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Abstract

We introduce the family of games with intertemporal externalities, where two

disjoint sets of players play sequentially. Coalitions formed by the present cohort

generate worth today. Moreover, today’s partition of players exerts an externality

on the future; the worth of a coalition formed by future players is influenced by

this externality. We adapt the classic Shapley axioms and study their implications

in our class of games. They do not suffice to single out a unique solution. We

introduce two values using the interpretation of the Shapley value as the players’

expected contributions to coalitions: the one-coalition externality value and the

naive value. We state a relationship between these values and the Shapley value

of an associated game in characteristic function form. Our main results charac-

terize the two values by adding one additional property to the classic Shapley

axioms. A property of equal treatment of contributions leads to characterizing

the one-coalition externality value. A property of equal treatment of externalities

characterizes the naive value.
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1 Introduction

Our choices today may directly or indirectly affect the well-being of future generations.

This is especially true for decisions with long time horizons, such as the extraction of

non-renewable resources, the efforts to reduce greenhouse gas (GHG) emissions, the

treatment of nuclear waste disposal, the construction of long-lived infrastructures, or

the investment in technical innovation.

From a normative perspective, if today’s choices shape future generations’ condi-

tions, then it is necessary to discuss how we take the future players (our children, our

grandchildren, and those who will follow) into account when deciding the sharing of the

surplus of these decisions.

Our paper considers this inter-generational situation by defining a new family of

games, which we refer to as games with intertemporal externalities. It proposes cooper-

ative solutions, acknowledging that one generation may be making decisions for people

who cannot speak for their interests at the time.

Take the example of global warming. This is a cooperative game with intertemporal

externalities, where today’s choices are represented by the coalitions formed by today’s

players. Today, players are aware of the future effects of their decisions on global

warming; it is estimated that a significant joint effort is needed to meet global warming

below the 1.5ºC and 2ºC targets by the end of the XXI century. This is an externality

for the future generation. However, these efforts to reduce greenhouse gas do not seem

urgent for the present generation since the consequences will be felt in the future, and

today’s generation may not internalize the externalities imposed on the next generation.

In a game with intertemporal externalities, there are two disjoint sets of players.

Coalitions formed by the present cohort generate worth today. Moreover, the partition

of today’s generation exerts an externality on the future cohort. Hence, the worth of a

coalition of future players depends on the externality inherited from the past generation.

In such a game, a value that shares the total surplus needs to consider the two periods

and the two sets of players.

We adapt the classic Shapley axioms to games with intertemporal externalities and

study their implications. However, they do not suffice to single out a unique solution.

We introduce two values using the common interpretation of the Shapley value as the

players’ expected contributions to coalitions: the one-coalition externality value and

the naive value. We show the relationship between these values and the Shapley value

of an associated game in characteristic function form.

Our main results characterize the two values by adding one additional property to
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the classic Shapley axioms. We show that a property of equal treatment of contributions

leads to characterizing the one-coalition externality value. In contrast, a property of

equal treatment of externalities characterizes the naive value.

The games with intertemporal externalities differ from other cooperative games.

However, they share similarities with the “games with externalities,” also called “par-

tition function form games” (Thrall and Lucas, 1963). In this class of games, there is

a unique set of players, and the worth of each coalition depends on the organization of

the outside players. Recent literature studies extensions of the Shapley value for this

class of games (see, e.g., Myerson, 1977; Macho-Stadler, Pérez-Castrillo, and Wettstein,

2007; De Clippel and Serrano, 2008; and McQuillin, 2009; Alonso-Meijide et al., 2019).1

However, the family of games with intertemporal externalities is not included and does

not include the family of games with externalities.

The rest of the paper is organized as follows. Section 2 introduces the family of

games with intertemporal externalities. Section 3 adapts the Shapley axioms and de-

scribes the structure of any value that satisfies them. Section 4 intuitively introduces

the one-coalition externality and the naive values and states their relationship with

the Shapley value of an associated game in characteristic function form. Sections 5

and 6 axiomatically characterize the two values, respectively. Section 7 discusses the

prescription of the values for games with intertemporal additive externalities. Section

8 discusses the relationship between values for games with intertemporal externalities

and values for partition function form games. Section 9 concludes.

2 Framework

We introduce a new family of games called “games with intertemporal externalities.” A

game with intertemporal externalities is played by two disjoint sets of players, N1 and

N2, with N1 ∩N2 = ∅. We think of players in N1 interacting at period t = 1, whereas

players in N2 interact at t = 2.2 We denote generic players of N1 by i, i′, generic players

of N2 by j, j′, and generic players of N1 ∪N2 by h, h′.

A coalition S1 of N1 is a group of players of that set, that is, a non-empty subset of

N1, S1 ⊆ N1. If a coalition S1 forms, the players obtain jointly a surplus of v1(S1) ∈ R.
The worth v1(S1) only depends on the coalition S1 and not on how the other players in

1 For reviews of the literature on values for games with externalities, see Kóczy (2018) and Macho-

Stadler, Pérez-Castrillo, and Wettstein (2019).
2 There are other environments with two sets of players where our model applies. For instance, the

two groups of players may live at two completely separate locations along a river.
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N1 \ S1 or N2 are organized.

A coalition S2 of N2 is a non-empty subset of N2, S2 ⊆ N2. Contrary to what

happens at t = 1, the worth obtained by a coalition of N2 depends not only on the

identity of the players in the coalition but also on the past organization of the players

in N1; that is, there are intertemporal externalities between t = 1 and t = 2. To

formally express these externalities, denote by P(M) the set of partitions of a finite set

M . Then, if the coalition S2 forms and the players in N1 were organized according to

the partition P1 ∈ P(N1), the coalition S2 generates a surplus v2(S2;P1) ∈ R.
The utility is transferable among all the players; that is, the cooperative game is a

transferable utility (TU) game. In our two-period interpretation of the model, being

a TU game requires the existence of a perfect credit market that allows transferring

money at zero interest rate (or at zero cost) in any direction between t = 1 and t = 2.

Therefore, a game with intertemporal externalities, or simply a game, is a pair (N, v)

with N = (N1, N2) and v = (v1, v2), where v1 : 2N1 → R and v2 : 2N2 × P(N1) → R,
with v1(∅) = 0 and v2(∅;P1) = 0 for any P1 ∈ P(N1). We denote the set of all games

by G.
We look for proposals for the division of the surplus created in games with intertem-

poral externalities. A value is a mapping Φ : G → RN1 × RN2 that satisfies∑
h∈N1∪N2

Φh(N, v) = v1 (N1) + v2 (N2; {N1}) .

Note that we have in mind environments where it is efficient that the grand coalition

forms in both periods. Hence, our definition of a value entails efficiency.

3 The “basic” axioms

In this section, we introduce some reasonable requirements to impose on a value by

extending those characterizing the Shapley value in TU games without externalities.

These are the axioms of linearity, anonymity, and “dummy” player. We also analyze

the implications of these axioms on the characteristics of a value.

We first define the operations of addition and multiplication by a scalar, and the

notions of permutation of a game and dummy player.

Definition 1. (a) The addition of two games (N, v) and (N, v′) is the game (N, v+ v′)

defined by v+v′ = (v1 + v′1, v2 + v′2), where (v1+v′1)(S1) ≡ v1(S1)+v′1(S1) for all S1 ⊆ N1

and (v2 + v′2)(S2;P1) ≡ v2(S2;P1) + v′2(S2;P1) for all S2 ⊆ N2 and P1 ∈ P(N1).
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(b) Given a game (N, v) and a scalar λ ∈ R, the game (N, λv) is defined by λv =

(λv1, λv2), where (λv1)(S1) ≡ λv1(S1) for all S1 ⊆ N1 and (λv2)(S2;P1) ≡ λv2(S2;P1)

for all S2 ⊆ N2 and P1 ∈ P(N1).

The permutation of a game uses the notion of a permutation of N = (N1, N2). Given

that N is composed of two disjoint sets, a permutation of N consists of a permutation

of each set. That is, a permutation of N = (N1, N2) is a pair σ = (σ1, σ2), where σ1 is

a permutation of N1 and σ2 is a permutation of N2.

Definition 2. Let (N, v) ∈ G and σ be a permutation of N . The permuted game

(N, σv) is defined by σv = (σv1, σv2), where σv1(S1) ≡ v1(σ1(S1)) for all S1 ⊆ N1, and

σv2(S2;P1) ≡ v2(σ2(S2);σ1(P1)) for all S2 ⊆ N2 and P1 ∈ P(N1).

To define a dummy player, notice that a player in N1 may influence the surplus

generated at both periods. On the other hand, a player in N2 only affects the surplus

generated at t = 2, although her influence may depend on the organization of the

players at t = 1. This is why the definition of a dummy player differs for the players in

N1 and N2.

For every partition P ∈ P(N1), and player i ∈ N1, we define P−i ≡ {S1 \ {i} : S1 ∈
P} ∪ {{i}}. Then:

Definition 3. (a) Player i ∈ N1 is a dummy player in the game (N, v) if

v1(S1) = v1(S1\{i}) for all S1 ⊆ N1 and

v2(S2;P1) = v2
(
S2;P

−i
1

)
for all S2 ⊆ N2 and all P1 ∈ P(N1).

(b) Player j ∈ N2 is a dummy player in the game (N, v) if v2(S2;P1) = v2(S2\{j};P1)

for all S2 ⊆ N2 and P1 ∈ P(N1).

Note that there are two requirements for a player in the first period to be a dummy.

It should be a classic dummy in the game of period 1, and it should not generate any

externality in the coalitions of the second period when she leaves a coalition of the

first period to remain singleton. The second requirement is in the same spirit as in the

definition of a dummy player in games with externalities (for instance, Bolger, 1989;

Macho-Stadler, Pérez-Castrillo, and Wettstein, 2007).

We now adapt the three original Shapley (1953b) value axioms to our environment:

Axiom 1. Linearity: A value Φ is linear if

1.1. Φ(N, v + v′) = Φ(N, v) + Φ(N, v′) for any (N, v), (N, v′) ∈ G, and
1.2. Φ(N, λv) = λΦ(N, v) for any λ ∈ R and (N, v) ∈ G.
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Axiom 2. Anonymity: A value Φ satisfies anonymity if for any game (N, v) ∈ G and

permutation σ of N ,

Φi(N, σv) = Φσ1(i)(N, v) for all i ∈ N1 and

Φj(N, σv) = Φσ2(j)(N, v) for all j ∈ N2.

Axiom 3. Dummy player: A value Φ satisfies the dummy player axiom if, for any

game (N, v) ∈ G, Φh(N, v) = 0 if h ∈ N1 ∪N2 is a dummy player in the game (N, v).

The classic properties of linearity, anonymity, and dummy player in which our ax-

ioms are inspired characterize a unique value (Shapley, 1953b) in the set of games in

characteristic function form, which we will refer to as CFF games. Let us denote by

GCFF the set of CFF games and (M, ŵ) ∈ GCFF a CFF game, i.e., M is the set of

players and ŵ : 2M → R is the characteristic function.3 The Shapley value Sh of a

player h ∈ M can be written as

Shh(M, ŵ) =
∑
S⊆M

βh (M,S) ŵ (S) =
∑

S⊆M,S∋h

βh (M,S) (ŵ(S)− ŵ(S\{h})) ,

where the Shapley coefficients, βh(M,S), are defined for every S ⊆ M by,4

βh(M,S) =


(|S|−1)!(|M |−|S|)!)

|M |! if h ∈ S

−(|S|!(|M |−|S|−1)!)
|M |! if h ∈ M\S.

(1)

Note that if N1 = ∅ or N2 = ∅, then the game with intertemporal externalities

(N, v) is essentially a CFF game where the set of players is either N2 or N1, respectively.

Therefore, any value that satisfies axioms 1 to 3 proposes the Shapley value for those

games.

Moreover, consider a game (N, v) where both sets, N1 and N2, are non-empty, but

there are no intertemporal externalities. That is, suppose that the surplus generated by

any coalition of N2 does not depend on the organization of the players in t = 1. Denote

by (N1, v̂1) the CFF game where v̂1(S1) = v1(S1) for all S1 ∈ N1.
5 Also, for a game

without externalities, denote v̂2(S2) ≡ v2(S2;P1) for any S2 ∈ N2 and P1 ∈ P(N1).

3 We will use characters with “hat,” as ŵ, to easily identify when we refer to the characteristic

function of a CFF game instead of a worth function in a game with intertemporal externalities.
4 We denote |M | the number of players in M , for any finite set M .
5 Note that we use v1 to refer to the first component of the vector v in the game with intertemporal

externalities (N, v); whereas v̂1 is the characteristic function of the CFF game without externalities

(N1, v̂1).

6



Then, for the game (N, v), a value satisfying the three axioms allocates the Shapley

value of (N1, v̂1) to the players of N1 and the Shapley value of (N2, v̂2) to the players

of N2. We state and prove this result in Proposition 1.

Proposition 1. Take a value Φ satisfying linearity, anonymity, and the dummy player

axiom. Also, consider a game (N, v) without externalities, that is, v2 (S2;P1) = v2 (S2;Q1)

for all S2 ⊆ N2 and P1, Q1 ∈ P(N1). Then,

Φi (N, v) = Shi(N1, v̂1) for all i ∈ N1 and

Φj (N, v) =Shj (N2, v̂2) for all j ∈ N2.

Proof. Define the games (N, va) ,
(
N, vb

)
∈ G as follows:

va1(S1) = v1(S1) for all S1 ⊆ N1,

va2(S2;P1) = 0 for all S2 ⊆ N2 and P1 ∈ P(N1),

vb1(S1) = 0 for all S1 ⊆ N1,

vb2(S2;P1) = v2(S2;P1) for all S2 ⊆ N2 and P1 ∈ P(N1).

Note that (N, v) =
(
N, va + vb

)
. Then, by linearity, Φh(N, v) = Φh(N, va) +

Φh(N, vb) for all h ∈ N1 ∪N2.

All the players in N2 are dummy players in (N, va). Then, by the dummy player

axiom Φj(N, va) = 0 for every j ∈ N2. Moreover, (N, va) is essentially a CFF game

among the players in N1 with a characteristic function v̂1, which is equal to the function

va1 . Then, we can follow the same steps as in the original proof by Shapley (1953b) and

conclude that Φi(N, va) = Shi(N1, v̂1) for every i ∈ N1.

Similarly, all the players in N1 are dummy players in
(
N, vb

)
: A player i ∈ N1 does

not generate any value in vb1, and her position in the partition formed at t = 1 does

not affect the surplus of any coalition S2 ⊆ N2, given that v2 (S2;P1) = v2 (S2;Q1)

for all P1, Q1 ∈ P(N1). Hence, by the dummy player property, Φi

(
N, vb

)
= 0, for

every i ∈ N1. Then,
(
N, vb

)
is essentially a CFF game among the players in N2 with

characteristic function v̂2. The classic characterization of the Shapley value implies that

Φj

(
N, vb

)
= Shj (N2, v̂2), for every j ∈ N2.

Proposition 2 goes a step forward. It shows that because no externalities affect the

function v1, the worth generated at t = 1 should always be split only among the players

in N1, and the sharing should be done according to the Shapley value. On the other

hand, the function v2 receives the influence of players in N1 and N2; hence, all the

players may share the surplus obtained at t = 2.
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Proposition 2. Take a value Φ satisfying linearity, anonymity, and the dummy player

axiom. Then for every (N, v) ∈ G there exists a function f satisfying∑
h∈N1∪N2

fh(N1, N2, v2) = v2(N2; {N1})

such that,

Φi(N, v) = Shi(N1, v̂1) + fi(N1, N2, v2) for all i ∈ N1 and

Φj(N, v) = fj(N1, N2, v2) for all j ∈ N2.

Proof. We define the games (N, va) and
(
N, vb

)
as in the proof of Proposition 1. The

players in N2 are dummy players in (N, va) hence, Φj(N, va) = 0 for every j ∈ N2. By

the same argument as in the previous proof, Φi(N, va) = Shi(N1, v̂1) for every i ∈ N1.

On the other hand, (N, vb) is a game where players in N1 do not generate value in

t = 1, but they exert externalities in t = 2. The value obtained by the players in the

game (N, vb) can depend on the sets N1 and N2 and on the function v2, but not on v1.

That is, Φh(N, vb) corresponds to a function fh(N1, N2, v2), for every h ∈ N1 ∪N2.

The linearity of the value implies Φh(N, v) = Φh(N, va) + Φh(N, vb) for all h ∈
N1 ∪N2, which leads to the expressions of Φh(N, v) stated in the proposition.

Finally,
∑

h∈N1∪N2
fh(N1, N2, v2) =

∑
h∈N1∪N2

Φh(N, vb) = vb1 (N1)+ vb2 (N2; {N1}) =
v2(N2; {N1}) by the efficiency of Φ.

Proposition 2 provides the structure of the payoffs received by the players according

to a value that satisfies the basic axioms of linearity, anonymity, and dummy player.

However, contrary to what happens in the set of CFF games, the three axioms do not

characterize a unique value in the set of games with intertemporal externalities. The

following sections first introduce and then characterize two values that satisfy the basic

axioms together with additional properties.

4 The players’ expected contribution for two ran-

dom arrival processes

A common interpretation of the Shapley value of a player in a CFF game (M, ŵ) ∈ GCFF

is that it corresponds to her expected contribution to coalitions, where the distribution

of coalitions arises in a particular way. Specifically, suppose the players enter a room

in some order and that all |M |! orderings of the players in M are equally likely. Then

Shh(M, ŵ) is the player h’ expected contribution as she enters the room.
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In the following two subsections, we propose two “natural” ways players can enter

the room in a game with intertemporal externalities; each leads to a value on G.

4.1 All orderings are feasible

We first consider a situation where, to compute the expected contribution of a player,

we assume that the players can “arrive” in any order. Hence, we consider orders that

intersperse players in N1 and N2. Given the temporal dimension of our games, one

could view these orders as thought experiments of how players in N2 may perceive

what happened in period 1, that is, what would have happened if the grand coalition

of period 1, N1, had not formed.

Take a game (N, v) ∈ G. An ordering of N1 ∪ N2 is an injective mapping ω :

N1∪N2 → {1, . . . , |N1|+ |N2|}. Let Ω(N1∪N2) denote the set of orderings of N1∪N2.

The set of players present at a given step k (that is, the set of predecessors together

with the player who arrives at k), with k ∈ {1, . . . , |N1|+ |N2|}, is ω−1 ({1, . . . , k}). We

divide this set in two:

Bω
1 (k) = ω−1 ({1, . . . , k}) ∩N1,

Bω
2 (k) = ω−1 ({1, . . . , k}) ∩N2,

and we define Bω
1 (0) = Bω

2 (0) = ∅. That is, Bω
1 (k) (respectively, Bω

2 (k)) is the set of

players who have arrived at step k who belong to N1 (respectively, N2).

We compute the contribution of a player given an ordering ω. Take the player

who arrives in the kth step, that is, player ω−1(k). If she belongs to N1, then she

contributes to the surplus obtained according to v1 since the worth of the coalition

Bω
1 (k) may be different from that of Bω

1 (k − 1) due to the addition of ω−1(k). Hence,

the first contribution of player ω−1(k) is v1(B
ω
1 (k))− v1(B

ω
1 (k − 1)). Moreover, player

ω−1(k) may also contribute by changing the externality that players in N1 exert over

the coalition of N2 formed at this step, that is, Bω
2 (k) (that coincides with Bω

2 (k− 1)).

In this logic, we assume that the players in N1 who have not arrived yet, that is, those

in N1 \Bω
1 (k), remain singletons. Hence, the contribution of player ω−1(k) to the worth

generated by the players in N2 is

v2(B
ω
2 (k); {Bω

1 (k)} ∪ {{i} : i ∈ N1 \Bω
1 (k)})

− v2(B
ω
2 (k); {Bω

1 (k − 1)} ∪ {{i} : i ∈ N1 \Bω
1 (k − 1)}).

If the player ω−1(k) is in N2, she may only change the surplus generated by the

function v2. This contribution depends on the set of players in N1 who have already
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arrived. Following the same logic as before, the contribution of ω−1(k), in this case, is

v2 (B
ω
2 (k); {Bω

1 (k)} ∪ {{i} : i ∈ N1 \Bω
1 (k)})

− v2(B
ω
2 (k − 1); {Bω

1 (k)} ∪ {{i} : i ∈ N1 \Bω
1 (k)}).

Therefore, using that Bω
2 (k) = Bω

2 (k − 1) if ω−1(k) ∈ N1 and Bω
1 (k) = Bω

1 (k − 1) if

ω−1(k) ∈ N2, we can write the contribution to (N, v) of the player who arrives at step

k ∈ {1, . . . , |N1|+ |N2|} of ω as:

mω
k (N, v) = v1(B

ω
1 (k))− v1(B

ω
1 (k − 1))

+ v2(B
ω
2 (k); {Bω

1 (k)} ∪ {{i} : i ∈ N1 \Bω
1 (k)})

− v2(B
ω
2 (k − 1); {Bω

1 (k − 1)} ∪ {{i} : i ∈ N1 \Bω
1 (k − 1)}).

The one-coalition externality value Φ1c allocates to every player h ∈ N1 ∪N2 in the

game (N, v) her expected contribution to the game when all the orderings have the

same probability, that is,6

Φ1c
h (N, v) =

1

(|N1|+ |N2|)!
∑

ω∈Ω(N1∪N2)

mω
ω(h)(N, v). (2)

Note that Φ1c is a well-defined value because, for each order, the contributions of

all the players in N1 ∪N2 add up to v1(N1) + v2(N2; {N1}): for any ω ∈ Ω(N1 ∪N2),

|N1|+|N2|∑
k=1

mω
k (N, v) = v1(N1) + v2 (N2; {N1})− v1(∅)− v2(∅; {{i} : i ∈ N1})

= v1(N1) + v2 (N2; {N1}) .

We now relate the one-coalition externality value of a game with intertemporal

externalities to the Shapley value of an associated CFF game. For any game (N, v) ∈ G,
define the associated game (N1 ∪N2, v̂) ∈ GCFF as follows:

v̂(S) ≡ v1 (S ∩N1) + v2 (S ∩N2; {S ∩N1} ∪ {{i} : i ∈ N1 \ S}) ,

for every S ⊆ N1 ∪N2. Proposition 3 states that the one-coalition externality value of

(N, v) and the Shapley value of (N1 ∪N2, v̂) coincide.

Proposition 3. For any game with intertemporal externalities (N, v) ∈ G,

Φ1c(N, v) = Sh(N1 ∪N2, v̂). (3)
6 We call it the one-coalition externality value because it only considers the externalities exerted

when, at most, one coalition of N1 is formed.
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Proof. The set of the orderings that allow computing the Shapley value of the game

(N1 ∪ N2, v̂) is the same set that we have used to define the one-coalition externality

value of (N, v). Moreover, it is immediate to check that, for any order, a player’s

contribution in both games is the same. Hence, the two values coincide.

4.2 Players in N1 go first

The existence of intertemporal externalities suggests that we may want only to consider

orderings where the players in N1 go before the players in N2; we call them “constrained

orderings.” For a game (N, v) ∈ G, a constrained ordering of N1 ∪ N2 is an injective

mapping θ : N1 ∪ N2 → {1, . . . , |N1| + |N2|} such that θ(i) < θ(j), for all i ∈ N1 and

j ∈ N2. We denote by Θ(N1 ∪ N2) the set of constrained orderings of N1 ∪ N2. As

above, Bθ
1(k) and Bθ

2(k) are the sets of players who have arrived at step k and belong

to N1 and N2, respectively.

We compute a player’s contribution given a constrained ordering θ. When a player

j ∈ N2 arrives, all the players in N1 are already in the room; hence, N1 has been formed.

Therefore, the order of arrival does not change the externality that the players in N1

generate on the worth of the coalitions in N2. Thus, the contribution in (N, v) of the

player who arrives at step k ∈ {1, . . . , |N1|+ |N2|} of θ is:

mθ
k(N, v) =

v1(B
θ
1(k))− v1(B

θ
1(k − 1)) if θ−1(k) ∈ N1

v2(B
θ
2(k); {N1})− v2(B

θ
2(k − 1); {N1}) if θ−1(k) ∈ N2.

We define the naive value Φn as the players’ expected contribution to constrained

orderings when the probability of these orderings is the same. Considering the number

of constrained orderings is |N1|! |N2|!, we have:

Φn
h(N, v) =

1

|N1|! |N2|!
∑

θ∈Θ(N1∪N2)

mθ
θ(h)(N, v),

for any h ∈ N1 ∪N2. The function Φn is well-defined since it is efficient.

There are similarities between the constrained orderings that we have used in the

construction of the naive value and the “ordered partitions” used in the definition of the

weighted Shapley value by Kalai and Samet (1987).7 To see the relationship, we first

recall one way to compute the weighted Shapley value for the simple “weight systems”

where all the players’ weights are the same, but the set of players M is partitioned in

7 The family of weighted Shapley value was introduced by Shapley (1953a).
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a non-singleton ordered set Σ = (S1, ..., Sm).
8 Consider (M, ŵ) ∈ GCFF . The weighted

Shapley value with the system Σ of player h, which we denote ShΣ
h (M, ŵ), corresponds

to h’s expected marginal contribution to ŵ when the only feasible orderings of M have

all the players of St precede those of St+1 for t = 1, ...,m−1 and all the feasible orderings

have the same probability.

The following proposition states that the naive value corresponds to the weighted

Shapley value for the ordered partition Σ = (N1, N2) of N1 ∪ N2 of the CFF game

(N1 ∪N2, v̂), which we have used to characterize the one-coalition externality value.

Proposition 4. Let Σ = (N1, N2). For any game with intertemporal externalities

(N, v) ∈ G,

Φn(N, v) = ShΣ(N1 ∪N2, v̂). (4)

Proof. Consider Σ = (N1, N2). Then ShΣ(N1 ∪ N2, v̂) is the vector of the players’

expected marginal contributions to v̂ when the feasible orderings of N1 ∪N2 are those

where the players of N1 precede those of N2, and all the feasible orderings have the

same probability. This is the same set of orderings that we call constrained orderings.

All the predecessors of a player i ∈ N1, if any, belong to N1. Hence, given the

definition of v̂, the marginal contribution in a feasible ordering of a player i ∈ N1 to a

coalition S ⊆ N1 \ {i} is just

v̂(S ∪ {i})− v̂(S) = v1 (S ∪ {i})− v1 (S) .

On the other hand, the set of predecessors of any player i ∈ N2 includes N1. There-

fore, the marginal contribution in a feasible ordering of a player j ∈ N2 to a coalition

S = N1 ∪ S2, with S2 ⊆ N2 \ {j}, is

v̂(S ∪ {j})− v̂(S) = v2 (S2 ∪ {j}; {N1})− v2 (S2; {N1}) .

The two previous marginal contributions are the same as those in the definition of

the naive value; hence, (4) holds.

An easy implication of Proposition 4 is that we can relate the naive value of a game

(N, v) ∈ G with the Shapley value of two CFF games, the first involving the players of

N1 and the second involving the players in N2:

8 We use the notation Σ instead of P to indicate that the partition is ordered.
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Φn
h(N, v) =

Shh(N1, v̂1) if h ∈ N1

Shh

(
N2, v̂

N1
2

)
if h ∈ N2,

(5)

where

v̂N1
2 (S2) = v2(S2; {N1}), (6)

for every S2 ⊆ N2.

Equation (5) highlights that, according to the naive value, players in N1 only receive

the value they create at the first period. They do not enjoy or suffer the consequences

of the externality generated in the second period by forming the grand coalition in the

first period.

In this section, we have introduced the values Φ1c and Φn for the set of games with

intertemporal externalities G. Each value is obtained as the expected contribution to

coalitions for a particular arrival process. We have also shown that they correspond

to the Shapley value and a weighted Shapley value, respectively, of the associated

CFF game (N1 ∪ N2, v̂). In the following two sections, we propose new properties to

complement the basic axioms described in Section 3 to characterize Φ1c and Φn.

5 Characterization of the one-coalition externality

value

This section characterizes the one-coalition externality value by adding an equal treat-

ment property to the basic axioms. To present this axiom, we first define the notion of

equally relevant players. As we discuss after the definition, two players must satisfy a

demanding condition to be equally relevant.

Definition 4. (a) Players i, i′ ∈ N1 are equally relevant in (N, v) if

v1(S1)− v1(S1 \ {i}) = v1(S1)− v1(S1 \ {i′}) for every S1 ⊆ N1, and

v2(S2;P1)− v2(S2;P
−i
1 ) = v2(S2;P1)− v2(S2;P

−i′

1 ) for every S2 ⊆ N2 and P1 ∈ P(N1).

(b) Players j, j′ ∈ N2 are equally relevant in (N, v) if

v2(S2;P1)−v2(S2\{j};P1) = v2(S2;P1)−v2(S2\{j′};P1) for every S2 ⊆ N2 and P1 ∈ P(N1).

(c) Players i ∈ N1 and j ∈ N2 are equally relevant in (N, v) if

v1(S1) = v1(S1\{i}) for all S1 ⊆ N1, and

v2(S2;P1)− v2(S2 \ {j};P1) = v2(S2;P1)− v2(S2;P
−i
1 ) for every S2 ⊆ N2 and P1 ∈ P(N1).
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We provide an intuition of Definition 4. Consider two players in N1. To be equally

relevant, the two players must contribute equally to any coalition of N1 (not only

to those coalitions containing both players, as in the classic definition of “symmetric

players”). Moreover, the effect in the worth of any coalition of N2 of having either

of the two players isolated from the coalition structure of N1 is also the same. Hence,

considering two players inN1 equally relevant requires satisfying a demanding condition.

The condition for two players in N2 to be equally relevant is in the same spirit as the first

part of the condition for players in N1. There is no requirement in terms of externalities

since they do not create any. Finally, we also propose a definition of equally relevant

players for players who belong to different periods, namely one agent in N1 and one

agent in N2. In this case, we require that the player in N1 does not have an effect on v1

(since the player in N2 cannot have any effect) and that the contribution of the player

in N2 be the same as the externality effect of the isolation of the player in N1.

The following axiom we propose, which we call “equal treatment of contributions,”

requires that two equally relevant players obtain the same payoff in the value. As

discussed above, being equally relevant is a very demanding condition; hence, the axiom

is weak. In fact, for equally relevant players in N2, the property is implied by the axiom

of anonymity. We state this fact in Remark 1.

Remark 1. Consider two equally relevant players j, j′ ∈ N2. Then, anonymity implies

Φj(N, v) = Φj′(N, v), for any (N, v) ∈ G. Indeed, let Φ be an anonymous value and

σ = (σ1, σ2) a permutation of N , with σ1 the identity on N1 and σ2 the permutation

on N2 such that σ2(j) = j′, σ2(j
′) = j, and σ2(j

′′) = j′′, for every j′′ ∈ N2 \ {j, j′}.
Then, we can see that σv = v because j and j′ are equally relevant and by anonymity

Φj(N, v) = Φj′(N, v).

We now introduce the axiom of equal treatment of contributions.

Axiom 4. Equal treatment of contributions: A value Φ satisfies equal treatment of

contributions if, for any game (N, v) ∈ G, Φh(N, v) = Φ′
h(N, v), for any equally relevant

players h, h′ ∈ N1 ∪N2.

Theorem 1 states the characterization of the one-coalition externality value using

the axiom of equal treatment of contributions.

Theorem 1. The one-coalition externality value Φ1c is the only value satisfying the

axioms of linearity, anonymity, dummy player, and equal treatment of contributions.
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Proof. We first show that Φ1c satisfies all the properties. We use Proposition 3 and

Shapley’s original axioms for CFF games.

The linearity of Φ1c follows from (a) the associated CFF game of the sum of two

games is the sum of the two corresponding associated CFF games, (b) the associated

CFF game of the product of a game and a scalar is the product of the corresponding

associated CFF game and the scalar, and (c) the linearity of the Shapley value.

Similarly, the anonymity of Φ1c follows from the fact that the associated CFF game

of a permuted game is a permuted game of the associated CFF game and the anonymity

of the Shapley value.

For the dummy player property, let i ∈ N1 be a dummy player in (N, v). Then, for

every S ⊆ N1 ∪N2,

v̂(S) =v1(S ∩N1) + v2 (S ∩N2; {S ∩N1} ∪ {{i′} : i′ ∈ N1 \ S})
=v1((S \ {i}) ∩N1) + v2 (S ∩N2; {(S \ {i}) ∩N1} ∪ {{i′} : i′ ∈ N1 \ (S \ {i})})
=v1((S \ {i}) ∩N1) + v2 ((S \ {i}) ∩N2; {(S \ {i}) ∩N1} ∪ {{i′} : i′ ∈ N1 \ (S \ {i})})
=v̂(S \ {i}),

where the first and last equalities follow the definition of v̂, the second equality holds

because i ∈ N1 is a dummy player, and the third equality holds because (S \{i})∩N2 =

S ∩N2.

Similarly, if j ∈ N2 is a dummy player in (N, v) then, for every S ⊆ N1 ∪N2,

v̂(S) =v1(S ∩N1) + v2 (S ∩N2; {S ∩N1} ∪ {{i} : i ∈ N1 \ S})
=v1(S ∩N1) + v2 ((S \ {j}) ∩N2; {S ∩N1} ∪ {{i} : i ∈ N1 \ S})
=v1((S \ {j}) ∩N1) + v2 ((S \ {j}) ∩N2; {(S \ {j}) ∩N1} ∪ {{i} : i ∈ N1 \ (S \ {j})})
=v̂(S \ {j}),

where the second equality holds because j ∈ N2 is a dummy player and the third

because (S \ {j}) ∩N1 = S ∩N1.

Given that v̂(S) = v̂(S \ {h}) for every S ⊆ N1 ∪ N2 if h ∈ N1 ∪ N2 is a dummy

player, the dummy player property of Φ1c follows from the homonymous property of

the Shapley value for CFF games.

We now prove that Φ1c satisfies equal treatment of contributions. Let (N, v) ∈ G
and i, i′ ∈ N1 be equally relevant players in (N, v). We show that the two players

obtain the same payoff in Φ1c by proving that they are symmetric in the associated
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game (N1 ∪N2, v̂). Consider any S ⊆ N1 ∪N2 such that i, i′ ∈ S. Then,

v̂(S \ {i}) =v1 ((S \ {i}) ∩N1) + v2 ((S \ {i}) ∩N2; {(S \ {i}) ∩N1} ∪ {{l} : l ∈ N1 \ (S \ {i})})
=v1 ((S ∩N1) \ {i}) + v2 (S ∩N2; {(S ∩N1) \ {i}} ∪ {{l} : l ∈ N1 \ S, {i}})
=v1 ((S ∩N1) \ {i}) + v2

(
S ∩N2;P

−i
1

)
,

where P1 ≡ {S ∩ N1} ∪ {{l} : l ∈ N1 \ S}. A similar equation holds for v̂(S \ {i′}).
Since i and i′ are equally relevant players, v1 ((S ∩N1) \ {i}) = v1 ((S ∩N1) \ {i′}) and
v2

(
S ∩N2;P

−i
1

)
= v2

(
S ∩N2;P

−i′

1

)
; hence, v̂(S \ {i}) = v̂(S \ {i′}), and the players

are symmetric, as we wanted to prove.

We do not need to show that the property holds for two equally relevant players

j, j′ ∈ N2 because of Remark 1.

Finally, we show that if i ∈ N1 and j ∈ N2 are equally relevant in (N, v), then they

are symmetric players in (N1∪N2, v̂). Following the same steps as above, we can check

that v̂(S \{j}) = v1 (S ∩N1)+v2 ((S ∩N2) \ {j};P1). Then, for any S ⊆ N1∪N2 such

that i, j ∈ S, we have v̂(S \ {i}) = v̂(S \ {j}) because v1 ((S ∩N1) \ {i}) = v1 (S ∩N1)

and v2
(
S ∩N2;P

−i
1

)
= v2 ((S ∩N2) \ {j};P1). Therefore, i and j obtain the same

payoff in Sh(N1 ∪N2, v̂), and, hence, in Φ1c(N, v).

For the uniqueness, let Φ be a value on G satisfying the properties. By Proposition

1, we only need to prove that the value is uniquely determined for the games (N, vb) ∈
Gb ≡ {(N, v) ∈ G : v1(S1) = 0 for all S1 ⊆ N1}. To show it, we use a basis of the family

of games Gb. For any non-empty S2 ⊆ N2 and P1 ∈ P(N1), we define the unanimity

game of (S2;P1), (N, v(S2;P1)) ∈ Gb, by9

v
(S2;P1)
1 (T1) ≡ 0 for all T1 ⊆ N1

v
(S2;P1)
2 (T2;Q1) ≡

1 if S2 ⊆ T2 and P1 ⪯ Q1

0 otherwise.

We claim that {(N, v(S2;P1)) : ∅ ≠ S2 ⊆ N2 and P1 ∈ P(N1)} is a basis of Gb. Clearly, Gb

is a vector space of dimension (2|N2|−1)|P(N1)|. Then, it is enough to check that the set

of unanimity games is linearly independent. We do it by contradiction. Let {λ(S2;P1) :

∅ ≠ S2 ⊆ N2 and P1 ∈ P(N1)} be a set of scalars such that
∑

∅≠S2⊆N2

P1∈P(N1)

λ(S2;P1)v
(S2;P1) is

the null game. Suppose that not all the scalars are equal to zero. Then, we choose one

of them, λ(T2;Q1) ̸= 0, such that for every T ′
2 ⊆ T2 and Q′

1 ⪯ Q1, λ(T ′
2;Q

′
1)
= 0. The worth

9 Given P,Q ∈ P(M), we say that P is finer than Q and write P ⪯ Q if for every S ∈ P there is a

T ∈ Q such that S ⊆ T .
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of
∑

∅≠S2⊆N2

P1∈P(N1)

λ(S2;P1)v
(S2;P1) evaluated in (T2;Q1) is

∑
∅≠S2⊆N2

P1∈P(N1)

λ(S2;P1)v
(S2;P1)
2 (T2;Q1) =

λ(T2;Q1) ̸= 0, which is a contradiction and proves the claim.

By linearity, we only need to show that Φ is uniquely determined for every element

of the basis. Consider (N, v(S2;P1)), for any non-empty S2 ⊆ N2 and P1 ∈ P(N1). For

convenience, we write the partition P1 as P1 = {A1, . . . , Ak} ∪ {{l} : l ∈ Ak+1}, where
A1, . . . , Ak are non-singleton coalitions. That is, Ak+1 includes all the players, if any,

of the singleton coalitions of P1. We prove that Φh(N, v(S2;P1)) is uniquely determined

for every h ∈ N1 ∪N2.

First, take j ∈ N2 \ S2. It is easy to check that j is a dummy player in v(S2;P1).

Then, by the dummy player property, Φj(N, v(S2;P1)) = 0.

Second, consider i ∈ Ak+1. Then i is a dummy player in v(S2;P1). Indeed, v
(S2;P1)
1 (T1) =

v
(S2;P1)
1 (T1 \ {i}) = 0 for all T1 ⊆ N1. Moreover, P1 ⪯ Q1 if and only if P1 ⪯ Q−i

1 for

every Q1 ∈ P(N1); hence, v
(S2;P1)
2 (T2;Q1) = v

(S2;P1)
2 (T2;Q

−i
1 ) for every T2 ⊆ N2 and

P1 ∈ P(N1). Then, by the dummy player property, Φi(N, v(S2;P1)) = 0.

We next show that the payoffs to the agents in S2 ∪A1 ∪ · · · ∪Ak are also uniquely

determined.

Let j ∈ S2. Then, v
(S2;P1)
2 (T2\{j};Q1) = 0 for every T2 ⊆ N2 and every Q1 ∈ P(N1).

This implies that all the players in S2 are equally relevant (see part (b) of Definition 4).

Then by equal treatment of contributions, Φ allocates the same payoff to the agents in

S2.

Next, consider i ∈ N1\Ak+1. Observe that P1 ̸⪯ Q−i
1 for every Q1 ∈ P(N1), because

player i forms a singleton coalition in Q−i
1 and belongs to a non-singleton coalition in

P1. Then v
(S2;P1)
2 (T2;Q

−i
1 ) = 0 for every T2 ⊆ N2 and every Q1 ∈ P(N1). Recall that,

since v(S2;P1) ∈ Gb, players in N1 do not generate value in the first period. Hence, all

the players in N1 \ Ak+1 are equally relevant (see part (b) of Definition 4). Therefore,

by equal treatment of contributions, Φ allocates the same payoff to all of them.

Moreover, note that we have just seen that for every i ∈ N1 \ Ak+1 and j ∈ S2,

v
(S2;P1)
1 (T1) = v

(S2;P1)
1 (T1 \ {i}) = 0 for all T1 ⊆ N1 and

v
(S2;P1)
2 (T2;Q1)− v

(S2;P1)
2 (T2 \ {j};Q1) =v

(S2;P1)
2 (T2;Q1)

=v
(S2;P1)
2 (T2;Q1)− v

(S2;P1)
2 (T2;Q

−i
1 ),

for every T2 ⊆ N2 and every Q1 ∈ P(N1). Therefore, i ∈ N1 \ Ak+1 and j ∈ S2 are

equally relevant players. Hence, by equal treatment of contributions, Φ allocates the

same payoff to all players in S2 ∪ A1 ∪ · · · ∪ Ak. Efficiency implies that this payoff is

unique, which proves the theorem.
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Theorem 1 provides a characterization of the one-coalition externality value based

on an axiom that postulates that two equally relevant players obtain the same payoff.

The definition of equal relevance takes into account not only the “direct” effect of a

player in the worth of a coalition but also the “indirect” effect she may have through an

externality. It gives a similar weight to both effects. In particular, if the contribution

to a coalition of a player in N2 is of the same magnitude as the externality generated

by a player in N1 (see part (c) of Definition 4), then these players must obtain the same

payoff, according to the axiom of equal treatment.

6 Characterization of the naive value

To characterize the naive value, we use an axiom related to the equal treatment of

the players in N1 who generate similar externalities. We focus on the idea that if two

players of N1 have a similar role in generating externalities, their payoff should be the

same. We introduce this idea in some simple games, denoted u(S2;P1). These games are

part of a basis for the set of games with intertemporal externalities G.10

Consider a non-empty S2 ⊆ N2 and P1 ∈ P(N1). We define the game u(S2;P1) ≡(
u
(S2;P1)
1 , u

(S2;P1)
2

)
, where u

(S2;P1)
1 : 2N1 → R and u

(S2;P1)
2 : 2N2 × P(N1) → R, by:

u
(S2;P1)
1 (T1) = 0 for all T1 ⊆ N1

u
(S2;P1)
2 (T2;Q1) =

1 if (T2;Q1) = (S2;P1)

0 otherwise.

The set {u(S2;P1)}∅≠S2⊆N2,P1∈P(N1) is a basis for the set of games Gb ≡ {(N, v) ∈ G :

v1(S1) = 0 for all S1 ⊆ N1}.11,12 Indeed, for any game (N, vb) ∈ Gb, we have:

10 In the proof of Theorem 1, we have used for convenience a different basis, which we denoted

{v(S2;P1)}∅̸=S2⊆N2,P1∈P(N1), for the same set of games.
11 In the game u(S2;P1), forming the grand coalition in both periods is not efficient unless (S2;P1) =

({N2}, {N1}). We use these games for convenience. However, the same analysis can be done if we define

a basis using the functions w(S2;P1), which are identical to u(S2;P1) except that w(S2;P1)(R2;Q1) = 1 if

either (R2;Q1) = (S2;P1) or (R2;Q1) = ({N2}; {N1}).
12 Consider the game (N, uS1), where uS1 =

(
uS1
1 , uS1

2

)
is defined by:

uS1
1 (R1) ≡

1 if R1 = S1

0 otherwise.

uS1
2 (R2;Q1) ≡ 0 for all (R2;Q1) ∈ 2N2 × P(N1).
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vb =
∑

∅̸=S2⊆N2,P1∈P(N1)

vb2(S2;P1)u
(S2;P1). (7)

In the game u(S2;P1), the role of all the players in N1 is “similar”: it is only when

they form precisely the partition P1 that they generate an externality on the coalition

S2. Our new axiom states that since the role of the players in N1 in the game u(S2;P1) is

similar, they should receive the same payoff in “compensation” for the externality that

they generate. We call it the axiom of “equal treatment of externalities.”

Axiom 5. Equal Treatment of Externalities: A value Φ satisfies equal treatment of

externalities if

Φi

(
N, u(S2;P1)

)
= Φi′

(
N, u(S2;P1)

)
for all i, i′ ∈ N1, S2 ⊆ N2, and P1 ∈ P(N1). (8)

Lemma 1 provides some information about the payoff obtained by the players in a

value that satisfies equal treatment of externalities in addition to the basic axioms. It

is instrumental in the proof of our following theorem.

Lemma 1. Consider a value Φ that satisfies linearity, anonymity, dummy player, and

equal treatment of externalities. Then, there exists weights {γ(S2;P1)}∅≠S2⊆N2;P1∈P(N1)

satisfying
∑

P1∈P(N1)
γ(S2;P1) = 1 for all S2 ⊆ N2, such that

Φi(N, v) = Shi(N1, v̂1) +
∑

S2⊆N2,P1∈P(N1)

v2(S2;P1)Φk(N, u(S2;P1)) (9)

Φj(N, v) = Shj(N2, v̂
γ
2 )−

∑
S2⊆N2,P1∈P(N1),S2⊉{j}

|N1|
|N2 \ S2|

v2(S2;P1)Φk(N, u(S2;P1)), (10)

for any i ∈ N1 and j ∈ N2, where Φk(N, u(S2;P1)) is the payoff obtained by any k ∈ N1

in the basis game (N, u(S2;P1)) and (N2, v̂
γ
2 ) is the CFF game defined by

v̂γ2 (S2) ≡
∑

P1∈P(N1)

γ(S2;P1)v2(S2;P1) (11)

for any S2 ⊆ N2.

Proof. The proof is in the Appendix.

Then, the set {(N, uS1)}∅̸=S1⊆N1
∪{(N, u(S2;P1))}∅≠S2⊆N2,P1∈P(N1) constitutes a basis of the whole set

of games with intertemporal externalities G.
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Lemma 1 states that the axiom of equal treatment of externalities, together with

linearity, anonymity, and the dummy player axiom, restricts the set of values. However,

it does not single out one value. To do it, we strengthen this axiom.

Equal treatment of externalities advocates that the players in N1 should receive the

same payoff in a basis game u(S2;P1) because their role in creating the externality is

similar. “Strong equal treatment of externalities” requires that since the role of the

players in N1 in the games u(S2;P1) and u(S2;P ′
1) is similar, for any P1, P

′
1 ∈ P(N1), their

payoffs in these game should also be the same.

Axiom 6. Strong Equal Treatment of Externalities: A value Φ satisfies strong equal

treatment of externalities if

Φi

(
N, u(S2;P1)

)
= Φi′

(
N, u(S2;P ′

1)
)

for all i, i′ ∈ N1, S2 ⊆ N2, and P1, P
′
1 ∈ P(N1).

(12)

Theorem 2 uses Lemma 1 to characterize the naive value through our basic axioms

plus the strong equal treatment of externalities axiom.

Theorem 2. The naive value Φn is the only value satisfying the axioms of linearity,

anonymity, dummy player, and strong equal treatment of externalities.

Proof. We first show that Φn satisfies the four axioms. Given the characterization

of Φn provided in Equation (5), it is immediate to check that it satisfies linearity,

anonymity, and dummy player. It also satisfies strong treatment of externalities because

Φn
i (N, u(S2;P1)) = 0 for all i ∈ N1, nonempty S2 ⊆ N2, and P1 ∈ P1.

Notice that Φn corresponds to the value identified in Lemma 1 when the weights

are γn(S2;P1) ≡ 0 and γn(S2; {N1}) ≡ 1, for all S2 ⊆ N2 and P1 ̸= {N1}. For these

weights, v̂N1
2 = v̂γ

n

2 (see Equations (6) and (11)).

We now prove that Φn is the only value that satisfies all the axioms. Take Φ,

satisfying the axioms. We show that Φ(N, v) = Φn(N, v) for all (N, v) ∈ G.
First, take i ∈ N1. Strong equal treatment of externalities requires that, for any

nonempty S2 ⊆ N2, Φi

(
N, u(S2;P1)

)
is the same for all P1 ∈ P(N1). Equation (20) (see

the Appendix) implies that
∑

P1∈P(N1)
Φi

(
N, u(S2;P1)

)
= 0. Therefore, Φi

(
N, u(S2;P1)

)
=

0 for all i ∈ N1, nonempty S2 ⊆ N2, and P1 ∈ P(N1). Then, using Equation (9),

Φi(N, v) = Shi(N1, v̂1) = Φn
i (N, v) for any i ∈ N1.

Take now j ∈ N2. Equation (10), together with Φk

(
N, u(S2;P1)

)
= 0 for all k ∈ N1,

imply that

Φj(N, v) = Shj (N2, v̂
γ
2 ) , (13)
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where v̂γ2 is defined in (11), for some weight system γ. We prove that it is necessarily

the case that γ = γn by induction on the size of the coalition S2. If S2 = N2, efficiency

requires γ(N2;P1) = 0, for any P1 ̸= {N1}. Otherwise, suppose γ(N2;P1) ̸= 0 for

some P1 ̸= {N1}, and consider the game v = u(N2;P1). For this game, v̂γ2 (N2) =

γ(N2;P1). Therefore, Sh(N2, v̂
γ
2 ) shares γ(N2;P1) ̸= 0 among the players in N2, whereas

the efficiency of Φ requires that the sum of the players’ payoff be v2(N2; {N1}) =

0. Moreover, γ(N2;P1) = 0 for any P1 ̸= {N1} implies γ(N2; {N1}) = 1. Hence,

γ(N2;P1) = γn(N2;P1) for all P1 ∈ P1.

By the induction argument, assume that γ(S2;P1) = γn(S2;P1) for all P1 ∈ P (N1)

holds for all S2 ⊆ N2 with |S2| ≥ m, for 1 < m ≤ |N2|.
Consider S2 ⊆ N2 with |S2| = m−1, j ∈ N2 \S2, and P1 ∈ P (N1). Define the game

(N,w) by w ≡ u(S2∪{j};P1) + u(S2;P1). That is, the worth of the coalitions S2 ∪ {j} and

S2 is 1 if the partition P1 has been formed; the worth of a coalition is zero in any other

case. The agent j ∈ N2 is a dummy player in (N,w); hence, the dummy player axiom

implies Φj(N,w) = 0. Moreover, given the worth of the coalitions in w, the CFF game

(N2, ŵ
γ
2 ) satisfies

wγ
2 (S2 ∪ {j}) =γ(S2 ∪ {j};P1)

wγ
2 (S2) =γ(S2;P1)

wγ
2 (T2) =0 for all T2 ̸= S2, T2 ̸= S2 ∪ {j}.

The contribution of j to any coalition in the game (N2, ŵ
γ
2 ) is zero, except possibly

to S2. Her contribution to S2 is γ(S2 ∪ {j};P1) − γ(S2;P1). Then, 0 = Φj(N,w) =

Shj (N2, w
γ
2 ) implies that this contribution must be zero; hence, γ(S2;P1) = γ(S2 ∪

{j};P1) for all P1 ∈ P1. Since |S2 ∪ {j}| = m, we use the induction argument and

obtain γ(S2;P1) = γ(S2 ∪ {j};P1) = γn(S2 ∪ {j};P1) = 0 for all P1 ̸= {N1} and

γ(S2; {N1}) = γ(S2 ∪ {j}; {N1}) = γn(S2 ∪ {j}; {N1}) = 1.

This completes the induction argument. We have shown that γ = γn; hence, Φn is

the only value satisfying the four axioms.

Theorem 2 identifies the naive value as the only one satisfying the basic Shapley

axioms and rewarding the externalities generated by the players in N1 in a strong

symmetric way. It shows that the only way symmetric treatment of externalities (in

a strong sense) is compatible with the Shapley axioms is to disregard the externalities

completely.
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7 Games with intertemporal additive externalities

In this section, we introduce a particular class of games in G., which we call games with

intertemporal additive externalities. They are games where the intertemporal external-

ity does not vary across the coalitions that can be formed in the second period; it only

depends on the partition created in the first period. In this class of games, we first

illustrate the form of any sharing rules satisfying the basic axioms. Then, we highlight

the differences in the distribution of the surplus between the one-coalition externality

and the naive values.

Formally, a game with intertemporal additive externalities (N, v) ∈ G satisfies

v2(∅;P1) = 0 for any P1 ∈ P(N1) and, for every non-empty S2 ⊆ N2 and P1 ∈ P(N1),

v2(S2;P1) = v̂2(S2) + e(P1).

The function v̂2 : 2
N2 \∅ → R provides the worth generated by any non-empty coalition

of players in N2, and the function e : P(N1) → R measures the externality generated

in any coalition by the partition formed among the players in N1. We normalize the

function such that e({{i} : i ∈ N1}) = 0. This assumption is without loss of generality

as we could subtract the worth of the partition of the singletons from all the externalities

and add it to v2(S2) for all non-empty S2 ⊆ N2.

Consider a value Φ satisfying linearity, anonymity, and dummy player. We decom-

pose any game with additive externalities (N, v) ∈ G as the sum of two games (N, v′)

and (N, v′′) as follows. The game (N, v′) satisfies v′1 = v1 and v′2(S2;P1) = v̂2(S2) for

any S2 ⊆ N2 and P1 ∈ P(N1). The game (N, v′′) is defined by v′′1 = 0 and v′′2(∅;P1) = 0

and v′′2(S2;P1) = e(P1) for any non-empty S2 ⊆ N2 and P1 ∈ P(N1).

Note that (N, v′) is a game without externalities. Then, by Proposition 1, Φi(N, v′) =

Shi(N1, v̂1) for all i ∈ N1 and Φj(N, v′) = Shj(N2, v̂2) for all j ∈ N2 . Therefore, if

the externality is additive, the values that satisfy the basic axioms only differ in how

they share the surplus e({N1}) among the players in N1∪N2. Moreover, by anonymity,

all the players in N2 obtain the same payoff, hence Φj(N, v′′) = Φj′(N, v′′) for every

j, j′ ∈ N2.

We now describe the precise sharing proposed by Φn and Φ1c for the class of additive

games.

Consider the naive value, Φ = Φn. Equation (5) implies that Φn
i (N, v′′) = Shi(N, v̂′′1) =

0 for all i ∈ N1. Moreover, since all the players in N2 must obtain the same payoff,

Φn
j (N, v′′) = e(N1)

|N2| for all j ∈ N2. That is, the naive value divides equally the externality

(positive or negative) generated by the formation of the grand coalition N1 among the
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players in N2.

Consider now the one-coalition externality value, Φ = Φ1c. For this value, the

externality generated by the formation of N1 is shared among the players in N1 ∪ N2

and not only among the players in N2. Using Equation (2), we compute the equal value

assigned by Φ1c to the players in N2:

Φ1c
j (N, v′′) =

∑
S1⊆N1
|S1|≥2

|S1|!(|N1 ∪N2| − |S1| − 1)!

|N1 ∪N2|!
e({S1} ∪ {{l} : l ∈ N1 \ S1}),

for all j ∈ N2. On the other hand, the players in N1 are not symmetric. Following also

Equation (2), the contributions of a player in N1 determine the value that Φ1c assigns

to her:

Φ1c
i (N, v′′) =

∑
S1⊆N1
S1⊇{i}

(
(|S1| − 1)!(|N1| − |S1|)!

|N1|!
− (|S1| − 1)!(|N1 ∪N2| − |S1|)!

|N1 ∪N2|!

)
×

(
e({S1} ∪ {{l} : l ∈ N1 \ S1})− e({S1 \ {i}} ∪ {{l} : l ∈ N1 \ (S1 \ {i})})

)
,

for all i ∈ N1.

To illustrate the previous results on how the externality is shared among the players

in N1 and N2, consider two games (N, v′′) with N1 = {1, 2, 3}, N2 = {4}, one with pos-

itive externalities (that is, forming larger coalitions in t = 1 generates a higher surplus

in t = 2) and another with negative externalities (that is, forming larger coalitions at

t = 1 generates lower surplus at t = 2), normalizing so that e({1}, {2}, {3}) = 0:

P1 e+(P1) e−(P1)

e({1}, {2}, {3}) 0 0

e({1, 2}, {3}) 0 -3

e({1, 3}, {2}) 3 -3

e({2, 3}, {1}) 6 -3

e({1, 2, 3}) 9 -9

We denote by (N, v′′+) the game with positive externalities, the one whose external-

ity function is e+ and by (N, v′′−) the game with negative externalities, whose function

is e−.

In the game with positive externalities, we have:

Φn(N, v′′+) = (0, 0, 0, 9) and Φ1c(N, v′′+) = (1, 2, 3, 3),
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whereas in the game with negative externalities, we have:

Φn(N, v′′−) = (0, 0, 0,−9) and Φ1c(N, v′′+) = (−2,−2,−2,−3).

As the example illustrates, the naive value allocates the (positive or negative) exter-

nalities generated by forming the grand coalition in the first period only to the agents

in the second period. On the other hand, the one-coalition externality value is more

sensitive. It divides the externalities among the players in the two periods. It rewards

or punishes the agents in the first period depending on whether the externalities they

create are positive (as it happens in (N, v′′+) or negative (as in (N, v′′−)). In the game

(N, v′′+), the formation of the grand coalition N1 leads to the highest positive exter-

nality. Therefore, the players in N1 receive a positive payoff of 6 in total. On the other

hand, when they form N1 in the game (N, v′′−), the externality created by the agents in

t = 1 is the most negative. The one-coalition externality value allocates a total payoff

of −6 to those agents.

We note that the previous example only describes the sharing of the surplus (or

the loss) due to the externality. In most environments, the players in N1 would both

make some profits at t = 1 and generate externalities at t = 2. Consider, for instance,

the game with positive externalities. We may think of situations (like the formation of

coalitions in t = 1 to reduce emissions in t = 2) where the players in N1 obtain fewer

profits in the first period if they form the grand coalition (the one reducing emissions

the most), but the players in the second period inherit a better environment, which

leads to more profits. In this case, it may make sense to compensate these players for

the cost they encounter by sharing v1(N1) instead of the total worth obtained in some

other partition, as the one-coalitional externality suggests.

8 Discussion on the relationship with values for par-

tition function form games

Given the existence of externalities between two sets of players in a game with intertem-

poral externalities, there are similarities between the class of games we analyze in this

paper and the set of games in partition function form (PFF games). In contrast with

a CFF game, a PFF game considers that the worth of a coalition may depend on the

organization of the rest of the players, that is, on the whole partition of players. As

discussed in the Introduction, the literature has provided several values for PFF games

that extend the Shapley value.
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This section shows that a game with intertemporal externalities can be adapted into

a “traditional” PFF game. Then, we discuss what values for games with intertemporal

externalities can be obtained through such a procedure and their relationship to the

values we introduce and analyze in this paper.

Take a game with intertemporal externalities (N, v). The most intuitive way to

transform it into a PFF game (N1 ∪ N2, ṽ) is by defining the worth function ṽ as

follows:

ṽ(S, P ) ≡ v1(S ∩N1) + v2(S ∩N2;P ∩̃N1), (14)

for any S ⊆ N1 ∪ N2 and P ∈ P(N1 ∪ N2) with S ∈ P , where we denote P ∩̃N1 ≡
{R ∩ N1 | R ∈ P} \ ∅. That is, the game (N1 ∪ N2, ṽ) associates to a coalition S of

N1 ∪N2 when the partition is P the sum of the worth in t = 1 of the players of S who

are in N1 plus the worth in t = 2 of the players in S who are in N2. The worth of

S ∩N2 is computed taking into account that players in N1 are organized according to

the restriction of P to N1.
13

In the class of PFF games, several extensions of the Shapley value (Macho-Stadler

et al., 2007; Pham Do and Norde, 2007; McQuillin, 2009) can be obtained through

the “average approach.” This approach consists of defining, for each PFF game, an

“average” CFF game, where the worth of a coalition is a weighted average of the

worth of the coalition for all the possible partitions that include it. Then, we obtain an

extension of the Shapley value by applying this value to the resulting average CFF game.

Each way of doing averages (i.e., each weight system) leads to a different extension of

the Shapley value.

A weight system α is a function that associates a non-negative weight to each coali-

tion and partition that contains it, with the condition that
∑

P∋S,P∈P(N1∪N2)
α(S, P ) =

1, for all S ⊆ N1 ∪N2. Then, given the PFF game (N1 ∪N2, ṽ) and the weight system

α, the average approach constructs the CFF game (N1 ∪N2, v̂
α) as follows:

v̂α(S) =
∑

P∋S,P∈P(N1∪N2)

α(S, P )ṽ(S, P ),

13 The previous expression of ṽ is also obtained if we consider the initial game (N, v) a game with two

“issues,” in the sense of Diamantoudi et al. (2015). Following the approach of that paper, each period

can be considered an issue in which all the players participate; only the players in N1 generate worth

in the first issue, and only those in N2 generate worth in the second issue, although the organization

of all the players in N1 matters for that worth. Diamantoudi et al. (2015) propose a way to convert a

game with several issues into a PFF game. Easy calculations show that going from (N, v) to a game

with two issues and from that game to a PFF game results in (N1 ∪N2, ṽ).
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for any S ⊆ N1 ∪N2.

Using the two previous steps, we can go from a game (N, v) ∈ G to a PFF game

(N1 ∪ N2, ṽ), and from this to a CFF game (N1 ∪ N2, v̂
α). Given the expression for ṽ

in (14), we obtain

v̂α(S) = v1(S ∩N1) +
∑

P∋S,P∈P(N1∪N2)

α(S, P )v2(S ∩N2, P ∩̃N1), (15)

for any S ⊆ N1 ∪N2.

Hence, we can propose an extension of the Shapley value for games with intertem-

poral externalities by computing Sh(N1 ∪ N2, v̂
α). Each vector of weights α that is

symmetric, in the sense that it only depends on the sizes of the coalitions, and that

satisfies a condition derived from the dummy player axiom (see Theorem 1 in Macho-

Stadler et al., 2007) leads to an extension of the Shapley value to the class of games

G.
Pham Do and Norde (2007) and de Clippel and Serrano (2008) propose an extension,

called the “externality-free” value, which corresponds to the weights α(S, P ) = 1 if

P = {S} ∪ {{h} : h ∈ (N1 ∪N2) \ S} and α(S, P ) = 0 otherwise. Using these weights,

we obtain

v̂α(S) = v1(S ∩N1) + v2(S ∩N2; {S ∩N1} ∪ {{h} : h ∈ N1 \ S}) = v̂(S),

for any S ⊆ N1 ∪ N2. Therefore, according to Proposition 3, applying the previous

procedure and then using the externality-free value leads to the one-coalition externality

value for games with intertemporal externalities.

Can we also obtain the naive value using this procedure? Note first that, using

(5) and (6), we can write the naive value as Φn(N, v) = Sh(N1 ∪ N2, v̂
n), where

v̂n(S) ≡ v1 (S ∩N1) + v2 (S ∩N2; {N1}), for every S ⊆ N1 ∪ N2. Therefore, we can

rephrase the question as, are there weights that lead to v̂α(S) = v̂n(S) = v1 (S ∩N1) +

v2 (S ∩N2; {N1}) for any S ⊆ N1∪N2? The answer is negative. The reason is that, for

any S ⊆ N1 ∪N2, v̂
α(S) puts weights to the worth of the coalition S ∩N2 when S ∩N1

is an element of the partition P1 (since S ∩ N1 ∈ P ∩̃N1, for any (S, P ) with S ∈ P ),

whereas v̂n(S) only takes into account the worth of S ∩N2 when P1 = N1. Therefore,

v̂α(S) is typically different from v̂n(S), for any S ⊉ N1.

The fact that the naive value cannot be derived from an extension of the Shapley

value for PFF games through the procedure previously described is not a weakness of

the value. On the contrary, this fact highlights the particularities of the framework

that we have analyzed. In PFF games, all the players have a priori equal possibilities
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to create worth and externalities with the other players. On the other hand, in a game

with intertemporal externalities, the possibilities to create worth and externalities for

players in N1 are very different from those in N2. A value for the set of games with

intertemporal externalities may take into account these differences, as the naive value

does.

9 Conclusion

We have introduced a new class of games whose main feature is that the organization

of the coalitions formed by one set of players generates externalities on the worth ob-

tained by the coalitions formed by another set of players. This model fits environments

with intergenerational externalities, where the decisions taken (the coalitions formed)

by countries or individuals at a moment in time strongly influence the surplus that

countries or the future generation of individuals can obtain later. We propose a co-

operative game analysis based on the original Shapley axioms for this class of games

with intertemporal externalities. However, these axioms are insufficient to single out a

unique value for our class of games.

We introduce two extensions of the Shapley value, the one-coalition externality

value and the naive value, defined as the players’ expected contribution to coalitions.

Each extension is based on a different distribution probability of the arrival of the

players. We characterize the one-coalition externality value using the equal treatment

axiom, requiring two equally relevant players to obtain the same payoff. Similarly, we

characterize the naive value with the axiom of strong equal treatment of externalities,

which requires that similar externalities be rewarded or penalized in the same way.

Other values can be proposed for our class of games. For instance, one could consider

the value obtained by assuming that players in the second period arrive before those in

the first period. This may be seen as an imaginary backward induction made by players

in the present anticipating that their descendants will form the grand coalition. This

proposal is a technically interesting counterpart of the naive value as it distributes the

externalities generated (on the grand coalition of the second period) among the agents

in the first period. We believe that the unintuitive orderings in which it is based may

make it an unappealing way to share the surplus in our setting.

Further research on games with intertemporal externalities may propose other ax-

ioms to extend the Shapley value. It may also use different approaches extending,

for instance, the nucleolus. Moreover, we have deliberately focused on games where

the externality is only intertemporal. In environments such as today’s countries’ ne-
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gotiations on pollution abatement, there are not only intertemporal externalities but

also inter-coalitional externalities affecting today’s welfare. Finally, we can also con-

sider non-cooperative games that would implement the cooperative solutions proposed

in this paper. These analyses, while interesting, fall beyond the scope of the current

paper.

Appendix

Proof of Lemma 1. We decompose the game (N, v) in the games (N, va) and
(
N, vb

)
,

as in the proof of Proposition 1. We know that Φ(N, va) allocates Sh(N1, v̂1) to the

players in N1 and 0 to the players of N2. We now focus on Φ(N, vb).

Since Φ satisfies linearity, then

Φh(N, vb) =
∑

∅≠S2⊆N2,P1∈P(N1)

vb(S2;P1)Φh(N, u(S2;P1)) for all h ∈ N1 ∪N2. (16)

The anonymity of Φ implies that

Φj(N, u(S2;P1)) = Φj′(N, u(S2;P1)) if j, j′ ∈ S2, or j, j′ ∈ N2 \ S2, (17)

and its efficiency implies that∑
h∈N1∪N2

Φh(N, u(S2;P1)) = 0 if (S2;P1) ̸= (N2, {N1}), (18)∑
h∈N1∪N2

Φh(N, u(N2,{N1})) = 1. (19)

Moreover, because Φ satisfies linearity, anonymity, and dummy player, then

∑
P1∈P(N1)

Φh(N, u(S2;P1)) =

0 if h ∈ N1

βh(N2, S2) if h ∈ N2

(20)

where βh(N2, S2) are the Shapley coefficients, see (1). Equation (20) follows from Propo-

sition 1 because
∑

P1∈P(N1)
(N, u(S2;P1)) is a game without externalities; hence, the worth∑

P1∈P(N1)
(N, u(S2;P1))(N2; {N1}) (which is equal to 0 unless S2 = N2, in which case the

worth is 1) is shared among the players in N2 according to their Shapley value.

Using (8) and (17), we can express Equations (18) and (19) as follows:

|N1|Φk(N, u(S2;P1)) + |S2|Φj(N, u(S2;P1)) + |N2 \ S2|Φj′(N, u(S2;P1)) = 0 (21)
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for any k ∈ N1, j ∈ S2, and j′ ∈ N2 \ S2, and

|N1|Φk(N, u(N2,{N1})) + |N2|Φj(N, u(N2,{N1})) = 1, (22)

for any k ∈ N1 and j ∈ N2.

We write Equation (21) as:

Φj′(N, u(S2;P1)) = − |S2|
|N2 \ S2|

Φj(N, u(S2;P1))− |N1|
|N2 \ S2|

Φk(N, u(S2;P1)), (23)

for any k ∈ N1, j ∈ S2, and j′ ∈ N2 \ S2, and we notice that the Shapley coefficients

satisfy the following relation:

|S2| βj(N2, S2) + |N2 \ S2| βj′(N2, S2) = 0 (24)

for all j ∈ S2 and j′ ∈ N2 \ S2.

Using (24), we substitute |N2 \ S2| in Equation (23) to obtain:

Φj′(N, u(S2;P1)) = βj′(N2, S2)
1

βj(N2, S2)
Φj(N, u(S2;P1))− |N1|

|N2 \ S2|
Φk(N, u(S2;P1)), (25)

for any k ∈ N1, j ∈ S2, and j′ ∈ N2 \ S2.

Define the “weights” γ(S2;P1) as follows:

γ(S2;P1) ≡
1

βj(N2, S2)
Φj(N, u(S2;P1)), (26)

where j is any player in S2.

Notice that, using (20),
∑

P1∈P(N1)
γ(S2;P1) =

1
βj(N2,S2)

∑
P1∈P(N1)

Φj(N, u(S2;P1)) = 1

(where j is any player in S2), for all S2 ⊆ N2.

Then, Equations (26) and (25) lead to

Φj(N, u(S2;P1)) =βj(N2, S2)γ(S2;P1), (27)

Φj′(N, u(S2;P1)) =βj′(N2, S2)γ(S2;P1)−
|N1|

|N2 \ S2|
Φk(N, u(S2;P1)), (28)

for any j ∈ S2, j
′ ∈ N2 \ S2, and k ∈ N1.

Using (16), (27), and (28), we can express the worth of any player j ∈ N2 in a game

(N, vb) according to a value Φ that satisfies linearity, anonymity, and equal treatment
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of externalities as follows:

Φj(N, vb) =
∑

∅̸=S2⊆N2,P1∈P(N1)

vb(S2;P1)Φj(N, u(S2;P1))

=
∑

∅̸=S2⊆N2,P1∈P(N1),S2⊇{j}

vb(S2;P1)βj(N2, S2)γ(S2;P1)

+
∑

∅≠S2⊆N2,P1∈P(N1),S2⊉{j}

vb(S2;P1)

(
βj(N2, S2)γ(S2;P1)−

|N1|
|N2 \ S2|

Φk(N, u(S2;P1))

)
=

∑
∅̸=S2⊆N2

βj(N2, S2)
∑

P1∈P(N1)

γ(S2;P1)v
b(S2;P1)

−
∑

∅̸=S2⊆N2,P1∈P(N1),S2⊉{j}

vb(S2;P1)
|N1|

|N2 \ S2|
Φk(N, u(S2;P1))

=Shj(N2, v̂
γ
2 )−

∑
∅≠S2⊆N2,P1∈P(N1),S2⊉{j}

|N1|
|N2 \ S2|

Φk(N, u(S2;P1))vb(S2;P1),

where k is any player in N1.

Similarly, using (16), we can express the worth of any player i ∈ N1 as follows:

Φi(N, vb) =
∑

∅≠S2⊆N2,P1∈P(N1)

vb(S2;P1)Φi(N, u(S2;P1)).

Given that Φk(N, v(S2;P1)) is the same for every k ∈ N1, linearity and equal treatment

of externalities imply that all the players in N1 obtain the same payoff in a game (N, vb).

Finally, the expression in the lemma follows from the linearity of Φ and the fact

that v = va + vb.
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