
(0,1)

lim
k→+∞

E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
λ(dz), (12)

where we write vM̃
k
to indicate that M̃k is a random game whose players are derived

from the random vector that determines the composition of buyers and sellers.

Define the indicator function IM̄k by

IM̄k =


1 if M̄k is large and sufficiently uneven,

0 otherwise.

Moreover, denote by IM̃k the random indicator function, depending on the realiza-

tion of the random variable M̃k. Then, inspecting the integrand in (12), we have

lim
k→+∞

E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
= lim

k→+∞
E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)
IM̃k

+Db∗(1) vM̃
k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)
(1− IM̃k)

]
19 We denote the game M̄k instead of (M̄k)′, as in Corollary 1, for notational simplicity.
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= lim
k→+∞

E[r(b∗)ub∗(M̃k)IM̃k ]

+ lim
k→+∞

E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)
(1− IM̃k)

]
, (13)

where the first equality follows from additivity of the expectation operator and the

second from Corollary 2, which allows replacing the buyer b∗(1)’s marginal contribution

to a sufficiently large uneven assignment game with r(b∗)ub∗(M̃
k).

We separately analyze the two addends of (13).

Concerning the second addend, we claim that

lim
k→+∞

E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)
(1− IM̃k)

]
= 0. (14)

To prove (14), we first note that a player’s marginal contribution to any coalition is

bounded. Indeed, 0 ≤ Db∗(1) vM̄
k

(
(
⋃

b∈B B̄
k
b ) ∪ (

⋃
s∈S S̄

k
s )

)
≤ r(b∗)maxs∈S ab∗s, for any

realization of the random variable.

Therefore, (14) holds if E(1−IM̃k) converges to 0 as k → +∞, that is, the probability

that M̃k is not sufficiently uneven converges to 0 as k → +∞. To show this property,

it suffices to verify that

lim
k→+∞

P

(
|
∑
b∈H

ỹk(b)r(b)−
∑
s∈G

ỹk(s)r(s)| > rMax

)
= 1, (15)

for all H ∈ 2B \ {∅} and G ∈ 2S \ {∅}, where we write rMax = rmax + r(b∗).20 We

distinguish two cases to prove (15): Case (a), when
∑

b∈H r(b) ̸=
∑

s∈G r(s) and Case

(b), when
∑

b∈H r(b) =
∑

s∈G r(s).

For Case (a), assume, without loss of generality, that
∑

b∈H r(b) >
∑

s∈G r(s).
21 By

the Chebyshev’s inequality,22 we have

P

(∣∣∣∣
∑

b∈H ỹ
k(b)r(b)

k
∑

b∈H r(b)
− z

∣∣∣∣ ≥ ϵ

)
≤ z(1− z)

kϵ2
∑

b∈H r(b)
, (16)

20 We use rMax instead of rmax in equation (15) because the buyer b∗(1) is also in the game.
21 We do not distinguish further between b∗ ∈ H and b∗ /∈ H because k and k − 1 are of the same

order as k → +∞ when applying the Chebyshev’s inequality and the central limit theorem.
22 See Shiryaev (2016).
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for all ϵ ∈ R++ and all k ∈ Z+. Similarly, P

(∣∣∣∑s∈G ỹk(s)r(s)

k
∑

s∈G r(s)
− z

∣∣∣ ≥ ϵ

)
≤ z(1−z)

kϵ2
∑

s∈G r(s)
for

all ϵ ∈ R++ and all k ∈ Z+. Denote by c :=
∑

s∈G r(s)∑
b∈H r(b)

; hence, c ∈ (0, 1). Notice that∣∣∣∑s∈G ỹk(s)r(s)

k
∑

s∈G r(s)
− z

∣∣∣ ≥ ϵ if and only if
∣∣∣∑s∈G ỹk(s)r(s)

k
∑

b∈H r(b)
− cz

∣∣∣ ≥ cϵ. Then,

P

(∣∣∣∣
∑

s∈G ỹ
k(s)r(s)

k
∑

b∈H r(b)
− cz

∣∣∣∣ ≥ ϵ

)
≤ z(1− z)

kϵ2
∑

s∈G r(s)
, (17)

for all ϵ ∈ R++ and all k ∈ Z+.

Choose ϵ < z − cz and pick an arbitrary δ ∈ R++. Using (16) and (17), there is

Q ∈ Z+
23 such that P

(∣∣∣∑b∈H ỹq(b)r(b)

q
∑

b∈H r(b)
− z

∣∣∣ ≥ ϵ
2

)
≤ δ

2
, P

(∣∣∣∑s∈G ỹq(s)r(s)

q
∑

b∈H r(b)
− cz

∣∣∣ ≥ ϵ
2

)
≤ δ

2
,

and rMax

q
∑

b∈H r(b)
< z − cz − ϵ, for all q ≥ Q. This implies that P (

∑
b∈H ỹ

q(b)r(b) −∑
s∈G ỹ

mq(s)r(s) > rMax) = P

(∑
b∈H ỹq(b)r(b)

q
∑

b∈H r(b)
−

∑
s∈G ỹq(s)r(s)

q
∑

b∈H r(b)
> rMax

q
∑

b∈H r(b)

)
≥ P

(∑
b∈H ỹq(b)r(b)

q
∑

b∈H r(b)
−

∑
s∈G ỹq(s)r(s)

q
∑

b∈H r(b)
> z − cz − ϵ

)
≥ 1− δ. Since this inequality holds for all sufficiently small

ϵ > 0, then,

lim
k→+∞

P (|
∑
b∈H

ỹk(b)r(b)−
∑
s∈G

ỹk(s)r(s)| > rMax) = 1

when
∑

b∈H r(b) ̸=
∑

s∈G r(s).

For Case (b), where
∑

b∈H r(b) =
∑

s∈G r(s), let d-lim be the limit operator with

respect to convergence in distribution. By the de Moivre-Laplace central limit theorem,

d-limk→+∞
ỹk(b)− kz√
kz(1− z)

= ξ̃b and d-limk→+∞
ỹk(s)− kz√
kz(1− z)

= ξ̃s,

where ξ̃b and ξ̃s follow the standard normal distribution for all b ∈ B and all s ∈ S.

The components in ξ̃ = (ξ̃b1 , . . . , ξ̃bnb
; ξ̃s1 , . . . , ξ̃sns

) are mutually independent. Then

d-limk→+∞

∑
b∈H ỹ

k(b)r(b)−
∑

s∈G ỹ
k(s)r(s)√

kz(1− z)

=d-limk→+∞

∑
b∈H(ỹ

k(b)− kz)r(b)−
∑

s∈G(ỹ
k(s)− kz)r(s)√

kz(1− z)

23 Such a Q exists because, given ϵ, we can select k large enough so that the right-hand side of

equations (16) and (17) are arbitrarily small.
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=
∑
b∈H

r(b) d-limk→+∞
(ỹk(b)− kz)√
kz(1− z)

−
∑
s∈G

r(s) d-limk→+∞
(ỹk(s)− kz)√
kz(1− z)

=
∑
b∈H

r(b)ξ̃b −
∑
s∈G

r(s)ξ̃s. (18)

The random variable
∑

b∈H r(b)ξ̃b−
∑

s∈G r(s)ξ̃s follows the normal distribution with

mean equal to 0 and variance equal to
∑

b∈H r(b)
2 +

∑
s∈G r(s)

2. Therefore,

lim
k→+∞

P

(
|
∑
b∈H

ỹk(b)r(b)−
∑
s∈G

ỹk(s)r(s)| ≤ rMax

)

= lim
k→+∞

P

(
− rMax√

kz(1− z)
≤

∑
b∈H ỹ

k(b)r(b)−
∑

s∈G ỹ
k(s)r(s)√

kz(1− z)
≤ rMax√

kz(1− z)

)
=P

(∑
b∈C

r(b)ξ̃b −
∑
s∈D

ssξ̃s = 0

)
= 0.

Thus, the probability that M̃k is not sufficiently uneven also converges to 0 in Case

(b). Therefore, (14) holds, and the second addend of (13) is equal to zero.

We now analyze the first addend of (13):

lim
k→+∞

E[r(b∗)ub∗(M̃k)IM̃k ] = lim
k→+∞

E[r(b∗)ub∗(M̃k)]

= lim
k→+∞

∑
M∈T (B,S,r)

P z,b∗(1)(M̃k ∈ M)r(b∗)ub∗(M)

=r(b∗)
∑

M∈T (B,S,r)

lim
k→+∞

P z,b∗(1)(M̃k ∈ M)ub∗(M),

where the first equality holds because, as we have seen above, the probability that

M̃k is sufficiently uneven converges to 1 and r(b∗)ub∗(M̃
k) is bounded, the second

(where we denote P z,b∗(1)(M̃k ∈ M) the probability that the game M̃k is in the class

M ∈ T (B, S, r)) follows from Remark 1, i.e., the finiteness of T (B, S, r), by which we

can take the summation ranging over each class of games, and the last equality follows

from the additivity of the limit operator.

Therefore, going back to equation (13), we write

lim
k→+∞

E
[
Db∗(1) vM̃

k

(
(
⋃
b∈B

B̃k
b ) ∪ (

⋃
s∈S

S̃k
s )

)]
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=r(b∗)
∑

M∈T (B,S,r)

lim
k→+∞

P z,b∗(1)(M̃k ∈ M)ub∗(M). (19)

We now discuss about
(
limk→+∞ P z,b∗(1)(M̃k ∈ M)

)
M∈T (B,S,r)

, which is a probabil-

ity distribution over the elements of the partition T (B, S, r). Remember that an element

of T (B, S, r) is an equivalence class characterized by inequalities over the pairs (H,G),

where H ∈ 2B \ {∅} and G ∈ 2S \ {∅} (see Remark 4). However, some equivalence

classes have a zero probability in
(
limk→+∞ P z,b∗(1)(M̃k ∈ M)

)
M∈T (B,S,r)

. To see this,

consider a pair (H,G) such that
∑

b∈H r(b) >
∑

s∈G r(s). According to the weak law of

large numbers, the probability of
∑

b∈H ỹ
k(b)r(b) >

∑
s∈G ỹ

k(s)r(s) converges to 1 as

k tends to +∞. Therefore, in the distribution
(
limk→+∞ P z,b∗(1)(M̃k ∈ M)

)
M∈T (B,S,r)

,

the probability of being in an equivalence class where
∑

b∈H y(b)r(b) ≤
∑

s∈G y(s)r(s)

if
∑

b∈H r(b) >
∑

s∈G r(s) is zero. A similar argument applies for those pairs (H,G) for

which
∑

b∈H r(b) <
∑

s∈G r(s).

Consider now a pair (H,G) for which
∑

b∈H r(b) =
∑

s∈G r(s). Following the equa-

tions (18),
∑

b∈H ỹ
k(b)r(b)−

∑
s∈G ỹ

k(s)r(s) converges in distribution to
∑

b∈H r(b)ξ̃b−∑
s∈G r(s)ξ̃s, which follows the normal distribution with mean equal to 0 and variance

equal to
∑

b∈H r(b)
2 +

∑
s∈G r(s)

2 as k → +∞.

Therefore, the equivalence class that M̃k belongs to converges in distribution to

M̃ξ̃, which is determined by the random vector ξ̃ and it is independent of z ∈ (0, 1)

and of the choice of player b∗(1). Moreover, the T (B, S, r)-valued random variable M̃ξ̃

is defined as follows. If the realization of ξ̃ is ξ̄, then the realization of M̃ξ̃ is the class

M given by:

1. M specifies
∑

b∈H y(b)r(b) <
∑

s∈G y(s)r(s) for all H ∈ 2B \ {∅} and all G ∈

2S \ {∅} such that
∑

b∈H r(b) <
∑

s∈G r(s);

2. M specifies
∑

b∈H y(b)r(b) >
∑

s∈G y(s)r(s) for all H ∈ 2B\{∅} and G ∈ 2S\{∅}

such that
∑

b∈H r(b) >
∑

s∈G r(s);
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3. M specifies
∑

b∈H y(b)r(b) <
∑

s∈G y(s)r(s) for all H ∈ 2B \{∅} and all G ∈ 2S \

{∅} such that
∑

b∈H r(b) =
∑

s∈G r(s) if and only if
∑

b∈H ξ̄br(b) <
∑

s∈G ξ̄sr(s).

Then, going back to equation (12):

lim
k→+∞

ψλ
b∗(M

k) =

∫
(0,1)

r(b∗)
∑

M∈T (B,S,r)

lim
k→+∞

P z,b∗(1)(M̃k ∈ M)ub∗(M)λ(dz)

=r(b∗)
∑

M∈T (B,S,r)

P (M̃ξ̃ = M)ub∗(M) = r(b∗)E[ub∗(M̃ξ̃)], (20)

where the first equality uses (13) and (19) in equation (12) and the second holds because

the equivalence class that M̃k belongs to converges in distribution to M̃ξ̃.

The proof for the convergence of the payoff of an arbitrary seller is the same. There-

fore, we have proven the following:

lim
k→+∞

ψλ
b (M

k) = r(b)E[ub(M̃ξ̃)] and lim
k→+∞

ψλ
s (M

k) = r(s)E[p
s
(M̃ξ̃)], (21)

for all b ∈ B, s ∈ S, and λ ∈ ∆([0, 1]) such that λ({0, 1}) = 0.

Finally, we show that limk→+∞ ψλ(Mk) ∈ CE(MK), where K = rmax + 1. As we

have shown, the upshot is that the limit does not depend on the particular λ; hence,

it suffices to prove it for the Shapley value, corresponding to the case where λ is the

Lebesgue measure on [0, 1]. Moreover, we also know that an outcome is a CE outcome

if and only if it is stable (equivalently, pairwise stable) and all the prices of the objects

a seller owns are equal (Sotomayor, 2007). Since the Shapley value satisfies the equal

treatment property, we prove that the limk→+∞ ψλ(Mk) is a CE outcome showing that

it is feasible and pairwise stable.

We use the linear programming approach introduced by Sotomayor (1992). Let

k ≥ K. The total payoff of any CE outcome is equal to vM
k
(Bk ∪ Sk), which can be

computed through the following primal problem:

vM
k

(Bk ∪ Sk) = max
x∈RBk×Sk

+

∑
(b(h),s(g))∈Bk×Sk

absxb(h)s(g)
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s.t.
∑

s(g)∈Sk

xb(h)s(g) ≤ r(b) for all b ∈ B and h = 1, . . . , k,

∑
b(h)∈Bk

xb(h)s(g) ≤ r(s), for all s ∈ S and g = 1, . . . , k,

xb(h)s(g) ≤ 1 for all b ∈ B, s ∈ S, and h, g = 1, . . . , k.

Its dual problem is:

min
y∈RBk

+ ,z∈RSk
+ ,w∈RBk×Sk

+

∑
b(h)∈Bk

r(b)yb(h) +
∑

s(g)∈Sk

r(s)zs(g) +
∑

b(h)∈Bk

∑
s(g)∈Sk

wb(h)s(g)

s.t. yb(h) + zs(g) + wb(h)s(g) ≥ abs for all b(h) ∈ Bk and s(g) ∈ Sk. (22)

In this dual problem, yb(h) (resp., zs(g)) is the utility that each buyer (resp., seller)

obtains in each transaction. Then, by equation (21), we show that (y∗, z∗,w∗), defined

by y∗b(h) = (limk→+∞ ψλ
b (M

k))/r(b) for every b(h) ∈ Bk, z∗s(g) = (limk→+∞ ψλ
s (M

k))/r(s)

for every s(g) ∈ Sk, and w∗ = 0, constitutes a solution to the dual problem for

sufficiently large k, where λ is the Lebesgue measure on [0, 1] (i.e., ψλ(Mk) is the

Shapley value of (Bk ∪ Sk, vM
k
)).

Define (yk, zk,w∗) by ykb(h) := (ψλ
b (M

k))/r(b) for every b(h) ∈ Bk, zks(g) := (ψλ
s (M

k))/r(s)

for every s(g) ∈ Sk, and w∗ := 0. Then,

∑
b(h)∈Bk

r(b)ykb(h) +
∑

s(g)∈Sk

r(s)zks(g) +
∑

b(h)∈Bk

∑
s(g)∈Sk

w∗
b(h)s(g)

=
∑
b∈B

kr(b)
ψλ
b (M

k)

r(b)
+
∑
s∈S

kr(s)
ψλ
s (M

k)

r(s)

=
∑
b∈B

k∑
i=1

Shb(h)(B
k ∪ Sk, vM

k

) +
∑
s∈S

k∑
j=1

Shs(g)(B
k ∪ Sk, vM

k

) = vM
k

(Bk ∪ Sk)

for every k, where the last equality holds because the Shapley value is efficient. It is

evident that the equality also holds when k → +∞, that is, for (y∗, z∗,w∗). Hence, we

have shown that the payoff vector limk→+∞ ψλ(Mk) is feasible. We also need to show

that (y∗, z∗,w∗) satisfies the constraints (22), that is, it is pairwise stable. For each
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b ∈ B and each s ∈ S,

y∗b(h) + z∗s(g) + w∗
b(h)s(g)

= lim
k→+∞

ψλ
b (M

k)

r(b)
+ lim

k→+∞

ψλ
s (M

k)

r(s)

=E[ub(Mξ)] + E[p
s
(Mξ)]

=
∑

M∈T (B,S,r)

lim
k→+∞

P (M̃k ∈ M)ub(M) +
∑

M∈T (B,S,r)

lim
k→+∞

P (M̃k ∈ M)p
s
(M)

=
∑

M∈T (B,S,r)

lim
k→+∞

P (M̃k ∈ M)
[
ub(M) + p

s
(M)

]
≥

∑
M∈T (B,S,r)

lim
k→+∞

P (M̃k ∈ M)abs = abs,

where the first equality follows the definition of (y∗, z∗,w∗), the second from equation

(21), the third from equation (20), the fifth from ub(M) + p
s
(M) ≥ abs for all M ∈

T (B, S, r) because (u(M),p(M)) is the CE payoff vector of any game in M, and

the sixth holds because (limk→+∞ P (M̃k ∈ M))M∈T (B,S,r) constitutes a probability

distribution. Therefore, we have proven that the constraints (22) are satisfied.

We note that individual rationality means that ψλ
b (M

k)/r(b) ≥ 0 for all b ∈ B and

all k, and ψλ
s (M

k)/r(s) ≥ 0 for all s ∈ S and all k. It holds because a semivalue can

be represented as an expected marginal contribution, and a buyer’s or seller’s marginal

contribution is always greater than zero in any multiple-partners game.

Therefore, we have shown that the limit of the Shapley value (hence, the limit of

every semivalue with λ({0, 1}) = 0) of any replicated multiple-partners game is in the

set of stable outcomes of a sufficiently large replicated game. Moreover, consider an

outcome that satisfies equal treatment of equals and equal treatment of partnerships so

that we can write the constraints of the dual problem as in (22). Then, by inspecting

the dual problem, it is easy to check that the outcome satisfies (22) for some k ≥ K

if it satisfies the constraints for K. Since the set of CE satisfies the equal treatment

properties if k ≥ K (Corollary 3), and it is the set of stable outcomes satisfying the
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equal treatment properties (see Remark 2), then the set of CE is the same for all k ≥ K.

Finally, we claim that there is a matching that supports the payoff vector, i.e., the

payoff vector is feasible. Indeed, let x∗ be an integer solution to the primal problem

when k = K. Then x∗ is a feasible matching for MK . It is well-known such a solution

can be found by the simplex method. Moreover, y∗b(h)+z
∗
s(g) > abs implies x∗b(h)s(g) = 0 for

every buyer and every seller by the complementary slackness theorem (See Vanderbei,

2021). Thus (y∗, z∗) is compatible with x∗; hence it is a feasible payoff vector for

MK .

Remark 5. A proviso in Theorem 1 is that the semivalues under consideration are

those identified by λ ∈ ∆([0, 1]) such that λ({0, 1}) = 0. This does not rule out the

possibility that a semivalue with λ({0, 1}) > 0 converges to the same limit, for some

games. For instance, consider an asymmetric glove market (Example 1). The semivalue

with λ({1}) = 1 coincides with the CE outcome for every k-fold replica.

The first implication of Theorem 1 is that, although the different semivalues gener-

ally prescribe different payoff vectors for every multiple-partners game, many of them

(all except possibly those semivalues with λ({0, 1}) > 0) converge to the same payoff

vector when we replicate the game. This class of semivalues includes the Shapley value.

The second implication of the theorem is that the limit payoff vector is a CE payoff vec-

tor for a sufficiently large replica. We recall (Corollary 4) that the set of CE is constant

once the market has been replicated K = rmax + 1 times. Hence, CE(MK) = CE(Mk)

for all k ≥ K. Moreover, the set CE(MK) coincides with the set of stable outcomes

satisfying equal treatment of equals and equal treatment of partnerships.

We end this section with a short discussion on the type of convergence of the semival-

ues. In the framework of replicated multiple-partners games, Sotomayor (2019) proved

that the set of stable outcomes shrinks finitely to the set of CE payoff vectors, which in

turn shrinks finitely to the set of stable outcomes satisfying equal treatment of equals

and equal treatment of partnerships. By contrast, the semivalues converge differently to

34



a CE payoff vector, as stated in Theorem 1. Although the limit of a semivalue is a CE

payoff vector, the semivalue of any finite replica may not be. For example, consider an

asymmetric glove market. On the one hand, any semivalue prescribes a strictly positive

payoff to each player from the long side since, for every finite replica, there is always a

non-negligible chance that this player joins a coalition with a majority of players from

the short side. On the other hand, the unique CE outcome prescribes a zero payoff to

players from the long side.

The example of an asymmetric glove market does not preclude the possibility of

finding, for each game, a distinct semivalue that finitely converges to a CE outcome.

We illustrate the convergence through an example. Consider the assignment game

M = ⟨B, S, a, r⟩, where B = {b1, b2}, S = {s1, s2}, r(b1) = r(b2) = r(s1) = r(s2) = 1,

ab1s1 = 1, ab1s2 = 3, and ab2s1 = ab2s2 = 2. The limit of the semivalues for this

game is the CE payoff vector (11
8
, 9
8
, 7
8
, 13

8
) = (1.375, 1.125, 0.875, 1.625). We compute

some semivalues determined by a distribution over [0, 1] given by a Beta distribution,

characterized by two parameters α, β > 0, and those given by a Dirac probability

measure concentrated on a point q ∈ [0, 1]. In the table, the semivalue corresponding

to α = β = 1 is the Shapley value, and the one with q = 0.5 is the Banzhaf value.

Parameters k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Beta distribution

α = 1, β = 1

(1.417, 1.083,

0.917, 1.583)

(1.402, 1.098,

0.902 ,1.598)

(1.396, 1.104,

0.896, 1.604)

(1.392, 1.108,

0.892, 1.608)

(1.390, 1.110,

0.890, 1.610)

(1.388, 1.112,

0.888, 1.612)

Beta distribution

α = 0.5, β = 0.5

(1.438, 1.063,

0.938, 1.563)

(1.424, 1.076,

0.924, 1.576)

(1.417, 1.083,

0.917, 1.583)

(1.412, 1.088,

0.912, 1.588)

(1.409, 1.091,

0.901, 1.591)

(1.406, 1.094,

0.906, 1.594)

Dirac measure

q = 0.5

(1.375 ,1.125,

0.875, 1.625)

(1.375 ,1.125,

0.875, 1.625)

(1.375 ,1.125,

0.875, 1.625)

(1.375 ,1.125,

0.875, 1.625)

(1.375 ,1.125,

0.875, 1.625)

(1.375 ,1.125,

0.875, 1.625)

Dirac measure

q = 0.4

(1.152, 0.992,

0.752, 1.392)

(1.250, 1.050,

0.802, 1.498)

(1.280, 1.067,

0.819, 1.529)

(1.295, 1.076,

0.827, 1.544)

(1.305, 1.082,

0.833, 1.554)

(1.312 ,1.086,

0.837, 1.561)

Dirac measure q = 0 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

We notice that the Banzhaf value (q = 0.5) attains the limit from the beginning

and stays constant henceforth. On the other hand, the semivalue with q = 0, which is
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outside the subclass that we study, does not converge to any CE payoff vector. The

other semivalues approach the CE payoff vector (1.375, 1.125, 0.875, 1.625) but do not

reach it.

6 Conclusion

The classic solution concepts for the multiple-partners game, as for matching games

in general, are stability and competitive equilibrium. Single-valued solutions concepts,

such as the Shapley value, are not well-studied. In this paper, we have contributed to a

better understanding of the behavior of the Shapley value and many other semivalues

in the multiple-partners game. We have shown that, when the game is replicated, they

all converge to the same competitive equilibrium payoff vector.

Sotomayor’s (2019) analysis of the replicated multiple-partners game concluded that

the sets of stable payoff vectors, CE payoff vectors, and stable payoff vectors that satisfy

equal treatment of equals and equal treatment of partnerships converge finitely to the

same set. By contrast, the convergence of the Shapley value and the other semivalues

is generally not finite.

Appendix

Proof of Proposition 1. Take any CE outcome of M and denote by ps(g) the price set

by the seller s(g) of type s for her objects in that outcome. First, we show the equal

treatment of equals for the sellers, that is, for any type s ∈ S, the prices ps(g) and ps(g′)

set by two equal sellers of type s are the same if ymin > rmax. We prove this property

by contradiction.

Let s be a seller’s type such that ps(g) ̸= ps(g′), for some g and g′. Denote by

ps,min := min{ps(g) | g = 1, . . . , y(s)} and split the set of type-s sellers Ss into two
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subsets, L and F , with L := {s(g) | ps(g) = ps,min} and F := {s(g) | ps(g) > ps,min}.

Both sets are non-empty.

Denote by x the matching in this CE outcome and take a seller s(g) ∈ F . Given

that ps(g) > ps,min ≥ 0, s(g) sells all her objects in the CE outcome; hence, the set

Cs(g)(x) of partners of s(g) contains exactly r(s) buyers. Moreover, it must hold that

L ⊆ Cb(h)(x) for all those buyers b(h) ∈ Cs(g)(x) because otherwise b(h) would have an

incentive to swap the object from s(g) with some identical object owned by a seller in

L \ Cb(h)(x). Since the quota of the sellers in L is also r(s), each of them sells all her

objects in the CE outcome to the buyers in Cs(g)(x).

We now claim that it must also be the case that F ⊆ Cb(h)(x) for all b(h) ∈ Cs(g)(x).

If not, there is at least one s(g′) ∈ F who does not sell one of her objects to a buyer in

Cs(g)(x). Given that ps(g′) > 0, the seller s(g′) sells all her objects, which implies that

there is a buyer b′(h′) ∈ Cs(g′)(x) such that b′(h′) /∈ Cs(g)(x). However, it is the case

that b′(h′) has an incentive to swap the object from s(g′) with an object initially owned

by a seller in L that he does not buy, since we have shown that the sellers in L sell all

their objects to the buyers in Cs(g′)(x). This is a contradiction, hence, F ⊆ Cb(h)(x) for

all b(h) ∈ Cs(g)(x).

Hence, we have proven that Ss = L ∪ F ⊆ Cb(h)(x) for all b(h) ∈ Cs(g)(x). Since Ss

has at least ymin elements and Cb(h)(x) has at most rmax elements, Ss ⊆ Cb(h)(x) can

only happen if ymin ≤ rmax, which leads to a contradiction. Therefore, a CE outcome

satisfies equal treatment of equals among sellers for ymin > rmax.

Second, we show the equal treatment of partnerships among buyers (the property

holds among sellers by the definition of a CE). Hence, we show that ub(h)s(g) = ub(h)s′(g′)

for all b ∈ B, h = 1, . . . , y(b), and s(g), s′(g′) ∈ Cb(h)(x). Suppose otherwise, that

is, ub(h)s(g) > ub(h)s′(g′) for some s(g), s′(g′) ∈ Cb(h)(x). There exists s(g∗) /∈ Cb(h)(x)

because ymin > rmax, there are at least ymin sellers of type s, and the set Cb(h)(x) has

at most r(b) ≤ rmax elements. Then, buyer b(h) has an incentive to swap the object
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from s′(g′) with an object initially owned by s(g∗) because ub(h)s(g∗) = abs − ps(g∗) =

abs − ps(g) = ub(h)s(g) > ub(h)s′(g′), where we have used the property ps(g∗) = ps(g) that we

have proven above. Therefore, a CE outcome satisfies equal treatment of partnerships

if ymin > rmax.

Finally, once we have proven the equal treatment of partnerships among buyers, we

can use an argument similar to the proof of the equal treatment of equals for the sellers

to prove that two equal buyers (not necessarily of the same type) attain the same payoff

vector in a CE outcome. Therefore, a CE outcome satisfies equal treatment of equals

if ymin > rmax.

Proof of Proposition 2. In light of Remark 2, the characteristics of the CE outcomes

of the sellers and the buyers are similar in a large multiple-partners game with types

(in particular, as it is the case for the sellers by definition, the CE payoff vectors

satisfy equal treatment of partnerships among the buyers). Therefore, we can assume,

without loss of generality, that
∑

b∈B y(b)r(b) ≤
∑

s∈S y(s)r(s) because the proof of the

other case is symmetric. Moreover, to prove the proposition, it suffices to show that

(u,p) ∈ RB × RS is a CE payoff vector of M ′ if it is a CE payoff vector of M .

Denote by B̂ and Ŝ the sets of agents and objects of the one-to-one assignment

game connected with the game M and x̂ ∈ A(B̂, Ŝ, r) the matching constructed based

on the CE matching compatible with (u,p) (see Section 2.4). Hence, an element in B̂

is (b(h), l), where b is the type of the buyer, h ∈ {1, ..., y(b)} is a buyer of type b, and

l ∈ {1, ..., r(b)} indicates one of the agents of the buyer b(h) in the assignment game.

Similarly, (s(g), f) is an element of Ŝ. Given
∑

b∈B y(b)r(b) ≤
∑

s∈S y(s)r(s), the sets

B̂ and Ŝ satisfy that |B̂| ≤ |Ŝ|.

We first prove by contradiction that there exists a feasible matching x for M com-

patible with (u,p) such that every agent in B̂ acquires an object in Ŝ. Suppose that

some agent (b(h), l) ∈ B̂ does not acquire any object in x̂. Since |B̂| ≤ |Ŝ|, there exists

an unsold object (s(g), f) ∈ Ŝ.
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Then we claim that we can construct a new matching x̄ by adding a partnership

between (b(h), l) and (s(g), f) to x̂. First, assume that abs > 0. Then, it must be the

case that r(s) > 1 and that an object (s(g), f ′), with f ′ ̸= f , is acquired by an agent

(b(h), l′), with l′ ̸= l, because otherwise (b(h), l) would acquire (s(g), f) at a price in

the interval (0, abs). However, by equal treatment of partnerships, ub = 0 (because

b(h) does not form all his partnerships), hence p
s
= abs − ub > 0, which contradicts

the existence of an unsold type-s object (s(g), f). Second, if abs = 0, the existence of

such a matching also holds because the set of matchings compatible with a competitive

equilibrium is upper hemi-continuous with respect to the worth matrix a.24

Now, take x compatible with (u,p) such that every agent in B̂ acquires an object

in Ŝ, and let x̂ be the one-to-one matching between the set of agents B̂ and the set of

objects Ŝ of M induced by x. By Proposition 1 and the observation that every buyer’s

quota is full, we can define the following correspondence φ : B̂ ⇝ Ŝ:

φ(b(h), l) :=
⋃

s:ub+p
s
=abs

for some b∈B

{(s(g), f)) | g = 1, . . . , y(s) and f = 1, . . . , r(s)} (23)

for all (b(h), l) ∈ B̂. That is, φ(b(h), l) is the set of all the objects (s(g), f) the agent

(b(h), l) could acquire to obtain his equilibrium utility ub, given the equilibrium price

p
s
and the worth abs of the partnership.

We can consider the one-to-one matching x̂ as a function from B̂ to Ŝ that assigns

different objects to different agents (b(h), l), (b′(h′), l′) ∈ B̂. Hence, by Hall’s theorem

24 To see this, notice that the set of matchings compatible with a competitive equilibrium is a

finite subset of the set of solutions to a linear programming problem. Then, it follows from Berge’s

theorem of maximum (see, e.g., Kreps, 2013) that the set of solutions, and, hence, the set of matchings

compatible with a competitive equilibrium, is upper hemi-continuous with respect to the worth matrix

a.
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(Lemma 1), we have |P | ≤ |φ(P )| for all P ∈ 2B̂ \ {∅}. This implies, in particular,

∑
b∈P

r(b)y(b) ≤
∑

s:ub+p
s
=abs

for some b∈P

r(s)y(s) (24)

for all P ∈ 2B \{∅}. We note that the right-hand side of the equation (24) corresponds

to the sum over a certain subset G ⊆ S.

By the definition of the equivalence relation ∼ (Definition 10), Condition (24) also

holds for the game M ′. That is,

∑
b∈P

r(b)y′(b) ≤
∑

s:ub+p
s
=abs

for some b∈P

r(s)y′(s) (25)

for all P ∈ 2B \ {∅}.

Following equation (23), define a correspondence φ′ between the set of agents B̂′

and the set of objects Ŝ ′ of M ′ by

φ′(b(h), l) :=
⋃

s:ub+p
s
=abs

for some b∈B

{(s(g), f)) | g = 1, . . . , y′(s) and f = 1, . . . , r(s)}

for all (b(h), l) ∈ B̂′. The correspondence φ′ is well-defined because the matrix of worth

a in the game M ′ is the same as in M . Moreover, φ′ satisfies |P | ≤ |φ′(P )| for all

P ∈ 2B̂
′ \ {∅} because of Condition (25).

Using Hall’s theorem again, there is a one-to-one matching x̂′ between B̂′ and Ŝ ′.

Moreover, each buyer (b(h), l) ∈ B̂′ maximizes her utility, given the price vector, since

she obtains the same utility as in the market M and the prices are the same. However,

x̂′ may not correspond to a feasible matching of M ′ because we cannot rule out the

possibility that multiple agents of the same buyer are assigned to multiple objects

initially owned by the same seller via x̂′, which is not allowed in the model.

We now modify x̂′ to construct a new matching that does not assign multiple agents

of the same buyer to objects owned by the same seller. Suppose that there exists a
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buyer b(h) and a seller s(g) such that x̂′(b(h),l)(s(g),f) = 1 and x̂′(b(h),l′)(s(g),f ′) = 1, with

l ̸= l′ and f ̸= f ′ (otherwise, we are done). Then, there exists a buyer b(h′) ̸= b(h)

such that x̂′ does not assign any agent of b(h′) to an object initially owned by the seller

s(g). Such a buyer exists because the number of objects initially owned by s(g) is r(s)

and y′min > rmax. Then, let (b(h′), l′′′) be such an agent of the buyer b(h′). (b(h′), l′′′)

is assigned to an object (s′(j), q) via x̂′. Notice that s′ ̸= s. Then, we can swap the

assigned object to (b(h), l′) with the assigned object to (b(h′), l′′′). Moreover, since the

buyers b(h) and b(h′) are equal, their worth vectors are equal, and their payoffs are

identical under the CE payoff vector (u,p). Hence, the CE payoff obtained by all the

players is compatible with the new matching.

We continue this swapping procedure until there does not exist a pair of agents of

the same buyer who are assigned to objects initially owned by the same seller. Denote

by x̂′′ this resulting function. It corresponds to a feasible matching of M ′. Moreover,

given the price vector, each buyer maximizes her utility, and the prices are zero if a

seller does not sell all her objects. Therefore, (u,p) is a CE payoff vector of M ′.

Proof of Proposition 3. We prove the result by contradiction. Let (u,p;x) and (u′,p′;x′),

with (u,p) ̸= (u′,p′), be two CE outcomes of some large uneven gameM = ⟨B, S,y, a, r⟩.

Let x̂, x̂′ ∈ A(B̂, Ŝ, r) be the one-to-one matchings constructed from x and x′, respec-

tively. Let M̂ = ⟨B̂, Ŝ, â⟩ be the simple game of M , as defined in Section 2.4.

Suppose that ub > u′b for some b ∈ B. Given that ub > 0, any agent (b(h), l) of the

buyer of type b is matched with an object (s(g), f) initially owned by some seller of type

s via x̂. Thus ub + p
s
= abs, for any such seller type s. Moreover, it must be the case

u′b ≥ abs− p′
s
because (u′,p′;x′) is a CE outcome. Hence, p′

s
≥ abs−u′b > abs−ub = p

s
.

Notice that we have constructed a one-to-one function from O = {(b(h), l) ∈ B̂ |

ub > u′b} to R = {(s(g), f) ∈ Ŝ | p
s
< p′

s
} (because x̂ is one-to-one). This implies that

|O| ≤ |R|.

A symmetric argument allows to construct a one-to-one function from R to O via
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x̂′, which implies that |O| ≥ |R|. Therefore, |O| = |R|.

Since all the agents of all the buyers of type b attain the same utility ub and all

the objects of all the sellers of type s are sold at the same price ps, it is the case that

O =
⋃

b∈H Bb and R =
⋃

s∈G Ss for some H ∈ 2B \ {∅} and some G ∈ 2B \ {∅}.

However, this implies that
∑

b∈H y(b)r(b) = |O| = |R| =
∑

s∈G y(s)r(s), which is in

contradiction with the definition of an uneven game (see condition (5) of Definition

8).
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[26] van den Brink, René and Miklos Pinter. “On axiomatizations of the Shapley value

for assignment games.” Journal of Mathematical Economics 60 (2015): 110-114.

[27] Vanderbei, Robert J. Linear programming: foundations and extensions, 5th Edi-

tion. Springer (2021).

44



[28] Wooders, Myrna Holtz. and William R. Zame “Large games: fair and stable out-

comes.” Journal of Economic Theory 42.1 (1987): 59-93.

45


	Introduction
	The multiple-partners game
	The model
	Stability and competitive equilibrium
	Representation as a TU game and semivalues
	The related simple assignment game

	The multiple-partners game with types
	Properties of the competitive equilibria of the large multiple-partners game with types
	Equilibrium-value convergence
	Conclusion

