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Abstract

This paper studies how social networks (might fail to) shape agricultural prac-

tices. We exploit (i) a unique census of agricultural production nested within delin-

eated land parcels and (ii) comprehensive social network data within four repop-

ulated villages of rural Vietnam. In a first step, we extract exogenous variation in

network formation from home locations within the few streets that compose each

village (populated through staggered population resettlement), and we estimate the

return to social links in the adoption of highly-productive crops. We find a large net-

work multiplier, in apparent contradiction with low adoption rates. In a second step,

we study the structure of network formation to explain this puzzle: social networks

display large homophily, and valuable links between heterogeneous households are

rare. Due to the clustered nature of networks and the dynamic, endogenous prop-

agation of agricultural practices, there are decreasing returns to social links, and

policies targeting “inbetweeners” are most able to mitigate this issue.
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Agricultural productivity is low in developing economies (see, e.g., Gollin et al.,

2014a,b), and there is disparity in (measured) yield and agricultural practices across farms

(see, e.g., Restuccia and Santaeulalia-Llopis, 2017; Gollin and Udry, 2021; Adamopoulos et

al., 2022).1 In Vietnam, for instance, there is a large crop productivity gap observed across

farms with different portfolios of agricultural commodities. Some crops—coffee, cashew

nuts, rubber or pepper, which are typically grown on low-quality, rugged land—are more

than twice as productive as traditional, staple crops—rice, maize, cassava—, and this dif-

ference is not explained by inputs (land, soil quality, capital, labor, irrigation, fertilizers,

herbicides, etc.) or by the general skills of farm managers. In spite of this “premium”

and extensive public efforts to promote investment in high-productivity crops, adoption

remains limited: only a minority of households have a land parcel on which they grow

such tree crops. This low incidence could reflect technological barriers to adoption (e.g.,

skills), frictions in allocating production factors (credit constraints, frictional land mar-

kets), or imperfect information transmission from adopters to others within villages. The

present study focuses on the latter: what is the role of local networks in explaining the

(relative lack of) crop adoption?

This paper identifies how the structure of social networks affects the dynamic adop-

tion of high-return agricultural practices.2 The novelty hinges on observing both agri-

cultural production within delineated land parcels and the comprehensive social net-

work of repopulated villages in rural Vietnam.3 The delineation of land and geo-location

of homes allow us to account for all geographic differences across farmers (e.g., soil

quality, ruggedness, flood risk) and for their relative proximity whether at home or on

their agricultural plots. The network data allows us to reconstruct a full, dynamic social

structure, including indirect linkages of higher order. The nature of village formation—

through staggered population resettlement and long-distance migration—allows us to

isolate exogenous variation in network formation: the exact timing of arrival across set-

tlers strongly predicts home locations within the few streets that compose each village;

and home proximity (within 100 meters) increases the likelihood to form a link. Our em-

1The literature has studied under-mechanization, input quality, selection induced by rural-urban mi-
gration, or returns to scale as possible explanations for the low productivity of (most) farms. Our focus is
on agricultural practices in general and crop choice in particular.

2Learning through networks has been shown to play an important role in the adoption of new tech-
nology by farmers of rural economies (see, e.g., Foster and Rosenzweig, 1995; Bandiera and Rasul, 2006;
Conley and Udry, 2010; Duflo et al., 2011; Suri, 2011; Kala, 2017; Beaman and Dillon, 2018; Banerjee et al.,
2019; de Janvry et al., 2022).

3Our survey is a census of four rural villages in the Central Highlands of Vietnam conducted in 2019
and in 2022 (with a panel of about 950 households and 2,700 land parcels). The survey covers: living stan-
dard measurement survey questions; the detailed geography of agricultural production through a specific
module based on satellite imagery and cadastral maps; soil testing; elevation and flood risk modeling;
and a module recording the whole network of family and friends. Retrospective questions are asked for
agricultural production, settling within the village, and network formation.
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pirical analysis uncovers an apparent contradiction: we identify a large network multi-

plier, and yet, the overall adoption of high-return crops remains relatively low. We show

that the structure of network formation explains this puzzle: there is large homophily

between connected households; adopters (resp. non-adopters) are frequently tied with

other adopters (resp. non-adopters); and valuable links between heterogeneous house-

holds are rare. Importantly, we show that this homophily is the endogenous outcome of

the dynamic propagation of agricultural practices through clustered networks, and poli-

cies targeting the “in-betweeners”—villagers connecting the different clusters—would be

efficient.

Studying the relationship between social networks and agricultural production is

challenging. A first important empirical challenge is that network links are not exoge-

nous to agricultural practices, especially so in a context where villagers share knowledge

and sometimes labor when they work on contiguous land parcels. In short, the workplace

is endogenous to agricultural practices within villages. Our approach leverages the loca-

tion of homes, conditional on the portfolio of land parcels, to isolate exogenous variation

in network formation: these villages were part of a large resettlement program spanning

about 30 years, and new settlers would typically be given or claim a land plot for residen-

tial purposes upon arrival (Evans, 1992; Hardy, 2005; Van de Walle and Gunewardena,

2001). Accordingly, the geography of residential settlement strongly reflects the timing

of arrival to the Central Highlands. We exploit these weaker links—induced by the loca-

tion of residence within the few streets that compose each village—to identify a causal

effect of networks on agricultural practices. More specifically, we instrument a measure

of direct exposure to tree-growing farmers based on actual network links by a residen-

tial, distance-weighted measure of exposure (living close to tree-growing farmers) while

controlling for the workplace location (working close to tree-growing farmers) and var-

ious measures of connectedness within the network and within the village.4 We also

consider a measure of indirect exposure to tree-growing farmers based on second-order

linkages, and we combine two distinct sources of network formation—shared origins and

the location of homes—to isolate exogenous variation in such indirect exposure. We find

that the local network predicts the adoption of new crops: one standard deviation in ex-

posure increases the likelihood to adopt highly-productive crops on a given land parcel

by 0.10 within a 3-year period. This is a large multiplier, e.g., to be compared with the

initial incidence of 0.18 across suitable land parcels.5 This finding is puzzling: How do

4We exclude family links from all our calculations.
5In theory, the network multiplier could result from information transmission, an easier access to

resources (e.g., factors or intermediary inputs), or informal insurance/credit allowing connected farmers
to incur a costly investment (even though recent research has shown that connections also transmit shocks
through the network, see Kinnan et al., 2024). In support of the first channel, we document that farmers
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we reconcile such a large social multiplier with low adoption rates?

The second empirical challenge consists in understanding the quantitative impact of

a causal multiplier—identified using weaker, rarer links—on the endogenous dynamics

of technology adoption. The limited diffusion of high-productivity agricultural practices

is explained by the network structure through (i) a static argument and (ii) a dynamic

argument. First, we show that a large network multiplier may coexist with a relatively

low, but non-negligible, adoption rate when social networks display large homophily (A

and B are quite similar in agricultural practices when they are connected). Indeed, net-

work connections are primarily formed by family links or by work practices, and there

is a high degree of resemblance between linked households. A node that is connected to

treated nodes is likely to be treated already; reciprocally, a non-treated node is unlikely

to be exposed to the treatment through the network.6 In short, the random, weaker links

that we use for identification purposes are not so common. For instance, in counterfac-

tual simulations we show that randomizing network formation for households arriving

in our villages from 1980 onwards would have increased crop adoption by 50%. Second,

even when the initial allocation of treatment is random, a clustering structure implies

that the treatment will primarily diffuse within localized clusters, thereby inducing (en-

dogenously and dynamically) high degrees of homophily and lower returns to the social

network. To shed light on this decreasing return to social multipliers, we consider pro-

jections randomizing the initial allocation of treatment—the distribution of agricultural

practices—and/or the network structure—the social links across nodes. Randomizing so-

cial links or providing an initially more dispersed treatment would generate a higher

adoption rate after 50 years. These experiments however markedly differ in their dy-

namic impact: a random network does not generate decreasing returns over time, while

a randomized treatment would generate homophily and decreasing returns in the longer

run, through an endogenous propagation within clustered networks. We conclude the

analysis by discussing targeted, simple policies. Efficient policies allocate treatment to

“inbetweeners”, who connect different clusters of farmers, ensuring that the returns to

social links do not decrease with time.

Our contribution is to relate the structure of social networks to the dynamics of crop

adoption in a non-experimental setting. Our context has unique features in that we can

observe entire, closed social networks. The resulting insight is novel: network links are

exposed to the treatment have higher priors about the suitability of their land to growing high-return
crops, even controlling for objective indicators of soil quality or inferred land quality from the evaluation
of other farmers. We do not find a very high reliance on informal insurance or informal borrowing in our
context, most loans originating from rural development banks.

6For instance, we find that the correlation between agricultural productivity, adoption of tree crops,
or land area is about 0.30 between two nodes of a network link versus 0.03 within a given village.
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potentially effective at fostering the adoption of highly-productive crops; the high de-

gree of homophily within social networks however limits their impact at any point in

time; and the clustered nature of social networks implies that such homophily endoge-

nously arises over time. Policies targeted at “in-between” villagers might alleviate this

clustering of agricultural practices and accelerate their diffusion in the shorter run—as

would interventions fostering the formation of random, weak network links.

Our work relates to the large literature discussing technology adoption and learning

through networks (Griliches, 1957; Bandiera and Rasul, 2006; Duflo et al., 2008; Dercon

and Christiaensen, 2011; Duflo et al., 2011; Suri, 2011; Emerick et al., 2016; Kala, 2017;

Beaman and Dillon, 2018; BenYishay and Mobarak, 2019; Fabregas et al., 2019; Comola

et al., 2021; de Janvry et al., 2022), and more specifically, to the research discussing the

structure of such networks (clustering and homophily, see, e.g., Calvó-Armengol et al.,

2009; Acemoglu et al., 2011; Ferrali et al., 2020; Jackson et al., 2023), seed targeting (e.g.,

Akbarpour et al., 2023; Sadler, 2023), or influence maximization (e.g., Banerjee et al., 2013;

Kim et al., 2015; Cai et al., 2015; Banerjee et al., 2019; Beaman et al., 2021). As in Baner-

jee et al. (2013), Banerjee et al. (2019), and Beaman et al. (2021), we find that centrality

measures are important to target seeds which could increase propagation. However, we

find betweenness centrality to perform (slightly) better, possibly due to the high level of

clustering within our network.7 We relate to Foster and Rosenzweig (1995) and Conley

and Udry (2010) in that spatial proximity is instrumental to our identification of network

links, but our empirical strategy also exploits overlaps across farmers of different origins

(Barnes et al., 2016).

One advantage of our setting is to observe full social networks within a closed envi-

ronment, i.e., four isolated villages in the Central Highlands of Vietnam, and to exploit

high-quality information on both sides of a social link (in contrast with the influential

research proposed in Banerjee et al., 2019; Breza et al., 2020, with many poorly-observed

networks “without network data”). To our knowledge, there exist only a few papers that

draw on complete network data and can relate heterogeneous network characteristics

to the rate of information diffusion or technology adoption (Banerjee et al., 2013; Cai

et al., 2015; BenYishay and Mobarak, 2019; BenYishay et al., 2020; Beaman et al., 2021;

7Akbarpour et al. (2023) discuss the complex issue of influence maximization and show that optimal
seeding is not performing much better than random seeding (with more seeds) for a large set of propaga-
tion mechanisms. The basic intuition is that, with standard propagation models, random seeding will end
up reaching influential nodes. In practice, treatment adoption might require several, independent informa-
tion sources, thus departing from these standard propagation models and making in-between individuals
more influential. Our empirical setting does not allow us to properly characterize the propagation of agri-
cultural practices (e.g., we do not have exogenous variation predicting the number or the nature of treated
friends), and thus test if the theoretical results of Akbarpour et al. (2023) would hold or not. Along the
same lines, we do not have exogenous variation predicting the characteristics of friends, such that we
cannot really discuss seed selection through observable characteristics (Sadler, 2023).
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Chakraborty, 2022; Bandiera et al., 2023). We finally relate to the literature discussing

challenges in estimating peer effects through networks (Manski, 1993; Bramoullé et al.,

2009; De Giorgi et al., 2010; Bramoullé et al., 2020; Jochmans, 2023) and challenges in-

duced by endogenous network formation (Graham, 2017; De Paula, 2020). Our identifi-

cation comes from network shocks rather than an exogenous allocation of treatment; in

that respect, we closely relate to Burlig and Stevens (2023), who exploit aggregate net-

work shocks—the merge of churches in the United States—to study technology adoption

among newly-formed links.

Our work also contributes to the large, nascent literature discussing agricultural pro-

ductivity in developing countries (Udry, 1996; Restuccia and Rogerson, 2008; Gollin et

al., 2014a,b; Chen, 2017; Restuccia and Santaeulalia-Llopis, 2017; Gollin and Udry, 2021;

Adamopoulos et al., 2022). We highlight the role of crop choice in explaining low agri-

cultural productivity, but also its dispersion across farmers of a same village. One ex-

planation behind the dispersion of agricultural productivity could be frictional factor

markets, credit as documented in numerous contexts, but also land (Blarel et al., 1992;

Shaw-Taylor, 2001; Chen, 2017; Burchardi et al., 2019; Perego, 2019; Adamopoulos and

Restuccia, 2020; Le, 2020; Chen et al., 2021; Laskievic, 2021) or frictions to mobility and

(selection into) rural-urban migration (Lagakos et al., 2018; Adamopoulos et al., 2022).

Our focus is instead on (imperfect) information transmission.

The remainder of the paper is organized as follows. Section 1 discusses agricultural

practices and resettlement patterns in the Central Highlands of Vietnam. Section 2 de-

scribes our data sources, the productivity gap across agricultural commodities, and the

structure of local networks. Section 3 details our main empirical strategy. Section 4 es-

tablishes the baseline result and discusses robustness checks. Section 5 rationalizes the

co-existence of low adoption rates with a high social multiplier and discusses the role of

clustered networks and targeted policies. Finally, Section 6 briefly concludes.

1 Agricultural production in rural Vietnam

Agricultural practices in the Central Highlands of Vietnam Many developing

countries, including Vietnam, experience a rapid transformation of their economic ac-

tivity with large migration flows from rural areas to urban agglomerations. Along this

process, the nature of rural economic activity is expected to change with an intensifica-

tion and mechanization of agriculture. The focus of our study is about these important

changes in agricultural practices with: higher agricultural investment (e.g., irrigation,

machines, or the use of fertilizers, pesticides, and herbicides); but mostly the adoption

of high-risk/high-yield perennial crops (see, e.g., Benjamin et al., 2018). This transfor-

6



Figure 1. Crop diversity in the Central Highlands of Vietnam.

(a) Crop diversity (b) Buon Ma Thuot Coffee festival

Notes: Panel (a) shows agricultural diversity in the Central Highlands of Vietnam, as inferred from satellite imagery (source: Coffee
Vision Project, HEIG-VD/HES-SO). Our villages are located in Dak Lak where the production of coffee (in purple), rubber (in dark
orange), and rice/wheat/cassava (in yellow) is widespread. Panel (b) is a photograph of the Buon Ma Thuot Coffee festival organized
in 2013 (in Dak Lak); this illustrates the efforts from local/central governments to promote coffee to international investors and to
potential local producers.

mation is apparent from the wide variety of crops grown in the Central Highlands of

Vietnam (see panel a of Figure 1). One reason for such changes is that agricultural in-

vestment in high-return crops for export purposes is actively promoted by policy makers

at the local and national levels. The Buon Ma Thuot Coffee festival is an example of such

efforts (see panel b)—cashew nuts, pepper, or flowers also have local, annual festivals.

This diversity in cropping patterns is visible within villages: agricultural households

of the Central Highlands of Vietnam hold numerous, small, and geographically dispersed

land parcels and they grow different crops on each of these parcels. For instance, the 950

households of our sample grow the following crops: mung bean, cassava, rubber, coffee,

rice, cashew nuts, fodder maize, corn, sweet potato, fragrant rice, pepper, sugarcane, or

kale. We illustrate the local dispersion of land usage and agricultural practices in Figure 2

where we display land use in panel (a) and crop type in panel (b) for one of our villages—

named Village 3 to ensure the anonymity of surveyed households. First, one can see

that there is spatial clustering in land use: a part of the village is the residential area (in

purple); a flat area is typically used for annual agriculture (often wetlands); and rugged

terrain is typically used for perennial crops. Second, there remains large diversity in
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cropping patterns, even at a disaggregated level: households grow rice (different shades

of blue corresponding to different varieties), coffee (brown), cashew nuts (green), pepper

(gray), rubber (dark orange), or maize (yellow). Finally, note that the diversification of

crops is also visible within households and that a small fraction of land is used for pasture

or aquaculture.

Figure 2. Crop diversity (and land use) within villages.

(a) Land use (b) Crops

Notes: This map shows the dispersion of agricultural land parcels within “Village 3” in the Central Highlands of Vietnam. The
left panel reports the main land usage: residential (purple), perennial (light brown), annual (green), other (yellow). The right panel
reports crop types: rice (shades of blue), coffee (brown), cashew nuts (green), pepper (gray), rubber (orange), maize (yellow), others
(blank).

Population resettlement and land markets in Vietnam The Central Highlands of

Vietnam were populated by ethnic minorities before 1954. Between 1954 and 1991, suc-

cessive, centralized programs were implemented to relocate ethnic Vietnamese, mostly

from the North of Vietnam. The migration waves did not stop in 1991, but slightly

changed in nature: they became more decentralized, with settlers attracted by the op-

portunity to grow cash crops and by the “available” land. Some assistance was granted

to migrants settling in through formal programs; others had to clear forest or use land

supposed to be confined to public use. Our villages were typically formed through suc-

cessive, individual migration spells of Northern families: only 2% of (intergenerational)

households were already present before 1975; settlers arrived gradually between 1976

and 2012 (as shown in Figure 3) and mostly from the provinces of Ha Tinh (23%), Quang

Nam (18%), Lang Son (11%), Hung Yen (10%), Cao Bang (9%), and Thai Binh (8%). We

will see in Section 2 that the geography of settlement within our villages relates to the

timing of migration, rather than to the origin of migrant households.

These settlement waves coincided with a transformation of Vietnam from a central-
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Figure 3. Settlement and land acquisition in our villages.

(a) Settlement date (b) Land acquisition

Notes: Panel (a) displays the distribution of settlement date across our 950 households; panel (b) displays the distribution of land
acquisition date for all land parcels acquired through a market transaction (i.e., not claimed, inherited, or allocated through a gov-
ernment program).

ized economy to a market economy with a liberalization of land markets. The nature of

land acquisition within our villages reflects this mix between formal resettlement pro-

grams, informal settlements, and later land transactions: About 18% of residential land

parcels were allocated by the government; about 28% were bought; and the rest was

“claimed”, mostly, and inherited. Only two thirds of residential land parcels are asso-

ciated with a formal land use right certificate—a red booklet. The acquisition of new

agricultural land has been less “exogenous”: many land parcels were acquired through

formal means in recent times (see panel b of Figure 3).

2 Data sources, descriptive statistics and empirical strategy

This section describes our household survey and provides descriptive statistics about

agricultural practices (the “crop productivity gap”) and the structure of networks (no-

tably, the nature of social links and their “homophily”).

2.1 Data sources

We exploit a panel household survey conducted in 2019 and 2022, both in September,

in 4 villages of the Central Highlands. These four villages—that we will label Village

1, Village 2, Village 3, and Village 4 for ethical purposes—are located in the Lak Dis-

trict, Krông Bông District, Krông Pac District, and Ea Súp District within the Dak Lak

province. The survey covers about 950 households and 4,000 individuals in each wave

with about 95% of households/individuals observed across the two waves. Most of the
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survey follows the World Bank high-quality standards and is similar to the main house-

hold surveys in Vietnam, i.e., Vietnam Household Living Standard Survey (VHLSS) and

Thailand Vietnam Socio Economic Panel (TVSEP). An average questionnaire would take

3 hours and would cover about 1,000 questions. The survey however has the following

unique features that we describe briefly below and in greater length in Appendix A.1:

a comprehensive land geo-location module (with soil testing and subjective evaluations

from peers); and a network module.

The research requires the precise geo-location and delimitation of land parcels. The

first novelty of the survey is its land module: land plots and assets of each household are

precisely geo-located using a novel procedure based on the recognition and drawing of

land parcels on satellite images augmented by cadastral boundaries; and production data

is then matched at the parcel and crop levels. The crop module of the household survey

records the labor inputs and the expenditures related to the different activities along the

crop cycle (e.g., preparation, seeding, harvesting). From this detailed account of agricul-

tural activities at the crop/parcel level, we create the following aggregate measures of

input at the parcel level and at the household level: the area cultivated for each crop;

the irrigated area for each crop; the hours of work (hired labor, family labor, exchange

labor) for each crop; the expenditures for each crop.8 We also create measures of output

for the different crops: quantities (kg), yield (kg/acre), sales, crop income (subtracting

expenditures and adding personal consumption).

We exploit the geo-location of land parcels to better characterize land quality. More

specifically, we complement the previous data about land with: (i) subjective evaluations

of land quality by farmers themselves and by their peers (about 130 parcels are randomly

assigned for respondents to “evaluate”, in the spirit of Galton, 1907), input requirements,

and suitability to grow different crops by respondents and by their peers; (ii) prospec-

tive agricultural strategies on each land parcel; (iii) soil testing in about 300 parcels for

acidity and nutrients (then interpolated over the whole village); (iv) flood risk; and (v)

soil bulk density (fine earth), the soil organic carbon content, and the elevation, slope

and ruggedness to account for the local topography.

The second novelty is to record all network linkages between households, their pos-

sible usage (e.g., the motivation, strength and nature of network links), and their actual

usage linked with other survey modules (e.g., previous credit linkages, informal insur-

ance network, participation in labor exchange arrangements, land transactions). We

then match the recorded links with their own survey records to observe all survey vari-

8The list of crops that we record is the following: areca nut, bamboo, cajeput tree, cashew nut, cassava,
casuarina, coffee, cotton, eucalyptus, flower, fruits, gluey tree, grass, green bean, kapol, kenaf, lotus, maize,
mulberry, nuts, palm oil, pepper, rubber, soybean, sugarcane, sweet potato, tea, tobacco, vegetables, rice.
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ables on both sides of a network “edge”—an advantage of the comprehensive coverage

of a few villages rather than the usual household survey sampling based on a few units

scattered across space. Another advantage of survey sampling is that we can charac-

terize the whole network of links within the village, and thus interpret missing links as

proper zeros. A corollary is that we can construct indirect linkages across households

(higher-degree edges: “A knows B who knows C who knows D, etc.”), network measures

of centrality, and characterize closed sub-networks.

Finally, the survey allows to capture risk mitigation strategies (access to credit, non-

agricultural activities, remittances, informal insurance networks, labor exchange), and

income/consumption patterns in addition to standard household characteristics. The

panel dimension is instrumental, as it allows to capture changes in land usage between

the two survey waves, as well as shocks through a specifically designed shock module

and separate shock-specific modules (e.g., geo-localized floods and the effect of COVID).

Figure 4. The agricultural productivity gap.

Notes: This Figure shows the distribution of agricultural TFP, ln 𝑧𝑖𝑐 , when controlling for: area as the only input; all inputs (area,
labor, intermediary, capital); and all inputs and farmer fixed-effects.

2.2 The productivity gap across agricultural commodities

This section documents one source of heterogeneity in agricultural productivity: a crop

productivity gap, observed across parcels producing different agricultural commodities.

The agricultural productivity gap Consider a household 𝑖 growing a certain crop

𝑐 on a given parcel. Letting 𝑦𝑖𝑐 denote agricultural revenue and 𝐱𝑖𝑐 denote the vector
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of production factors, i.e., hours provided by family members or casual farm workers,

expenditures (e.g., on fertilizers and other intermediate inputs), expenditures on capital,

and cultivated land area, we isolate the agricultural productivity gap across households

and crops by estimating,

ln 𝑦𝑖𝑐 = ln 𝑧𝑖𝑐 + ln 𝑓 (𝐱𝑖𝑐)

where 𝑓 is a Cobb-Douglas production function with constant parameters and the esti-

mation residual, ln 𝑧𝑖𝑐, captures a household/crop Total Factor Productivity. We display

the distribution of this residual in Figure 4 where we also show the distribution of such

residuals when controlling for: area as the only input (lighter green); all inputs; and all

inputs and farmer fixed-effects (darker green). Figure 4 shows that there is large vari-

ation in agricultural Total Factor Productivity, and that this variation decreases when

adding farmer fixed-effects but does not disappear. We next study one source of varia-

tion underlying this dispersion: the nature of crop 𝑐.

Figure 5. The crop productivity gap.

(a) Distribution across crops (b) The “tree” premium

Notes: Panel (a) shows the crop-specific distribution of agricultural Total Factor Productivity when controlling for all inputs. Panel (b)
shows the tree premium in (log) agricultural Total Factor Productivity without controls and adding sequentially controls for: inputs,
land quality, soil characteristics, soil composition, and farmer fixed-effects.

The crop productivity gap We now decompose the agricultural productivity gap into

a between-crop versus within-crop variation,

ln 𝑧𝑖𝑐 = 𝜇𝑐 + 𝜀𝑖𝑐.

We find that about 20% of the variance in residual agricultural productivity, ln 𝑧𝑖𝑐, is

captured by the dispersion in average productivity across crops, {𝜇𝑐}. We further shed

light on these differences in panel (a) of Figure 5 where we show the distribution of
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residuals, ln 𝑧𝑖𝑐, for: premium crops (coffee, pepper, rubber); and rice and maize. The

former are between 60% and 100% more productive than the latter.

In panel (b) of Figure 5, we directly estimate the premium for coffee, pepper and

rubber (a “tree” premium) by adding a dummy, 1𝑐∈𝑇 , to the regression,

ln 𝑦𝑖𝑐 = 𝛽1𝑐∈𝑇 + ln 𝑓 (𝐱𝑖𝑐) + 𝛾𝐰𝑖𝑐 + 𝜀𝑖𝑐,

where 𝐱𝑖𝑐 denote the vector of production factors, 𝑓 is a Cobb-Douglas specification and

𝐰𝑖𝑐 are controls that we add sequentially: land quality (as evaluated by the household

and as inferred through peer evaluations of 130 samples and spatial interpolation); soil

characteristics (bulk, carbon content, and topography); soil composition (acidity and nu-

trients collected for 300 parcels, and inferred through spatial interpolation); and farmer

fixed-effects. The premium 𝛽 ranges from 0.65 to 1.03, which corresponds to a produc-

tivity boost of about 91% to 180%. In our preferred specification with all controls and

farmer fixed-effects, i.e., controlling for farmer unobserved heterogeneity, the premium

is 0.87, which corresponds to a productivity differential of about 138%.9 Given this pre-

mium, a natural question is: why are households primarily using land for other purposes

than growing coffee, pepper or rubber?

Selection We now discuss selection into the “treatment”, 1𝑐∈𝑇 , or the cultivation of

high-productivity crops, and show that: (i) adoption of perennial crops, and of high-

productivity crops, is limited; (ii) suitable land parcels are numerous, and not of very

high “quality”; and (iii) new entrants into treatment are immediately quite productive.

First, only about 18% of agricultural land parcels (and less than 25% of total land area)

are used for highly-productive agricultural purposes.

Second, we show in Figure 6 that the likelihood to grow a perennial crop is posi-

tively associated with ruggedness and negatively correlated with the respondent’s own

evaluation of land parcel quality (“How suitable is [your] land parcel for cultivation?”,

with a scale from 0 to 5).10 More generally, land quality is negatively correlated with the

likelihood to grow a perennial crop and explains about 10% of its variance. Adding the

average slope (+) brings the 𝑅
2 to 0.32; adding chemical properties (− for organic con-

tent, + for nitrate/potash) brings the 𝑅
2 to 0.40. One corollary of this negative selection

of land parcels into the treatment is that a high fraction of land parcels on which maize,

mung bean, sweet potato or cassava are grown would be suitable for the cultivation of

highly-productive tree crops.

9We document similar stylized facts in Appendix A.2 using the household panel provided by TVSEP
between 2007–2017.

10See Appendix A.2 for a discussion about the determinants of such evaluations.
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Figure 6. Selection into the treatment: land quality, entrants and exiters.

(a) Slope (b) Land quality

Notes: Panel (a) (resp. b) shows the correlation between the likelihood to grow a perennial crop and average slope (res. assessed
land quality). The different measures are residualized by soil chemical characteristics, and beliefs about climate change, network
connections and village fixed-effects (in both panels).

Third, we can use the panel dimension to identify new entrants in the cultivation of

high-productivity crops, against compliers with a high-productivity crop in both waves.

We estimate the tree premium in (log) agricultural Total Factor Productivity across these

two categories, and we find that the tree premium is 20% lower and less precisely esti-

mated for new entrants, but the productivity boost that they enjoy compared to other

crops is still very substantial (more than twice as productive).

In summary, households appear to under-invest in highly-productive crops. The ob-

jective of the paper is to explain the (relative lack) of adoption by imperfect information

transmission through local networks. We describe these social networks next.

2.3 The structure of local networks

This section provides statistical evidence about: the structure of networks; the motiva-

tions, origins and strength of links; and the degree of homophily across social links.

Structure of social networks The identification of the household network relies on

an integrated procedure throughout the questionnaire. An early section would help es-

tablish a preliminary list of contacts (“From time to time, most people discuss important

matters with other people. Looking back over the last year, who are the people with

whom you discussed matters important to you? Who would be the people with whom

you would discuss an important matter in the near future?”); the list would then be

updated as the interview goes along if new contacts are mentioned by the respondent

(when relevant, e.g., villagers within the same labor exchange group, villagers involved
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in a large transaction with the household, co-workers, hired labor or employers/employ-

ees). For each contact, we record their name, age, gender, phone number (last 6 digits),

and a description of their relationship with the different household members (formation,

frequency, strength, trust, and type of information exchange).

Table 1. Structure of social networks.

Network statistics Village 1 Village 2 Village 3 Village 4

Degree 5.117 4.808 5.549 5.023
3.305 3.005 3.132 3.143
[40] [33] [32] [35]

Betweenness 0.009 0.013 0.011 0.012
0.015 0.027 0.017 0.022

[0.225] [0.349] [0.211] [0.298]

Sub-networks 8 4 2 3
Large sub-networks 3 1 1 1

Observations 324 193 213 215
Notes: A unit of observation is a household in 2022. These statistics are computed within the undirected network generated through
all recorded contacts between households of a same village. For each undirected network (corresponding to a village), we report the
following statistics: the average number of edges for each node (their average degree); the heterogeneous centrality of nodes (the
average and standard deviation of the betweenness centrality measure); and the number of closed sub-graphs (the total number of
sub-networks, and the number of large sub-networks with more than 10 nodes). The betweenness centrality of a node is the number of
shortest paths drawn between any two pairs of villagers that passes through the node. In other words, a high betweenness indicates
that the node is an instrumental link between many pairs of villagers.

We end up with about 4,000 directed links between households,11 of which 2,900 can

be located within our villages. This corresponds to 3 (directed) linked households for

each respondent—a small number explained by various factors: our procedure mostly

elicits strong links; most villagers are self-employed; and our villages were newly pop-

ulated from different migration waves and diverse regions. We construct an undirected

network within each village by connecting any two households where at least one of

the two mentions the other as a link, and we report the following statistics in Table 1:

the average number of edges for each node (their average degree); the heterogeneous

centrality of nodes (the average and standard deviation of the betweenness centrality

measure); and the number of closed sub-graphs.12 The four villages have a similar aver-

age connectedness across nodes and typically have a few important nodes (including the
11While we do observe links between individuals, we ignore this dimension in most of our analysis and

treat households as the decision unit and any linkages between two individuals from different households
as the existence of a link between the two households.

12We rely on undirected networks for two main reasons: (i) analyzing propagation throughout a di-
rected network is challenging, especially with a very limited number of linkages; and (ii) we think that
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village leader), but these connections are heterogeneously allocated: Village 1, which is

more scattered across space, has disconnected sub-graphs, with three of them grouping

more than 10 households. The village has fewer nodes with high centrality coefficients,

and the village leader is less central than in other villages. By contrast, villages 2 and 4

have slightly fewer connections on average, but they both have influential nodes bridg-

ing possible gaps between isolated clusters. Our analysis in Section 5 will discuss the

importance of such nodes.

Motivations, origins and strength of links Our villages are isolated communities,

usually associated with dense networks and few external contacts. In panel (a) of Fig-

ure 7, we show that 40% of contacts are motivated by some family connections, 26% of

contacts are considered as friends, 53% are labeled as neighbors, and a negligible pro-

portion of those contacts have a direct work or credit relationship with the household.13

These relationships are quite tight on average, as shown in panel (b): the typical contact

has been known for 15-20 years, partly driven by settlement patterns. Finally, house-

holds mostly seek advice from their contacts for technology purposes: about 20% of

contacts would be sought to discuss an important matter regarding (agricultural) tech-

nology (panel c of Figure 7). We provide a more comprehensive description of social

links in Appendix A.2 and show that links are stronger and tighter with family/friends

than with neighbors. We will think of the latter as weak(er) links.

Homophily The nature of our social network (isolated villages with strong links be-

tween households) implies a high degree of homophily across two nodes. We illustrate

such homophily by successively regressing a standardized outcome, 𝑤𝑖, for household 𝑖

on: the village average (𝑤̄𝑖); its average across its direct contacts (𝑤𝑑

𝑖
); its average across

reciprocal links (𝑤𝑟

𝑖
); its average across second-order contacts (𝑤𝑠

𝑖
); and its average across

third-order contacts (𝑤𝑡

𝑖
). We report the estimates in panel (d) of Figure 7 for the like-

lihood to grow tree crops across land parcels and we leave a more comprehensive de-

scription of these correlations to Appendix A.2. One can see that the village correlation

is quite small (0.03-0.04), but the correlation in agricultural patterns across a network

edge is high: it is about 0.30 for direct links and not much lower for high-order linkages.

In summary, social linkages between households are infrequent, tight and strongly

predicted by household characteristics—agricultural practices in particular. This pattern

a large fraction of non-reciprocal relationships are explained by under-reporting, rather than actual non-
reciprocity in friendship or in information transmission.

13In our analysis, we will ignore family links and only use them to establish higher-order relationships
between “non-kin” households. Note that these categories are not exclusive: a contact might be a friend
and a neighbor for instance.
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Figure 7. Motivations, origins and strength of links.

(a) Origins (b) Duration

(c) Advice (d) Homophily

Notes: Panel (a) shows the share of links referred to as: family, friends, neighbors, etc. Panel (b) shows the distribution of a link
“duration”. Panel (c) shows the share of links used for advice. Panel (d) shows the correlation between two nodes of a link in terms
of growing a prime tree crop.

has two implications: it is challenging to isolate exogenous variation in the formation

of social linkages; and social linkages might have limited value in terms of (novel) infor-

mation transmission. We discuss the former next and leave the latter to Section 5.

3 Empirical strategy

This section proceeds in three steps. We first identify predictors of (weak) network link-

ages. Second, we rely on these predictors to construct measures of treatment exposure

through the social network. Third, we present our empirical strategy and discuss the

identification assumptions.

17



3.1 Predicting network links

Network links within our villages are shaped by family ties, work practices, and initial

settlement patterns (i.e., the origins of settlers and the location of their residential home

at destination). In this section, we focus on the latter as more exogenous predictors of

first- or second-order linkages between households. We will sometimes refer to these

settlement-induced ties as “weak ties”, as they remain quite rare and typically less ho-

mophilous than family ties and work-based ties.

In what follows, we will exploit the exact location of residential homes within vil-

lages as an exogenous predictor of first-order linkage determined by early resettlement

patterns. Close neighbors will be more likely to be friends. Predicting second-order

linkages, independently of first-order linkages, is more challenging. In general, if two

households have a friend in common, the underlying factors behind these friendships

(e.g., working in the same place, living in a certain street, or practicing certain activities)

imply that the two households are likely to be friends. We will exploit a notion of in-

direct linkage whereby two households could have a friend in common for two distinct
reasons: they might thus not be directly exposed to each other.

Home proximity, network links, and arrival time In Figure 8, we show the corre-

lation across pairs of households between the existence of a first-order or second-order

link and the spatial distance between their homes within villages. The unconditional

probability for a first-order link to exist between any two households of a village (and

not from the same family) is 0.016; this probability however rises up to about 0.05 for

households living in very close proximity—between 0 and 100 meters, as illustrated in

panel (a) of Figure 8. This distance gradient is less abrupt for second-order links: the

probability of a second-order link between any two unrelated households 𝐴 and 𝐵—i.e.,

there exists at least one household 𝐶 with a first-order link to 𝐴 and to 𝐵, and 𝐴 and 𝐵

are not directly linked—is 0.10 on average; it is however 0.06 for households distant by

1 kilometer and is gradually increasing to 0.14 for households living in close proximity.

Home proximity mostly reflects the settlement patterns of these repopulated villages.

These settlement waves followed a concentric logic: the successive waves of house-

holds would locate at the fringe of the existing village borders at any point in time such

that neighbors are typically households from concurrent settlement waves. We show in

panel (b) of Figure 8 how residential proximity correlates with settlement patterns: the

average difference in arrival time is about 12 years for households distant by 1 kilometer

against 8 years for households living in close proximity. In Appendix B.1, we further

show that such settlement patterns do not induce spatial homophily in household ob-
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Figure 8. Home proximity, network linkages, and arrival time.

(a) Network linkages (b) Arrival time

Notes: Panel (a) shows the correlation between the existence of a network linkage (first-order in darker blue, second-order in lighter
blue and dashed line) and distance between homes across all pairs of unrelated households (using a logarithmic scale). Panel (b)
shows the correlation between proximity in arrival times in years and distance between homes across all pairs of households. Note
that arrival times are obtained through a retrospective question to households and not from administrative data.

servable characteristics, e.g., educational attainments or land size.14 They do however

affect agricultural practices on the agricultural land parcels owned by these neighbors,

as we will see next. Finally, we demonstrate in Appendix B.1 that residential neighbors

are equally likely to be of different origins than any random pair of villagers: timing of

arrival does explain location within the village, the origins of settlers not so much.

The role of origins and indirect linkages Even if the origins of different households

do not play a role in the location of their residence within villages, these origins do

play some role in the formation of network linkages. The probability for a first-order

link to exist between any two households of a village (and not from the same family) is

0.022 when they originate from the same province versus 0.013 when they do not. The

equivalent probabilities for second-order links are respectively 0.129 and 0.087.

We can combine the two distinct sources of network formation—shared origins and

the location of homes—to predict second-order linkages.15 Consider two households 𝐴

and 𝐵. We define indirect linkages between 𝐴 and 𝐵 as the number of households 𝐶 that

are either in close proximity of 𝐴 and from the same origins as 𝐵, or in close proximity

14Even if residential settlement was quasi-random, residential proximity could induce some returns to
scale in agricultural production (e.g., through the delivery of material). We cannot reject the existence
of such an effect, although we expect it to be limited: returns to scale should mostly materialize with
proximity between agricultural parcels—a variation that we will include in the baseline controls.

15One reasonable alternative would be to leverage inter-generational splits of households, and the
relocation of the younger generation within the village.
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of 𝐵 and from the same origins as 𝐴.16 Indirect linkages should be specifically predictive

of second-order links for pairs of households that are neither in close proximity of each

other nor from similar origins. Conditioning on the spatial and origin proximity between

𝐴 and 𝐵 and the number of neighbors and settlers with the same origins, we find that

each such indirect linkage adds 0.023 to the probability of actually sharing a second-

order link. In the next section, we rely on spatial proximity as a predictor for first-order

links and on indirect linkages as a predictor for second-order links.

3.2 A treatment through the network

We now hinge on the previous network links and their exogenous predictors to define

measures of exposure and potential exposure to a treatment. Consider a household 𝑖, Φ𝑖

its portfolio of land parcels including the residential place, and 𝑝 ∈ Φ𝑖 the index of land

parcels. In our terminology, treatment 𝑇𝑝𝑖 is defined at the level of a parcel 𝑝 and is equal

to 1 if household 𝑖 grows a high-return perennial crop (rubber, pepper, coffee or cashew

nuts) on the parcel, and to 0 otherwise. The social network within the village can be

summarized by subsets of nodes for each household 𝑖: a set of family-linked households

 1

𝑖
; a set of non-family-related, yet directly-linked households 1

𝑖
; a set of second-order

linked households who are not directly linked 2

𝑖
; etc.17

The exposure to the treatment through first-order links is defined as follows,

𝜗
1

𝑖
=

∑
𝑗∈1

𝑖

max𝑝∈Φ𝑗
𝑇𝑝𝑗

∑
𝑗∈1

𝑖

1

. (1)

In other words, 𝜗1

𝑖
is the share of non-family related, yet directly-linked households

growing a high-return tree crop on a certain parcel. The previous measure, and its

derivatives (e.g., with second-order linkages, 𝜗2

𝑖
), will be based on actual linkages.

We construct similar exposure, but predicted by residential proximity,

𝜃
ℎ

𝑖
=

∑
𝑗∈ℎ

𝑖

max𝑝∈Φ𝑗
𝑇𝑝𝑗

∑
𝑗∈ℎ

𝑖

1

,

where ℎ

𝑖
is the set of households 𝑗 whose home falls within 100 meters of household 𝑖’s

16In our baseline specification, we will define close proximity as having residences within 100 meters
from each other.

17We exclude direct family linkages from our analysis for two main reasons: (i) our instrument hinges
on the intuition that households do not know each other before moving within the village, and co-
settlement patterns induced by larger families moving into a village would violate this assumption; and
(ii) we are not able to distinguish these earlier family links from the later, endogenous linkages arising
from marriages.
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home, or by indirect proximity,

𝜃
ℎ𝑜

𝑖
=

∑
𝑗∈ℎ𝑜

𝑖

max𝑝∈Φ𝑗
𝑇𝑝𝑗

∑
𝑗∈ℎ𝑜

𝑖

1

,

where ℎ𝑜

𝑖
is the set of households 𝑗 who are indirectly related to household 𝑖, i.e., there

is a household 𝑘 that is either in close proximity of 𝑖 and from the same origins as 𝑗 , or

in close proximity of 𝑗 and from the same origins as 𝑖.

The previous measures interact the allocation of treatment within the village with

the network structure or its predictors. In practice, we construct various indicators cap-

turing these dimensions in a separate manner. For instance, we construct the density

of parcels with high-return perennial crops around the various parcels owned by the

household to control for the exposure to the treatment that is not mitigated through the

network. To capture the relative position of a household in the network, irrespective of

the allocation of treatment, we consider the number of first-order linkages, of second-

order linkages, and indicators of network centrality (betweenness, closeness, eigenvec-

tor centrality, clustering). We finally construct the density of potential linkages for a

given household, i.e., the number of households in their immediate proximity or the

number of settlers from similar origins.

3.3 Empirical strategy

We rely on two empirical strategies to estimate a network multiplier to treatment adop-

tion. The first approach is cross-sectional in essence, in that it explains treatment adop-

tion in 2022 using the allocation of treatment in 2019 combined with the social network

at the time. The second approach is a pseudo-panel approach exploiting the timing of

treatment adoption for each treated parcel, the time of formation for each network link-

age, and the staggered arrival of households in the village.

Identification The rationale behind our identification is the following. Identifying

social multipliers or peer effects within networks is challenging (Bramoullé et al., 2020).

The literature has either considered exogeneity in treatment or exogeneity in the al-

location of peers. Using our previous notations, the exposure 𝜗
1

𝑖
is a combination of

agricultural practices in the village (a treatment allocation, {𝑇𝑝𝑖}𝑖) and social linkages (an

allocation of peers, {1

𝑖
}𝑖). In theory, identification with random treatment is possible if

the network is independent from the treatment. Our context is such that both hypothe-

ses are unlikely to hold: it is hard to isolate exogenous variation in the adoption of crops,

and network formation is likely to be shaped by treatment in our “uncontrolled” setting.
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Our approach thus needs to extract exogeneity in the allocation of peers.

Social linkages between households are usually not random: the unobserved mo-

tivations for a contact to adopt certain agricultural practices might be shared by the

household, which would induce a spurious correlation between the first-order exposure,

𝜗
1

𝑖
, and outcomes of interest. We leverage the variation in settlement patterns discussed

in Section 3.1 to extract: (i) exogenous variation in the allocation of (first-order) peers

through the close proximity of homes within the village, and (ii) exogenous variation in

the allocation of (second-order) peers of peers through our indirect linkages combining

origins with timing of arrival to ensure intransitivity. Identification relies on the hy-

pothesis that both variations are indeed quasi-random—conditional on controlling for

the geography of agricultural production and the local density of networks.

We further need to impose parametric assumptions, as illustrated in Equation (1).

Our choice of functional form for the exposure to the treatment allows us to rely on

recent advances in the estimation of shift-share designs. We can write indeed that,

𝜗
1

𝑖
= ∑

𝑗∈1

𝑖

1

∑
𝑗∈1

𝑖

1

max
𝑝∈Φ𝑗

𝑇𝑝𝑗 ,

such that the treatment of other villagers, max𝑝∈Φ𝑗
𝑇𝑝𝑗 , is a shift and the shares are the

normalized linkages from household 𝑖 to other households 𝑗 : 1/(∑
𝑗∈1

𝑖

1) for peers within

1

𝑖
, and 0 otherwise. As previously discussed, we do not think that shifts are exogenous

(thus making approaches based on random shocks irrelevant in our setting, e.g., Adão et

al., 2019; Borusyak et al., 2022). We however extract exogenous variation in the shares

with the following shift-share instrument,

𝜃
ℎ

𝑖
= ∑

𝑗∈ℎ

𝑖

1

∑
𝑗∈ℎ

𝑖

1

max
𝑝∈Φ𝑗

𝑇𝑝𝑗 ,

where we assume that the proximity of homes—the share—is exogenous (Goldsmith-

Pinkham et al., 2020).

Our model is close to the workhorse linear-in-means model used in empirical work

on peer effects (see Bramoullé et al., 2020; Boucher et al., 2022, for a review and for a

generalization, respectively). A crucial issue in such literature is the separate identifi-

cation of endogenous peer effects—a pure impact of treatment adoption from peers in

our setting—and contextual peer effects—the impact of the characteristics of peers, e.g.,

their general technological knowledge. This is at the heart of the famous reflection prob-

lem (whereby prospective adoption influences adoption among peers, see Manski, 1993):

when all peers share the same peer effects (e.g., the same group of influential peers), en-

22



dogenous and contextual peer effects cannot be identified separately. The main objective

of our study is not to untangle those two effects, even though they might have different

policy implications.18 We do however consider a peer-of-peer variation, as in Bramoullé

et al. (2009) or De Giorgi et al. (2010). Peer-of-peer variation (between 𝐴 and 𝐵, through

intermediaries 𝐶) allows to exclude the direct impact of the characteristics of 𝐵 on 𝐴,

and to identify the indirect impact through the actual outcomes for intermediaries.

A two-period approach Our baseline empirical strategy is at the land parcel level.

Consider a land parcel 𝑝 within the portfolio Φ𝑖 of household 𝑖. We estimate,

𝑦𝑝𝑖 = 𝛼 + 𝛽𝜗
1

𝑖
+ 𝛾𝐗𝑝𝑖 + 𝜀𝑝𝑖 (2)

where: the first-order exposure, 𝜗1

𝑖
, is instrumented by the predicted exposure through

residential proximity, 𝜃ℎ
𝑖
; 𝐗𝑝𝑖 includes the previous status of the parcel in 2019 (treated or

not), parcel characteristics (area, bulk density, organic carbon content, elevation, slope,

distance to the homestead), the latitude, longitude and altitude of the home location, the

density of parcels (with high-return perennial crops) around the various parcels owned

by the household, the number of first-order linkages, of second-order linkages, and indi-

cators of network centrality (betweenness, closeness, eigenvector centrality, clustering),

the number of households in their immediate proximity, and measures of altitude differ-

entials with other homes in the village, and sub-network fixed effects; standard errors

are clustered at the household level; and weights are adjusted such that each household

contributes equally to the estimation.

Residential proximity is a good predictor of social linkages, even when condition-

ing for agricultural proximity and other observable characteristics of the land portfolio.

We thus expect the predicted exposure through residential proximity (𝜃ℎ
𝑖
) to predict the

exposure through the actual social network (𝜗1

𝑖
). Indeed, we find that an additional stan-

dard deviation in predicted exposure through residential proximity increases exposure

through the network by 0.21 standard deviations, and this effect is stable across specifi-

cations with more or less controls—see Table 2, which constitutes the first stage of our

empirical strategy.

One limitation of the previous approach is that it essentially hinges on treatment

adoption between 2019 and 2022, and statistical power might be limited. We thus de-

velop a pseudo-panel approach, which exploits the variation induced by the arrival of

households over 40 years, the gradual formation of network linkages, and the staggered

18For instance, a large endogenous peer effect could justify the implementation of targeted subsidies
to crop adoption, while a large contextual peer effect would lead to the design of information programs
(if information is indeed underlying the contextual peer effect).
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Table 2. Predicting exposure.

Exposure (𝜗1
𝑖
) (1) (2) (3)

Predicted exposure (𝜃ℎ
𝑖
) 0.206 0.210 0.216

(0.055) (0.052) (0.053)

Controls (instrument) Yes Yes Yes
Controls (soil) No Yes Yes
Controls (network) No No Yes
Observations 2,203 2,203 2,203
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The dependent variable is the standardized exposure to the treatment; the
explaining variable is the standardized, predicted exposure to the treatment—as predicted by proximity between homes. In both cases,
the exposures are computed using the allocation of treatment in 2019. The set of (instrument) controls include: the previous status
of the parcel in 2019 (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

adoption of treatment.

A pseudo-panel approach Our second strategy reconstructs a pseudo-panel of land

usage from retrospective information about the dates of land acquisition and (perennial)

crop adoption.19 We proceed in a similar manner to define presence within the settlement

(from the date of arrival, as reported by the household head) and the date of formation

of each linkage (from the date of linkage formation as reported in the network module).

The retrospective information thus only covers the structure of the network (including

the evolution of predictors of network formation) and the allocation of treatment at any

point in time.

We start in 𝑡0 = 1980 and construct a sequence of waves 𝑛 every three years, i.e.,

𝑡𝑛 = 𝑡𝑛−1 + 3, for which we observe the main explaining variables (𝜗𝑚

𝑖𝑛
for 𝑚 ∈ {1, 2}),

network controls, and the treatment 𝑦𝑝𝑖𝑛. We then estimate a specification in difference,

𝑦𝑝𝑖𝑛 − 𝑦𝑝𝑖𝑛−1 = 𝛼𝑖 + 𝛽 (𝜗
1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1) + 𝜇𝑛 + 𝛾𝐗𝑝𝑖𝑛 + 𝜀𝑝𝑖𝑛 (3)

where the dynamics of exposure is instrumented by the dynamics of predicted exposure

19One caveat is that we do not observe the previous land usage, before the planting of the current
perennial crop. We assume that a parcel on which a high-return perennial crop is planted at date 𝜏 was
not treated in previous periods. We also suppose that treatment is an absorbing state.
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through residential proximity. The increased exposure, (𝜗1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1), both reflects the

adoption of high-return crops by linked households and the formation of new links. One

advantage of the pseudo-panel approach is that we can impose some of these elements to

be fixed between consecutive periods such as to neutralize the variation that is induced

by changing crop practices among incumbents for instance.

4 Crop adoption and the role of weak links

This section estimates the return to local networks in crop adoption.

4.1 Baseline results

The return to local networks in crop adoption In a first step, we estimate Equa-

tion (2) in a linear 2SLS specification. We explain treatment in 2022—a dummy equal to 1

if the land parcel is used to grow high-return perennial crops—by the standardized expo-

sure to the treatment, 𝜗1

𝑖
, as weighted by direct links between households. The latter is

instrumented by the “exogenous” exposure, 𝜃ℎ
𝑖
, weighted by proximity between homes.

Importantly, the empirical specification conditions on the previous status of the parcel

in 2019 (treated or not), soil characteristics, the location of the different household land

parcels within the village, and the local density of social networks (see the footnote of

Table 3 for the full list of controls).

We report the return to local networks obtained through this linear specification in

Table 3. We find that an additional standard deviation in exposure (𝜗1

𝑖
) increases the

likelihood to grow a high-return perennial crop by about 0.10, whether we only control

for geography within the village (column 1), we further condition on soil characteristics

(column 2), or we additionally control for network density (column 3). For interpreta-

tion purposes, one standard deviation is the average gap between households who have

no direct contacts growing high-productive crops and households who have only one

first-order contact growing such high-productive crops. This estimate would thus cor-

respond to a very large multiplier: high-return perennial crops are only grown on a fifth

of agricultural land parcels in 2022.

One concern with the previous specification is that crop adoption is a rare event. In

Table 4, we replicate the exercise of Table 3 in a probit specification based on Equation (2)

and report the average marginal effects of direct exposure to the treatment (𝜗1

𝑖
). The

results are however very similar to that of Table 3.

The previous two-period approach suffers from a few other caveats: (i) crop adoption

is not frequent such that the estimation relies on about 50 “adopters”; (ii) the latter im-
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Table 3. The return to social network—a linear specification.

Adoption (1) (2) (3)

Exposure (𝜗1
𝑖
) 0.087 0.090 0.109

(0.049) (0.049) (0.052)

Controls (instrument) Yes Yes Yes
Controls (soil) No Yes Yes
Controls (network) No No Yes
Observations 2,203 2,203 2,203
F-stat 14.08 14.34 16.31
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The explaining variable is the standardized exposure to the treatment;
the instrument is the standardized, predicted exposure to the treatment—as predicted by proximity between homes. In both cases,
the exposures are computed using the allocation of treatment in 2019. The set of (instrument) controls include: the previous status
of the parcel in 2019 (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

Table 4. The return to social network—a probit specification.

Adoption (1) (2) (3)

Exposure (𝜗1
𝑖
) 0.097 0.113 0.113

(0.065) (0.061) (0.060)

Controls (instrument) Yes Yes Yes
Controls (soil) No Yes Yes
Controls (network) No No Yes
Observations 2,198 2,198 2,198
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The explaining variable is the standardized exposure to the treatment;
the instrument is the standardized, predicted exposure to the treatment—as predicted by proximity between homes. In both cases,
the exposures are computed using the allocation of treatment in 2019. The set of (instrument) controls include: the previous status
of the parcel in 2019 (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).
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plies that the specification is under-powered to analyze the role of second-order linkages;

and (iii) the previous identification is cross-sectional in essence and does not exploit the

variation induced by recent arrivals to the village versus the variation induced by in-

cumbents (possibly contaminated by a reflection problem). For these reasons, we exploit

a pseudo-panel of network formation and dynamic crop adoption in the next exercise.

A pseudo-panel approach We now exploit the dynamics of crop adoption, exposure

to the treatment, arrival time in the village and network formation by constructing our

treatment and exposure variables every 3 years from 1980 to 2022. In 1980, about 18%

of contemporary land parcels were already cultivated by the few existing settlers, with

about than 2.5% of those growing high-return perennial crops (on 13 parcels). In 2022,

about 650 parcels are growing high-return perennial crops.

Table 5. The return to social network—a pseudo-panel approach.

Adoption (𝑦𝑝𝑖𝑛 − 𝑦𝑝𝑖𝑛−1) (1) (2) (3)

Exposure (𝜗0
𝑖𝑛
− 𝜗

0

𝑖𝑛−1
) 0.014

(0.004)
First-order exposure (𝜗1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1
) 0.051

(0.022)
Second-order exposure (𝜗2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1
) 0.029

(0.019)

Observations 23,569 20,436 7,306
F-stat 385.97 12.52 15.79
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include year fixed effects. The set of (instrument) controls include: the previous status of the parcel in
the previous period (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

To explain the staggered crop adoption across these land parcels, we estimate a

specification in difference (see Equation 3) whereby crop adoption among incumbents,

𝑦𝑝𝑖𝑛−𝑦𝑝𝑖𝑛−1, is explained by the evolution of exposure to the treatment, 𝜗𝑚

𝑖𝑛
−𝜗

𝑚

𝑖𝑛−1
, where

we fix the allocation of treatment in wave 𝑛 − 1. In other words, the dynamics of ex-

posure, 𝜗𝑚

𝑖𝑛
− 𝜗

𝑚

𝑖𝑛−1
, is only allowed to evolve due to the formation of new links in the

village, e.g., as triggered by the arrival of new households. This object is instrumented

by the dynamics of the exogenous exposure, 𝜃ℎ
𝑖𝑛
− 𝜃

ℎ

𝑖𝑛−1
or 𝜃ℎ𝑜

𝑖𝑛
− 𝜃

ℎ𝑜

𝑖𝑛−1
, where we fix the
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allocation of treatment in wave 𝑛−1. We consider three variations for the exposure vari-

able: (i) a general exposure to the treatment, 𝜗0

𝑖𝑛
combining linkages of different orders;20

(ii) the first-order exposure to the treatment, 𝜗1

𝑖𝑛
; and (iii) the second-order exposure to

the treatment, 𝜗2

𝑖𝑛
, for households that are not directly exposed to the treatment, i.e., for

whom 𝜗
1

𝑖𝑛
= 0.

Table 5 shows that a change in exposure to the treatment triggered by changes in the

composition of neighbors does affect crop adoption (column 1). An additional standard

deviation in general exposure (𝜗0

𝑖𝑛
) increases the likelihood to adopt a high-return peren-

nial crop between waves by about 0.014. This effect could be driven by direct exposure

to the treatment through peers or indirect exposure through peers of peers. In column 2,

we find that an additional standard deviation in first-order exposure (𝜗1

𝑖𝑛
) increases treat-

ment adoption by about 0.051 (an estimate directly comparable to the ones presented in

Table 3). In column 3, we exclude all households with some first-order exposure to the

treatment and consider second-order exposure instrumented by indirect linkages as the

dependent variable: we find that an additional standard deviation in second-order ex-

posure (𝜗1

𝑖𝑛
) increases treatment adoption by about 0.029—a non-negligible effect, albeit

imprecisely estimated.

These estimates are slightly lower than those obtained through the estimation of

Equation (2). We verify in Appendix B.2 that this is not a byproduct of the longer time

coverage and the inclusion of periods with limited adoption (e.g., before 2006). In what

follows, we calibrate our social multiplier on the estimate of column (2), i.e., 𝛽 = 0.051—

possibly a lower bound, which however remains substantial. Before discussing the co-

existence of a large network multiplier with a relatively low adoption rate, we provide a

sensitivity analysis of the main estimates and a brief exploration of possible mechanisms.

4.2 Robustness checks and possible mechanisms

Robustness checks We now briefly describe a series of robustness checks and leave

the more detailed evidence to Appendix B.2. First, we discuss identification concerns and

the exact specification of strategy (2). We report the OLS regressions and show that the

estimates are then slightly positive, albeit very close to 0. Our preferred interpretation

is that there is a high degree of homophily within networks, the status of households
20We define the general exposure to the treatment, 𝜗0

𝑖
, as follows,

𝜗
0

𝑖
=

∑
3

𝑚=1
∑

𝑗∈𝑚

𝑖

𝛿
𝑚
max𝑝∈Φ𝑗

𝑇𝑝𝑗

∑
3

𝑚=1
∑

𝑗∈𝑚

𝑖

𝛿
𝑚

.

While the previous formula appears complicated, it simply consists in applying a discount to higher-order
linkages: a discount factor 𝛿, set to be equal to 0.5, applies to second-order linkages compared to first-order
linkages, and the discount factor 𝛿 applies to third-order linkages compared to second-order linkages.
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is very correlated with their neighbors’, and we observe very few changes in cropping

patterns as induced by the average network link. In the baseline specification, however,

we exploit the smaller subset of weaker links which can bring change. We also provide

a specification with additional controls to better condition on the unobserved hetero-

geneity that is possibly correlated with residential proximity to treated households (e.g.,

land tenure, soil acidity/organic content, land quality, and household characteristics).

We further provide a sensitivity analysis with alternative instruments/treatments.

Second, we exploit the empirical specification (3) to better characterize the timing

of adoption. We add lags and leads in changes of exposure to capture a possible delay

in crop adoption and to test that future settlement patterns are orthogonal to previous

treatment. We also estimate our social multiplier across different periods of interest, and

across settlers with different tenure in the village. Our findings indicate that the social

multiplier remains quite similar over time, but more recently arrived households ap-

pear more responsive—even though our estimate is robust to excluding the very freshly-

arrived households.

Table 6. The return to social network—possible mechanisms.

Quality Suitability Input Climate Consideration

Exposure (𝜗1
𝑖
) 0.145 0.212 0.015 0.061 0.244

(0.198) (0.073) (0.059) (0.097) (0.099)

Observations 2,203 2,203 2,203 2,203 2,203
F-stat 16.31 16.31 16.31 16.31 16.31
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The dependent variable is: a subjective evaluation of land quality (scale
from 0, unsuitable, to 5) in column (1); a subjective evaluation of land suitability to grow one of the high-return perennial crop
in column (2); an index of subjective evaluations of land needs from 0 to 1 (fertilizers, pesticides, and herbicides) in column (3); an
index of subjective evaluations of climate risk from 0 to 1 (flood, drought, and water pollution) in column (4); and whether the farmer
consider growing one of the high-return perennial crop in column (5). The explaining variable is the standardized exposure to the
treatment; the instrument is the standardized, predicted exposure to the treatment—as predicted by proximity between homes. In
both cases, the exposures are computed using the allocation of treatment in 2019. The set of controls is similar to that of column 3
of Table 3. The sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both
waves, ii: with similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing
its borders).

Possible mechanisms To investigate the channels through which exposure to the

treatment may affect farmers, we estimate a specification similar to Equation (2) (see,

e.g., the last column of Table 3), but we replace the dependent variable by: (i) a subjective

evaluation of land quality; (ii) the likelihood to declare the land parcel suitable for the

cultivation of any of the main high-return crops (coffee, rubber, pepper, and cashew
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nuts); (iii) a subjective evaluation of land needs (fertilizers, pesticides, and herbicides);

(iv) a subjective evaluation of climate risk (flood, drought, and water pollution); and (v)

a declared willingness to consider growing high-return crops on the land parcel. We

report the outcome of these estimations in Table 6.

Exposure to the treatment appears to affect beliefs about land suitability for high-

return crops (see column 2) and whether the respondent has seriously considered grow-

ing high-return perennial crops on the land parcel (see column 5). Both effects are sizable:

for instance, an additional standard deviation in exposure increases the likelihood to con-

sider the land parcel as suitable by 0.21—an effect as large as the mean of the variable.

This effect is consistent with uninformed farmers over-estimating the requirements for

growing certain crops through the lack of first-hand experience (and consistent with the

first-hand experience of neighbors being instrumental in treatment adoption, see Foster

and Rosenzweig, 1995; Conley and Udry, 2010). The perfect example is the cashew-

growing tree: the plant has low water and soil requirements; it can survive reasonably

long periods of drought, can be planted on moderately fertile soil, does not require much

input, and can accommodate steep gradients. Pepper or coffee are also not very demand-

ing in terms of input or in terms of soil characteristics.

5 Network structure and the (limited) impact of weak links

How do we reconcile a sizable network multiplier with the original puzzle? This sec-

tion shows that: the puzzle is explained by homophily across the average link; such ho-

mophily endogenously arises from clustered networks; the returns to social links tend

to decrease with time; and policies targeting “inbetweeners” are most able to mitigate

this issue.21

Homophily and the propagation of treatment Treatment adoption in the village

appears limited, given the size of the multiplier associated with a first-order linkage to

treated households. One reason could be the high homophily within the network: house-

holds that are connected to treated households typically grow highly-productive crops

already, and households in need for exposure to the treatment are typically not exposed

through their network of friends and neighbors. We documented such homophily in

agricultural practices across linked households in panel (d) of Figure 7.

In order to shed light on the role of homophily in tempering the impact of social mul-

21Throughout this section, our back-of-the-envelope approach ignores strategic considerations from
households: the social network is taken as given and fixed over time, and the adoption of highly-productive
agricultural practices is modeled as a diffusion process. A costly alternative would be to consider coun-
terfactual scenarios within a structural model of crop adoption (and possibly linkage formation).
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Figure 9. Network structure and the propagation of treatment—randomizing past exposure.

Notes: This Figure compares the actual share of households with a treated parcel (i.e., growing coffee, rubber, cashew nuts, or pepper)
to counterfactual shares between 1980–2019. The counterfactuals are based on: (i) the wave-specific predicted likelihood to adopt
and treatment exposure at that time, as inferred from estimating wave-specific variations of Equation (3); and 10 re-sampled random
networks. In practice, we proceed in a recursive fashion to re-sample networks: 1. we consider the actual settlement date for all
households and populate the village accordingly across time; 2. in every year, we re-sample the links that were declared as formed
in this exact year among the yet unlinked households; 3. we take the formed links as perennial and proceed to the next wave.
The dashed blue line represents the actual share of households; the green dots represent the counterfactual share in each of the 10
experiments; and the green line is the average share across the 10 counterfactuals.

tipliers, we simulate crop adoption within actual and counterfactual social networks in

the past (1980–2019). In this backward projection, we use our estimated Equation (3) to

predict treatment propagation within the village, accounting for the timing of arrival and

the staggered formation of linkages. We do so in two scenarios: (i) using the actual net-

work formation
{

𝑚

𝑖

}

𝑖,𝑚
to provide a benchmark prediction, and (ii) using re-sampled,

random linkages (with their timing) across pairs of households while keeping the same

overall network density at any given time. We find that randomizing network linkages

would have generated a faster adoption of high-return agricultural practices in 2019, as

shown in Figure 9. High-return crops were planted on at least one parcel for about 18%

of households in 2019 (blue, dashed curve). Counterfactual scenarios with random link-

ages all produce a higher adoption rate: on average, high-return crops would be planted

on at least one parcel for about 27% of households in 2019 (green dots).

In theory, homophily arises for two distinct reasons: (i) exogenous factors underlying

both the formation of linkages and the adoption of treatment; and (ii) the endogenous

propagation of treatment through the network. First, the geographic location of land
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parcels or the socio-economic characteristics of households (e.g., their education, the

other income sources such as remittances, their wealth) do predict agricultural practices

and network formation, at least to some extent. Our empirical strategy described in Sec-

tion 3 was designed to neutralize such variation. Second, the distribution of treatment

across farmers might exhibit strong homophily through the social network, even when

the initial treatment allocation is initially random. To understand this argument, con-

sider a clustered network, i.e., a network where the following property holds: if there

exists a household 𝐶 with a link to 𝐴 and to 𝐵, then 𝐴 and 𝐵 are more likely to be con-

nected. In such a clustered network, treatment would primarily propagate within some

clusters; and the return to social links would then decrease over time.22 We quantify this

latter effect in the following section.

Figure 10. Network structure and the propagation of treatment—Homophily and clustering.

(a) Adoption (b) Homophily

Notes: Panel (a) compares the actual share of households with a treated parcel (i.e., growing coffee, rubber, cashew nuts, or pepper)
to counterfactual shares between 2022–2070. All simulations assume that crop adoption follows a variation of Equation (3), i.e.,
𝑃(𝑦𝑖𝑛+1 = 1|𝑦𝑖𝑛 = 0) = 𝑎 + 𝑏𝜗

1

𝑖
where 𝑛 is a wave and 𝑖 is a land parcel. We consider four scenarios: (i) a baseline projection with

the actual network structure and distribution of agricultural practices in 2022 [dashed curve, circles], (ii) randomized agricultural
practices in 2022 [light blue, diamonds], (iii) randomized network linkages [green, crosses], and (iv) randomized agricultural practices
in 2022 and network linkages [purple, triangles]. Panel (b) displays the evolution of homophily within the network where homophily
is the correlation in treatment calculated across undirected links, as in panel (d) of Figure 7. Note that we randomize agricultural
practices in 2022 such as to keep the same exact incidence for each village as in the baseline.

22Almost all social networks exhibit some form of clustering: the formation of links is usually affected
by underlying factors that are not idiosyncratically distributed in the population. When these correlated
factors directly predict treatment adoption, their distribution across households generates clustered net-
works with strong homophily—as in our example (i). In our context, for instance, farmers hold agricultural
parcels in certain parts of the village; their land portfolios jointly determine the formation of social links
and the adoption of certain cropping practices. When these correlated factors do not directly predict treat-
ment adoption, the dynamic propagation of agricultural practices through the network would generate
clustering.
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Homophily, clustering, and the propagation of treatment To better understand

the importance of network structure, we leverage our previous estimates to predict crop

adoption forward between 2022–2070. In these counterfactual experiments, we assume

that the network structure, represented by the set of 𝑚-order linkages,
{

𝑚

𝑖

}

𝑖,𝑚
, remains

constant over time.23 Households will however change cropping patterns across sim-

ulations and over time, thereby providing a different distribution of treatment within

the village and a different exposure to the treatment for households who have yet to

adopt the highly-productive crops. We consider four scenarios: (i) a baseline projection

with the actual network structure and distribution of agricultural practices in 2022; (ii)

randomized agricultural practices in 2022; (iii) randomized network linkages; and (iv)

randomized agricultural practices in 2022 and network linkages.

We report the outcome of our forward projection in Figure 10. Panel (a) illustrates

the evolution of the share of households with a treated parcel (i.e., growing coffee, rub-

ber, cashew nuts, or pepper). In the baseline, high-return crops would be planted on at

least one parcel for about 52% of households in 2070, with a slowdown of adoption over

time. Randomizing the initial treatment distribution would lead to a 60% adoption rate

in 2070, with a negative inflection over time. Randomizing exposure through random

links also generates a higher adoption rate in 2070 (about 65%), as shown in Figure 10;

randomizing links allows for a more convex pattern in crop adoption: the impact of weak

links does not fade away so much over time. Randomizing both the network structure

and the initial treatment distribution would lead to a 72% adoption rate in 2070, without

any negative inflection over time. Panel (b) provides an explanation behind the differen-

tial dynamic returns observed across simulations: homophily in agricultural practices is

initially high in the baseline and markedly increases in the first 25 years. After 2050, the

correlation in agricultural practices across network linkages is around 0.85. Reshuffling

the initial distribution of agricultural practices lowers homophily in the short run. The

correlation in agricultural practices across network linkages however swiftly increases

in the first 25 years, and homophily becomes almost as high as in the baseline. The cru-

cial underlying factor is the clustered structure of networks: in the experiments with

randomized networks, homophily rises at a much more steady pace and remains below

0.70, even in the medium-long run.

Clustered networks significantly limit dynamic social multipliers in treatment adop-

tion. There are, however, mitigation strategies: treatment could be targeted to those few

important in-between nodes within the network. We study such targeted policies next.

23We implement this exercise between 2022–2070, rather than retrospectively for the following reason:
households would arrive in the village between 1980–2019 and new links are formed, such that the social
network would need to evolve.

33



Figure 11. Network structure and the propagation of treatment—targeted policies.

Notes: This Figure compares the actual share of households with a treated parcel (i.e., growing coffee, rubber, cashew nuts, or
pepper) to counterfactual shares between 2022–2070. All simulations assume that crop adoption follows a variation of Equation (3),
i.e., 𝑃(𝑦𝑖𝑛+1 = 1|𝑦𝑖𝑛 = 0) = 𝑎+ 𝑏𝜗

1

𝑖
where 𝑛 is a wave and 𝑖 is a land parcel. We consider five scenarios: a baseline projection with the

actual network structure and distribution of agricultural practices in 2022 [dashed curve, circles], (T1) reshuffled high-return crops
to households with the highest number of undirected links [red, diamonds], (T2) reshuffled high-return crops to households with the
highest betweenness centrality measure [blue, crosses], (T3) reshuffled high-return crops to households with the highest closeness
centrality measure [green, triangles], (T4) reshuffled high-return crops to households with the highest clustering coefficient [gold,
circles]. Note that we reshuffle agricultural practices in 2022 such as to keep the same exact incidence for each village as in the
baseline.

Targeted policies We conclude the analysis by discussing policy and how to target the

most relevant households with respect to their network position. Maximizing propaga-

tion is notoriously hard (and not so important in the long run under some propagation

mechanisms, see, e.g., Akbarpour et al., 2023), and we cannot identify a type-specific

network multiplier (Sadler, 2023). For these reasons, we focus on the role of network

nodes with high centrality coefficients (following Banerjee et al., 2013; Kim et al., 2015;

Banerjee et al., 2019; Beaman et al., 2021, for instance). To this purpose, we replicate

the approach described in the previous section and redistribute treatment in 2022: (T1)

to connected households—with the highest network degree; (T2) to households that are

bridges between other households—with the highest betweenness centrality measure;

(T3) to households that are most central—with the highest closeness centrality measure;

(T4) to most clustered households—with the highest clustering coefficient.

We report the outcome of projected crop adoption across these scenarios in Figure 11.

We find that the baseline projection is not too different from the scenario where we al-

locate treatment to the most clustered household, a strong indication that the initial

allocation of treatment in our villages is least prone to treatment diffusion. In stark con-
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trast, reshuffling treatment to connected households (T1), to households most likely to

form a bridge between other households (T2), or to central households (T3) would hugely

accelerate treatment adoption. Interestingly, the most efficient of these experiments is

the one targeting “in-betweeners” through the betweenness centrality measure: policies

should be targeted at nodes that are most likely to be along the shortest paths between

any two other nodes.

6 Concluding remarks

This paper documents an apparent contradiction: while there are high returns to adopt-

ing certain cropping practices, and observing such practices being adopted within one’s

social network leads to further adoption, actual adoption remains limited. We show that

it is related to the network structure itself: the useful social linkages—that we exploit

for identification purposes—across households with different practices and beliefs are

rare. The homophily of networks prevents productive practices from being adopted and

limits the social spillovers to adoption. We show how such homophily arises endoge-

nously from the structure of village networks and how targeted policies might alleviate

this issue.

A limit to our present study is to ignore other frictions (credit, land, insurance, tech-

nology) that could slow down agricultural transformation within rural villages. Another

limit is that it considers the crop premium as fixed and ignores fluctuations in such pre-

mium: adopting coffee might be a good idea in 2022, given current coffee prices, but these

conditions might change. We explore the role of fluctuations, fixed costs, technological

frictions, and frictional factor markets in explaining (the lack of) changes in agricultural

practices in a companion paper. Finally, village networks might propagate information,

but also shocks, and those households that are connected to high-productivity, high-risk

villagers might bear part of this risk (Kinnan et al., 2024).
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A Data appendix

This section provides complements to the data description of Section 2 with: a detailed

presentation of our data sources; and additional evidence about agricultural practices

and the structure of social networks.

A.1 Data sources

Our main data source is a survey of households in four rural villages of the Central

Highlands of Vietnam.

A survey of households in rural Vietnam The first round of the survey was con-

ducted in September 2019 as part of the project “An Interdisciplinary Approach to Un-

derstanding Past, Present and Future Flood Risk in Viet Nam”, funded by the Natural

Environment Research Council and the National Foundation for Science and Technology

Development through the Newton Hydrometeorological Hazards (NE/S003061/1). The

survey was supervised by Pham Khanh Nam (University of Economics, Ho-Chi-Minh

City, EEPSEA) and Truong Dang Thuy (University of Economics, Ho-Chi-Minh City),

while the questionnaire was designed by Niels Wendt (Institut für Wirtschafts und Kul-

turgeographie, Leibniz Universität Hannover) under the supervision of the full research

team including Andre Groeger and Yanos Zylberberg. A follow-up survey was conducted

in September 2022 by the same team, and financed by the British Academy through the

Humanities and Social Sciences Tackling Global Challenges programme (TGC/200149).

The survey questionnaire was based on the 2017 questionnaire of the Thailand Viet-

nam Socio Economic Panel (TVSEP). The latter survey covers about 220 villages across

three provinces of Vietnam; we randomly selected four villages of this sample, located

in the Ea Súp District, Lak District, Krông Bông District and Krông Pac District, and all

within the Dak Lak province. The survey was implemented by a team of 4 supervisors,

about 25-30 enumerators, and the questionnaire was coded using the software Survey

Solutions provided by the World Bank. The survey covers 945 households in 2019, and

950 households in 2020, with an attrition rate of about 5% between the two waves, i.e.,

45 households exit the survey in 2019 and 50 new households are interviewed. Our main

analysis only considers households present in both waves.

The survey has 14 modules: (1) a cover section, (2) general household information,

(3) an individual roster covering demographics, education, health and family/informal

transfers, (4) a network module including a labor exchange sub-module, (5) household

expenditures, (6) a land (usage) module covering agriculture, livestock, and aquaculture,

(7) a risk section, (8) a wage section, (9) a non-farm self-employment section, (10) a
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Figure A.1. Attrition across modules.

Notes: This figure reports attrition across the different (novel) modules. 1.a Crop refers to the agricultural section; 1.b Location
refers to the geolocation of land parcels; 1.c Subjective refers to the subjective assessment of land quality, suitability and land
requirements for agricultural production; 2.a Crop refers to the climate module; 2.b Crop refers to an evaluation module where
households would evaluate land quality, suitability and land requirements for a (randomly selected) subset of parcels in the village;
and 3. Crop refers to the network module.

credit and public transfer section covering formal and informal credit, possible defaults,

public transfers and insurance, (11) an investment and assets section, (12) a section about

housing conditions, (13) an interview evaluation by enumerator, and (14) a meta-section

including statistics on the tablet usage and comments by enumerators, supervisors and

data checkers. The latter section allowed us to perform checks during the survey and

conduct additional interviews when needed. Interviewers were mostly undergraduate

economics students from the local university, Tay Nguyen University (TNU). An average

interview would last 3 hours and cover about 1,000 questions.

While the core of the survey is following the general standards of the literature (i.e.,

World Bank questionnaires), it contains more in-depth information on: labor exchange,

the structure of networks within villages with a dedicated section and numerous ques-

tions linking specific peers to other questions (e.g., about informal credit), a land module

with a geo-location of parcels, subjective assessment about land quality and needs, a cli-

mate change module. We show the attrition rate across the novel modules in Figure A.1

where we see that attrition is minimal, except for agricultural production (about 15-20%

of households do not produce anymore) and the prediction module where households

would evaluate land quality, suitability and land requirements for a (randomly selected)
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subset of parcels in the village.

We describe some of these novel modules in greater detail below.

Figure A.2. Validation for the geolocation procedure.

(a) Distance to homestead (b) Land area

Notes: These figures report a validation exercise for the geo-located land parcels. The left panel reports the relationship between
the measured distance to the land parcel (x-axis) and the distance as reported by the respondent (y-axis). The right panel reports
the relationship between the measured land area (x-axis) and the area as reported by the respondent (y-axis). In both instances, we
create bins of observations along the x-axis variable and the dots represent the average of the y-axis variable within each bin. The
lines are locally weighted regressions with the associated 95% confidence interval.

Geo-location of parcels The geo-localization of parcels is part of the land module

and proceeds as follows:

– A satellite map is prepared and augmented by the addition of points of interest (e.g.,

gas stations, supermarkets, schools etc.). The map covers a radius of 8 kilometers

around the village centroid.

– The software automatically centers the map around the current location; the in-

terviewer then helps the respondent navigate by showing her/him the main points

of interest, the main roads, the waterways. In practice, the most efficient way of

finding a land parcel is to ask the respondent to follow the usual route on the map,

starting from the house to the land parcel.

– Once the location of the land parcel is identified by the respondent on the map,

the interviewer draws a polygon under the instructions of the respondent.

– Additional questions help capture possible issues with the geo-localization, e.g.,

how sure the respondent may be, how much help was needed etc.
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The geo-location procedure is cheap and fast, it can be integrated into any survey

through Survey Solutions (developed by the World Bank); attrition is very low. One

question remains: how precise is it, and how does it compare to the actual boundaries

of land parcels?

We report in Figure A.2 a comparison between the measured land characteristics

(area and the distance to the main house) and these characteristics as reported by the

respondent. There is a strong, positive relationship between the measured and reported

distance, even though respondents tend to overestimate the distance to the land par-

cel, probably reflecting that they interpret the question as asking for the travel distance

rather than the distance as the crow flies.

Figure A.3. Inferred soil quality (𝑝𝐻 , acidity, and 𝑃2𝑂5𝑑𝑡, phosphate).

(a) 𝑝𝐻 (acidity) (b) 𝑃2𝑂5𝑑𝑡 (phosphate)

Notes: These figures report the inferred soil content from about 100 soil samples in Village 1 of our survey. We use kriging to
generate a predicted map of soil characteristics from our 100 discrete samples.

Objective soil data Our survey collects subjective evaluation of land quality and soil

needs. We complement this data with about 300 soil samples in 2022, and test for: 𝑝𝐻

(acidity), 𝑂𝑀𝑡𝑠 (organic content), 𝑁𝑡𝑠 (nitrogen), 𝑃2𝑂5𝑑𝑡 (phosphate), 𝐾2𝑂𝑑𝑡 (potash).

The soil samples were selected from the subset of well geo-located land parcels in 2019

and chosen to best cover the different land usages (annual, perennial, non-agricultural,

fallow) and to ensure a dense geographic coverage of our four villages. The output of

the procedure is displayed in Figure A.3 for one of our four villages. Note that we use

the inferred soil content in robustness checks—see Appendix B.2.

We also extract high-quality data on topography at a 30m precision and soil charac-

teristics at a 100m precision from satellite imagery and derivatives (Hengl, 2018; Hengl

and Wheeler, 2018). These data, shown in Figure A.4, allow us to control for objective

land parcel characteristics (area, bulk density, organic carbon content, elevation, slope)

in our baseline specifications—see Sections 3.3 and 4.1.
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Figure A.4. Soil characteristics (bulk density, and carbon content).

(a) Soil bulk density at 0 cm depth (b) Organic carbon content

Notes: These figures report inferred carbon content and soil bulk in Village 1. We extract high-quality data on topography (30m
precision), soil characteristics (100m precision) and temperature/precipitation (1km precision) from Google Earth Engine. More
specifically, we construct the maximum, minimum and average elevation within each hexagon; the average slope; the soil bulk
density at 0 cm depth as reconstructed from recent satellite imagery; the organic carbon content.

Figure A.5. Comparing evaluations of land quality and need for fertilizer usage (own versus other vil-
lagers’).

(a) Land quality (b) Fertilizers

Notes: Panel (a) shows the correlation between the farmer’s evaluation of the quality of their own land parcels versus the others’
evaluation for the same land parcel. Panel (b) shows the correlation between the farmer’s and the others’ evaluation of the need for
fertilizer usage.

Subjective land evaluations Our land questionnaire in 2022 contains questions about

land quality, suitability and requirements. More specifically, we ask about: land quality

on a scale of 0 (not suitable for cultivation) to 5; crops that the respondent considers as

being possibly cultivated on the land parcel—if the land parcel is suitable (land quality

above 0), at least one crop should be selected; which crop the respondent has seriously

considered growing on the land parcel; the need to use fertilizers, herbicides, or pesti-

cides on the land parcel; whether the respondent is aware of the existence of soil testing
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kits and whether they would like their soil to be tested. We ask similar questions to

the respondent about four land parcels within the village that are randomly-selected

amongst 140 representative land parcels. We show in Figure A.5 a comparison between

the own and other villagers’ evaluations of land quality and land needs: the villagers are

not in perfect agreement with each other or with the landowner, but we see a strong

correlation across evaluations. Some land parcels are better than others, and this infor-

mation is known to many villagers.

Figure A.6. Climate change and mitigation strategies.

(a) Climate change (b) Mitigation strategies

Notes: The left panel reports the share of respondents having experienced or expecting a change in agricultural conditions (flooding,
droughts, water pollution). The right panel reports the share of respondents considering a certain mitigation strategy.

Climate change and mitigation strategies We include a climate module to capture

beliefs about climate change and mitigation strategies. Our questionnaire proceeds as

follows: Have you experienced recent changes in [X] or do you expect [X] to increase/de-

crease/remain stable in the future? If so, when/where etc.? Which one of the following

strategies [Y] do you expect to adopt in the future? Is adopting [Y] motivated by changes

in agricultural conditions or environmental concerns? The events [X] cover droughts,

flooding, and water pollution. The strategies [Y] include changing cropping patterns,

changing the use of inputs, adopting more sustainable practices, etc. We summarize

the most common answers in Figure A.6. Interestingly, the most common mitigation

strategy is a change in crop variety.

Flood risk, elevation and flood hazard Our survey was originally designed to cap-

ture objective and subjective evaluations of flood risk. The hydro-physical modeling of

flood hazard builds upon the global Flood Hazard Model (FHM) recently applied at a 90m
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resolution to develop global inundation probability maps (NERC grant NE/M007766/1,

see Sampson et al., 2015) and currently used by the World Bank think hazard (http:

//thinkhazard.org/en/). In our application to the Central Highlands of Vietnam,

the FHM is extended along three dimensions: the model simulates river dynamics using

historical remotely sensed data and river gauge observations;24 the model adds informa-

tion on the location, volume and expected operation rules for the dams and reservoirs

in Dak Lak in order to model how these structures affect discharge (Ty et al., 2011); the

model finally relies on remote sensing data to infer currently unavailable information

about the presence of levees and drainage channels.

Figure A.7. Slope (FloodAdaptVN project).

Notes: This map shows the average slope as computed from a 30m grid resolution raster. We show the location of three of our four
villages: Village 1 (West), Village 2 (Center), and Village 3 (East).

The accuracy for parcel-level risk assessment crucially depends on the precision

of the elevation data. Highly-precise floodplain topography limits measurement er-

ror associated with the modeling of fluvial inundations in lowland areas; high reso-

lution and vertical accuracy also limits measurement error associated with the mod-

eling of pluvial inundations for villages in hilly environments. In order to produce

historical event simulations—past shocks—and a measure of vulnerability—flood disas-

24A model-interfacing tool to undertake a linking with models of river dynamics (GLOFRIM) was
recently developed by Hoch et al. (2017). This tool automatically links output from different envi-
ronmental models, including the PCR-GLOBWB hydrological model developed at Utrecht University
and the LISFLOOD-FP hydrodynamic model developed in Bristol. PCR-GLOBWB simulates catchment
runoff from atmospheric variables and is calibrated with river gauging data from the Vietnamese Hydro-
meteorological Data Center (HMDC). LISFLOOD-FP simulates all river routing and flood inundation pro-
cesses in the Central Highlands from 1993 onwards.
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ter risk—, we integrate highly-precise elevation data from the FloodAdaptVN project

(https://floodadapt.eoc.dlr.de/) within the global Flood Hazard Model. The

data come at a resolution of 30m and a vertical accuracy below 1 meter, and we correct

for measurement error due to the vegetation cover. We illustrate the topography around

three of our villages (Dak Lak, Central Highlands of Vietnam) in Figure A.7. None of our

villages stand on the flank of a mountain; they are located in relatively low-land areas

immediately surrounded by rugged terrain. A small but non-negligible number of land

parcels are on such hilly terrain.

Figure A.8. Flood hazard in Village 1 (simulations based on 1-in-100 years events).

Notes: This map shows the dispersion of land parcels and deciles of flood risk in Village 1. Flood hazard is computed from simulations
based on 1-in-100 years events. Land parcels located South-East of the village are very vulnerable to fluvial inundations, in contrast
with low-lying land in the West and higher grounds around the village center.

We use the augmented Flood Hazard Model at a 30m resolution to construct measures

of recent exposure to flooding and overall risk at the level of each agricultural parcel. We

illustrate in Figure A.8 the spatial variation induced by topography and river dynamics

across land parcels within Village 1. Flood hazard is computed from simulations based on

1-in-100 years events. Panel (a) shows that land parcels located South-East of the village

are very vulnerable to fluvial inundations, in contrast with low-lying land in the West

and higher grounds around the village center. Panel (b) shows a very different pattern

induced by pluvial inundations with the most vulnerable parcels being at the flank of

small mounts.

Identification of the household network The identification of the household net-

work relies on: (i) a list of contacts with their name, age, gender, phone number (last 6

digits), and a description of their relationship with the different household members; (ii)

references to these contacts when relevant along the questionnaire.
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Enumerators were encouraged to establish a preliminary list and to update the list as

the interview went along if new contacts were mentioned by the household. We repro-

duce below a translated summary of the guidelines/training provided to enumerators.

In this section, we would like to learn about the household main contacts

within the village. One difficulty of this exercise is the following: the precise

questions that will define the notion of “contact” may be asked later (for

instance, in Section 10). In this earlier section, you may need to anticipate

those questions. If some persons have not been entered and come up as

contacts in the following sections, you will need to go back to this section

and add them. You can proceed as follows in order to optimize the procedure:

– Ask which persons interact the most with the household for important

issues and provide context: “From time to time, most people discuss

important matters with other people. Looking back over the last year,

who are the people with whom you discussed matters important to

you? Who would be the people with whom you would discuss an im-

portant matter in the near future?” The first answers may be family,

friends and immediate neighbors.

– Once these general contacts have been entered, please collect addi-

tional names of villagers with whom the household had an economic

exchange in the previous year. This would include villagers who are:

(i) part of the same labor exchange group, (ii) involved in a large trans-

action with the household (e.g., land, house or truck/tractor), (iii) co-

workers, hired labor or employers/employees, (iv) in a financial trans-

action with the household. These questions can be asked sequentially:

“Are there other villagers than the one that you have mentioned who

belong to your labor exchange group or who work with you?”; “Are

there other villagers than the one that you have mentioned whom you

are lending to or borrowing from?”; “Are there other villagers than the

one that you have mentioned with whom you had a large transaction

last year?”.

– A few additional remarks: one name may be mentioned in several oc-

casions, please do not enter the same contact twice; please stop the

respondent if you feel that he/she is providing far too many names of

people that he/she does not know very well—in such case, repeat the

initial question and insist that the relationship needs to be tight; you
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may help the respondent by providing reference periods—we are in-

terested in people who are currently interacting with the household or

who had a recent economic exchange with the household.

– Once all contact names are entered, go through the roster to enter the

information for each contact separately.

– If new names are mentioned later in the questionnaire, please go back

to this section and the contact information.

The matching algorithm proceeds in steps: (i) matching is performed on gender, age

(within a window of 5 years), and the last 6 digits of the phone number; among un-

matched entries, (ii) matching is then based on gender, age, and exact name matching;

(iii) unmatched entries are finally matched through a fuzzy matching on names, account-

ing for specificities of the Vietnamese language (and frequent misspelling). The outcome

of this matching procedure is about 2,900 linkages from about 4,000 reported contacts (a

match rate of about 71%).

To better understand the quality of matching, we first report the match rate per vil-

lage: 70% in Village 2, 67% in Village 3, 82% in Village 4, and 65% in Village 1. The

difference between the last two villages illustrates a possible source of “false negatives”:

Village 4 is the most isolated village, while Village 1 is very close to other villages along

the road; villagers may report names of contacts outside the scope of our household

survey.

Figure A.9. Matching quality (method, and reported age difference).

(a) Method (b) Age difference (reported versus actual)

Notes: The left panel reports the number of matches per matching method (phone: match based on gender, phone number, and age;
exact: match based on exact string matching between names; fuzzy: match based on fuzzy string matching between names). The
right panel reports the distribution of age differences (reported versus actual) within the sample of matched contacts.

Figure A.10 provides an illustration of the structure of social networks in Village 1.
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Social links follow spatial clusters to some extent. There are various explanations for this

pattern: (i) households of a same extended family are more likely to live nearby (e.g., due

to divided inheritance, land bequests, or to the land acquisition process); (ii) neighbors

are more likely to form a labor exchange network; (iii) spatial proximity reduces the

communication costs. Another marking observation is that a few households are central

nodes within the village, either because of their political role (the village leader) or their

economic occupation (the supermarket owners, often offering credit to villagers).

Figure A.10. An illustration of the social network in Village 1.

Notes: The figure displays the location of houses (yellow circles) and land parcels (blue polygons) in Village 1. The size of circles
indicate the number of times the members of a given household is mentioned as a contact by another respondent, and the arrows
illustrate the spatial distributions of these links.

Social links form spatial clusters: households of a same extended family are more

likely to live nearby, neighbors are more likely to form a labor exchange network, and

spatial proximity reduces the communication costs. A few households are central nodes

within the village (the village leader, the supermarket owner).

A.2 Descriptive statistics

In this section, we provide complements to Section 2.2 (agricultural practices) and Sec-

tion 2.3 (social networks).

The productivity gap across agricultural commodities In Section 2.2, we docu-

ment an agricultural productivity gap across farms and the importance of high-return

perennial crops in explaining such a gap.

We replicate the exercise in Figure A.11 using data from the Thailand Vietnam Socio

Economic Panel (TVSEP). We find that there is a large dispersion in agricultural pro-

ductivity across farms (panel a), that tree crops become more prevalent over time, even
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Figure A.11. The agricultural productivity gap and the tree premium in TVSEP.

(a) Agricultural productivity gap (b) Adoption of tree crops

(c) Returns to crops (d) Agricultural TFP

Notes: Panel (a) shows the distribution of agricultural TFP in TVSEP, ln 𝑧𝑖𝑐 , when controlling for: area as the only input; all inputs
(area, labor, intermediary, capital); and all inputs and farmer fixed-effects. Panel (b) shows the incidence of tree production across
agricultural parcels over time (as weighted by the number of land parcels in blue, or by the value of agricultural production in
red). Panel (c) shows the crop-specific distribution of agricultural TFP when controlling for area. Panel (d) shows the crop-specific
distribution of agricultural TFP when controlling for all inputs.

though adoption remains limited (panel b), and that there are large differences in agricul-

tural yields across crops (panels c and d). We find very similar differences in agricultural

yields, a “tree premium”, in TVSEP as in our own survey.

Determinants of land quality One interesting aspect of our survey is to collect a

subjective assessment of the farmer’s own land parcels, their quality, suitability to grow

certain crops, and input requirements. We can use these evaluations, which are visibly

shared to some extent by other villagers (see Figure A.5), to learn about the determinants

of higher or lower land quality.

In Table A.1, we regress the land quality index (from 0 to 5) on various soil (objec-

tive) characteristics, beliefs of the farmer about climate risk and social integration of the

farmer within the village. First, we find that soil characteristics (bulk density, carbon

content or slope) are strong predictors of land quality: a high-quality land should have
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Table A.1. Explaining land quality evaluations.

Land quality (1) (2) (3) (4)

Bulk -0.0074 -0.0082 -0.0085 -0.0087
(0.0019) (0.0019) (0.0019) (0.0019)

Carbon 0.1175 0.1807 0.1916 0.1935
(0.0285) (0.0308) (0.0308) (0.0307)

Slope -0.0483 -0.0365 -0.0345 -0.0348
(0.0089) (0.0096) (0.0096) (0.0095)

𝑝𝐻 (acidity) -0.7080 -0.6406 -0.5746
(0.3340) (0.3327) (0.3312)

𝑂𝑀𝑡𝑠 (organic content) 1.0029 0.9722 1.0253
(0.4509) (0.4486) (0.4465)

𝑁𝑡𝑠 (nitrogen) -0.3039 -0.3406 -0.4299
(0.2974) (0.2959) (0.2948)

𝑃2𝑂5𝑑𝑡 (phosphate) -0.1389 -0.1428 -0.1591
(0.0918) (0.0914) (0.0910)

𝐾2𝑂𝑑𝑡 (potash) 0.1477 0.1516 0.1381
(0.0983) (0.0978) (0.0973)

Flood -0.0127 0.0005
(0.0609) (0.0606)

Drought -0.1211 -0.1076
(0.0691) (0.0689)

Water pollution 0.3140 0.3288
(0.0591) (0.0592)

Links 0.0700
(0.0180)

Trust 0.0671
(0.0174)

Interaction 0.0018
(0.1298)

Observations 2,406 2,406 2,406 2,406

lower bulk density, higher carbon content and be less rugged. Second, soil composition

(acidity, phosphate, potash) also has some predictive power. Third, higher land qual-

ity positively correlates with the identified risk of water pollution from farmers. The

explanation most likely relies on the nature of high-quality land parcels: those are typi-

cally irrigated parcels, whereby fertilizer, pesticide, herbicide usage from other farmers

would generate spillovers. Fourth, social integration in the village appears to play a role:

the number of social links and the average trust correlate positively with land quality.

One reason could however be underlying characteristics of the farmer, e.g., more or less

optimistic in general.

The structure of local networks We document in Section 2.3 the motivations, ori-

gins, and strength of social links within villages. In Figure A.12, we provide further ev-

idence about the strength of relationships as a function of their initial nature (whether

peers know each other through family ties, spatial proximity, etc.). Note that these cat-

egories are not mutually exclusive, such that a peer can be a neighbor and a friend. We

find that important issues are much less likely to be discussed with “work colleagues”

and much more likely to be discussed within families (panel a); this pattern is the same
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Figure A.12. Network “usage”: motivation and strength of links.

(a) Discuss subjects (b) Frequency

(c) Strength (d) Trust

for a subjective evaluation of the relationship strength (from 0 to 10, see panel c). Fami-

lies and neighbors interact very often (respectively 64 and 56% of family-based links and

neighbor-based involve daily interactions). Finally, family links are characterized by a

higher level of trust between contacts (panel d). In summary, family ties are very strong;

our study however ignores those ties and identifies social multipliers from the weak(er)

links between neighbors.

The second important observation made in Section 2.3 is that there is a high degree

of homophily within the social network. In other words, there is a high correlation

between the respondent’s characteristics and activities and that of their peers. For each

characteristics 𝑥𝑖 of a respondent 𝑖, we define the “multilateral” peer characteristic as

follows,

𝑋𝑖 =

∑
3

𝑚=1
∑

𝑗∈𝑚

𝑖

𝛿
𝑚
𝑥𝑗

∑
3

𝑚=1
∑

𝑗∈𝑚

𝑖

𝛿
𝑚

.

The multilateral characteristics is a weighted average of the peers’ characteristics where
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Figure A.13. Homophily (multilateral computations).

Notes: This Figure shows the correlation between an edge and the connected edges weighted by the link “proximity”, and for a set
of selected variables.

we apply a discount 𝛿 = 0.5 to higher-order linkages. We report the correlation be-

tween 𝑥𝑖 and 𝑋𝑖 in Figure A.13 for household characteristics (age, education, income),

agricultural practices (land holdings, the growing of high-return perennial crops and

agricultural Total Factor Productivity cleaned for input/factor usage), and beliefs (about

climate change and about land quality/requirements for other land parcels in the village).

We find that linked households are closer in demographics, in agricultural practices and

even in their beliefs about climate change (3.a) or their capacity to evaluate the land

parcels of others in the village (3.c).
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B Complements to the empirical analysis

This section provides complements to the empirical analysis. More specifically, we dis-

cuss identification (see Section 3 of the paper), and we provide a sensitivity analysis of

our main results (as briefly summarized in Section 4.2).

B.1 Identification

We first shed additional light about the role of residential proximity in fostering (exoge-

nous) social links.

Figure B.1. Network links and spatial proximity (land parcels, and homes).

(a) Land parcels (b) Homes (contr. for land)

Notes: Panel (a) shows the distribution of the minimum distance between land parcels for links of different orders; panel (b) shows
the distribution of the minimum distance between homes for links of different orders, conditioning on the
minimum/average/maximum distances between land parcels.

In Figure B.1, we display the distribution of distances between homes and land parcels

of two households connected by: a first-order linkage (red), a second-order linkage (or-

ange), third-order linkage (yellow), and a higher-order linkage (blue). Panel (a) displays

the minimum distance between non-residential land parcels; and panel (b) shows dis-

tribution of distances between homes, once conditioning on the distance between non-

residential land parcels. We see that both the proximity between land parcels and resi-

dential proximity foster more direct connections between pairs of households. Panel (b)

illustrates that residential proximity is very predictive, even when controlling for the

spatial distribution of other land parcels. This is the first argument of our empirical

strategy: residential proximity predicts social links.

The second argument of our empirical strategy is that residential proximity predicts

exogenous social links because it reflects the timing of arrival in these repopulated vil-
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Figure B.2. Home proximity and homophily.

(a) Origins (b) Education (c) Land size

Notes: Panel (a) shows the correlation between proximity in origins (same province) and distance between homes across all pairs of
villagers. Panels (b) and (c) show the correlations between proximity in household characteristics (education of head, land holdings)
and distance between homes across all pairs of villagers. The estimated coefficients are respectively: 0.007 [0.002] (panel a); -0.004
[0.001] (panel b); -0.001 [0.001] (panel c).

lages. We illustrate the role of this factor in Section 3.1: neighbors are more likely to be

part of the same settlement wave. In Figure B.2, we show that home proximity does not

generate further (observable) resemblance between households: they are as likely to be

of the same origins (province within Vietnam) as any other random pairs of households

(panel a); the normalized differences in education (panel b) or land (panel c) are that of

any other pairs of households.

Finally, we provide further evidence that residential proximity is associated with a

much lower auto-correlation in agricultural practices than agricultural proximity. In

Figure B.3, we nest the adoption of a high-return perennial crop at the level of a parcel

and the average across all parcels owned by a household at the level of homesteads.

We see that land use is very correlated across land parcels that are scattered around

the different villages. By contrast, residences are concentrated along a few streets and

display far less homophily in treatment.

B.2 Robustness checks

This section provides a sensitivity analysis of our baseline results.

The return to local networks in crop adoption In Section 4.1, we estimate Equa-

tion (2) through a 2SLS specification with the proximity-weighted exposure to treatment

as the instrument.

We report in Table B.1 the OLS counterpart to Table 3. We find an additional stan-

dard deviation in exposure (𝜗1

𝑖
) is associated with a 0.015 higher likelihood to grow a

high-return perennial crop. This estimate is about a sixth of the 2SLS estimate. One

interpretation for these differences is the correlated nature of agricultural practices on
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Figure B.3. Distribution of treatment across villages.

(a) Village 1 (𝑇𝑖,19) (b) Village 2 (𝑇𝑖,19)

(c) Village 3 (𝑇𝑖,19) (d) Village 4 (𝑇𝑖,19)

Notes: This Figure shows the treatment 𝑇𝑗 ,19 nested at the land parcel level and nested at the “homestead” level across our four
villages.

both sides of a network edge: strongly-linked households are more likely to have simi-

lar cropping patterns in 2019, such that the average network link is unlikely to trigger

some changes between 2019 and 2022. The instrument however hinges on weaker links,

featuring starker differences in agricultural practices across households.

In Table B.2, we probe the sensitivity of our findings to additional controls. More

specifically, we consider our preferred baseline estimate (column 3 of Table 3) and fur-

ther condition for: land tenure in column (1); soil composition in column (2); a subjective

evaluation of land quality from the respondent in column (3); and household character-

istics in column (4). The main estimate remains between 0.103 and 0.111.

Our baseline specification hinges on weighted measures of exposure to the treat-

ment where: the latter is defined in 2019, we exclude family links, and the instrument

only considers households within 100 meters of each other’s homes. In Table B.3, we

consider variations of the main exposure measure and instrument: we consider an expo-

sure measure which includes family links in column (1); we construct the instrument as

an inverse-distance weighted measure of exposure to the treatment in column (2); and

we calculate both exposure and instrument using the most recent allocation of treat-
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Table B.1. The return to social network—OLS specification.

Adoption (1) (2) (3)

Exposure (𝜗1
𝑖
) 0.016 0.014 0.015

(0.008) (0.007) (0.007)

Controls (instrument) Yes Yes Yes
Controls (soil) No Yes Yes
Controls (network) No No Yes
Observations 2,222 2,222 2,222
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The explaining variable is the standardized exposure to the treatment
computed using the allocation of treatment in 2019. The set of (instrument) controls include: the previous status of the parcel in
2019 (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential with other homes
in the village, the density of parcels with high-return perennial crops around the various parcels owned by the household, and the
density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel characteristics
(area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and altitude of the
home location. The set of (network) controls include the number of first-order linkages, of second-order linkages, and indicators
of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The sample is
restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with similar
geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

Table B.2. The return to social network—additional controls.

(1) (2) (3) (4)

Exposure (𝜗1
𝑖
) 0.103 0.111 0.108 0.110

(0.052) (0.054) (0.052) (0.051)

Observations 2,203 2,203 2,203 2,203
F-stat 16.14 14.93 16.26 17.28
Additional controls Land tenure Soil comp. Land quality Demographics
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. The additional controls are: dummies for each type of land tenure in
column (1); soil composition as inferred from 300 soil testing samples in column (2); a subjective evaluation of land quality (scale
from 0, unsuitable, to 5) in column (3); and household characteristics (age, gender of the head, number of dependents) in column (4).
The explaining variable is the standardized exposure to the treatment; the instrument is the standardized, predicted exposure to the
treatment—as predicted by proximity between homes. In both cases, the exposures are computed using the allocation of treatment
in 2019. The set of standard controls is similar to that of column 3 of Table 3. The sample is restricted to agricultural parcels for
which we are confident about their geolocation (i: observed in both waves, ii: with similar geolocation and area across waves, iii:
where the household is not unsure when locating the parcel or drawing its borders).

ment (2022) in column (3). Adding family links slightly reduces the estimate, possibly

reflecting the homophily in agricultural practices observed across family ties. The other

specifications deliver similar results to our baseline.
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Table B.3. The return to social network—alternative exposures and treatments.

(1) (2) (3)

Exposure (𝜗1
𝑖
) 0.060 0.133 0.112

(0.029) (0.088) (0.055)

Observations 2,203 2,203 2,203
F-stat 57.60 7.12 14.62
Exposure Incl. family - Treatment 2022
Instrument - Density Treatment 2022
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include sub-network fixed effects. In the baseline specification, the explaining variable was the standard-
ized exposure to the treatment; the instrument is the standardized, predicted exposure to the treatment—as predicted by proximity
between homes. In both cases, the exposures were computed using the allocation of treatment in 2019. The alternative specifica-
tions are: the baseline instrument but an exposure measure which includes family links in column (1); the baseline exposure but
an instrument which computes an inverse-distance weighted measure of exposure to the treatment (against the average treatment
among neighbors between 0 and 100 meters in the baseline) in column (2); and both exposure and instrument calculated using the
allocation of treatment in 2022 in column (3). The set of controls is similar to that of column 3 of Table 3. The sample is restricted to
agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with similar geolocation and
area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

Table B.4. A pseudo-panel approach—first-stage estimation.

Exposure 𝜗
0

𝑖𝑛
− 𝜗

0

𝑖𝑛−1
𝜗
1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1
𝜗
2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1

Proximity instrument 0.244 0.059
(0.012) (0.016)

Indirect linkages 0.122
(0.030)

Observations 23,569 20,436 7,306
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include year fixed effects. The set of (instrument) controls include: the previous status of the parcel in
the previous period (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

A pseudo-panel approach We now provide complements to the pseudo-panel ap-

proach discussed in Table 5. We first show the first-stage estimates in Table B.4 for

our three different measures of exposure (and two distinct instruments). First, a time-

varying increase of additional standard deviation in predicted exposure through resi-
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dential proximity increases weighted exposure through the network, 𝜗0

𝑖𝑛
− 𝜗

0

𝑖𝑛−1
, by 0.24

standard deviations (column 1). The same increase raises first-order exposure to the

treatment, 𝜗1

𝑖𝑛
−𝜗

1

𝑖𝑛−1
, by 0.06 standard deviations (column 2). Second, our indirect-linkage

instrument—two households have a friend in common for two distinct reasons—predicts

second-order exposure to the treatment, 𝜗2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1
(column 3).

Table B.5. A pseudo-panel approach—timing of adoption.

Adoption (𝑦𝑝𝑖𝑛 − 𝑦𝑝𝑖𝑛−1) (1) (2) (3)

Exposure (F, 𝜗0
𝑖𝑛
− 𝜗

0

𝑖𝑛−1
) 0.005

(0.005)
Exposure (𝜗0

𝑖𝑛
− 𝜗

0

𝑖𝑛−1
) 0.012

(0.004)
Exposure (L, 𝜗0

𝑖𝑛
− 𝜗

0

𝑖𝑛−1
) 0.003

(0.004)
First-order exposure (F, 𝜗1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1
) 0.021

(0.023)
First-order exposure (𝜗1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1
) 0.034

(0.018)
First-order exposure (L, 𝜗1

𝑖𝑛
− 𝜗

1

𝑖𝑛−1
) 0.020

(0.021)
Second-order exposure (F, 𝜗2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1
) -.140

(0.329)
Second-order exposure (𝜗2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1
) 0.083

(0.176)
Second-order exposure (L, 𝜗2

𝑖𝑛
− 𝜗

2

𝑖𝑛−1
) 0.175

(0.287)

Observations 19,090 15,944 5,574
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include year fixed effects. The set of (instrument) controls include: the previous status of the parcel in
the previous period (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

One advantage of the pseudo-panel is to better exploit the timing of adoption against

the timing of network formation. In Table B.5, we replicate the exercise performed in

Table 5, but we add leads and lags of the dependent variable—thus adding leads and

lags of the respective instruments. Our first-stage keeps sufficient statistical power in

columns (1) and (2), but not in column (3)—we will thus ignore the estimates for the
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second-order exposure to the treatment. We find that “contemporary” changes in ex-

posure to the treatment affects adoption within the same time frame. Importantly, the

forward estimates are smaller and less precisely estimated.

Table B.6. A pseudo-panel approach—periods of interest and tenure in the village.

Adoption (𝑦𝑝𝑖𝑛 − 𝑦𝑝𝑖𝑛−1) (1) (2) (3)

First-order exposure (𝜗1
𝑖𝑛
− 𝜗

1

𝑖𝑛−1
) 0.043 0.050 0.032

(0.026) (0.028) (0.023)
First-order exposure × shorter tenure 0.060

(0.063)

Observations 6,945 13,491 20,436
Sample 1980–2006 2006–2022 All
Notes: A unit of observation is a land parcel in 2022. Standard errors are reported between parentheses and clustered at the household
level. All specifications include year fixed effects. The set of (instrument) controls include: the previous status of the parcel in
the previous period (treated or not), the number of households in immediate proximity, the average (absolute) altitude differential
with other homes in the village, the density of parcels with high-return perennial crops around the various parcels owned by the
household, and the density of parcels around the various parcels owned by the household. The set of (soil) controls include: parcel
characteristics (area, bulk density, organic carbon content, elevation, slope, distance to the homestead), the latitude, longitude and
altitude of the home location. The set of (network) controls include the number of first-order linkages, of second-order linkages,
and indicators of network centrality (betweenness, closeness, eigenvector centrality, clustering), and sub-network fixed effects. The
sample is restricted to agricultural parcels for which we are confident about their geolocation (i: observed in both waves, ii: with
similar geolocation and area across waves, iii: where the household is not unsure when locating the parcel or drawing its borders).

In our last robustness checks, we explore treatment heterogeneity across periods of

interest and tenure in the village. First, treatment adoption among existing parcels is

higher after 2006 than before. For instance, the probability for each (existing) parcel to

be converted to high-return perennial cropping between two waves (three-year period)

is about 0.01 before 2006 versus 0.024 afterwards. In the first two columns of Table B.6,

we consider specification (2) in Table 5 and divide the sample between 1980–2006 and

2006–2022. We find similar multipliers across the two periods. Second, tenure within the

village might play a role in the pace of adoption. We interact the first-order exposure

(𝜗1

𝑖𝑛
−𝜗

1

𝑖𝑛−1
) with a dummy equal to 1 if the household has arrived within 15 years of wave

𝑛 (15 years is the median across our different waves). We find that the social multiplier

is higher for more recently-arrived households. Nonetheless, our estimate is robust to

excluding the very fresh arrivals (e.g., before 5 years, with a coefficient of 0.041 and a

standard error of 0.019).
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