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Abstract

Risk-averse workers in a team exert effort to produce joint output. Workers’ incentives
are connected via chains of productivity spillovers, represented by a network of peer-effects.
We study the problem of a principal offering wage contracts that simultaneously incen-
tivize and insure agents. We solve for the optimal linear contract for any network and
show that optimal incentives are loaded more heavily on workers that are more central in
a specific way. We conveniently link firm profits to network structure via the networks
spectral properties. When firms can’t personalize contracts, better connected workers ex-
tract rents. In this case, a group composition result follows: large within-group differences
in centrality can decrease firm’s profits. Finally, we find that modular production has
important implications for how peer structures distribute incentives.
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1 Introduction

The members of a firm typically supply labor in exchange for wages, which in many cases
stipulate a fixed and variable payment. Variable payments (often payed out in the form of stock
options, bonuses, commissions, etc.) grow with a firm’s total output and thus motivate workers.
However, making workers responsible for output also imposes risk. If workers are risk-averse,
higher risk decreases the surplus generated by their involvement in the organization, which
means that firms must forgo profits in order to compensate them. Organizations must therefore
strike an optimal balance between providing incentives on the one hand and insuring workers
on the other. In this context, we investigate how firms should optimally design wages when
organizations feature productivity spillovers between its members. Indeed, a worker’s effort
may contribute more to total output when her peers exert more effort. Such peer effects can be
represented as a weighted network of workplace relationships. In this paper we describe how
optimal wage compensation depends on workers’ position within the organizational structure
of the firm.

We solve for the optimal linear wage contract that maximizes the profits of a risk-neutral
firm when workers collaborate in teams to form joint output by contributing effort, which is
not contractible. As is typical in the literature on peer effects, each worker’s effort has a direct
contribution to total output (independent of others), which is then amplified via chains of
productivity spillovers. The overall productivity of a worker’s effort is therefore a function of
the efforts of some subset of other workers. The pattern of spillovers is assumed to be fixed
and defines an exogenous network.

The timing of the model is as follows. The principal offers a contract to each worker contin-
gent on the realization of output and the worker’s type. Workers decide whether to accept or
reject the contract. All workers that accept choose their effort simultaneously. As a function
of effort choices total output is realized. The firm pays wages.

In the first part of the paper we consider the situation in which the firm can offer a separate
take-it-or-leave-it wage offer to each worker as a function of their position in the network. Since
firms can extract all surplus from each worker, the optimal wage contract is efficient. We show
that firms choose to concentrate high-powered incentives on workers that are "closest" to the
rest of the workforce, as determined by a network metric that aggregates path lengths. This new
measure of network centrality emerges as the natural "incentives target" under moral hazard
in networked teams. Unlike other optimal interventions in the literature (Galeotti, Golub, and
Goyal, 2020) our "incentives target" is not proportional to the principal component of the peer
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network because our objective must also account for workers’ risk exposure. In fact, we describe
a "wage-risk wedge" that determines how the two interventions relate for any network. Finally,
we also show that, under the optimal contract, profits correspond to half of equilibrium output.
This allows us to link firm profits to structural features of the network, which determine the
optimal organizational design of firms, as we show in an application.

In the second part of the paper, we coarsen the contract space available to the firm. We start
from the observation that firms typically offer similar contracts to a whole category of workers
satisfying the same job description, even though they may occupy very different parts of the
network. For instance, two junior marketing assistants may associate with very different sets of
coworkers, either organically or due to the firm’s own assignment of responsibilities. We obtain
the optimal contract for any group composition and any network. As is natural, the assignment
of incentives now depends on a group-level average of members’ centrality. More importantly,
firms can no longer discriminate fully and therefore must forgo some rents. In fact, firms can
only extract all surplus from the "poorest connected" member of each group; all other workers
receive rents in proportion to how connected they are. This result opens up the possibility that
firms prefer to exclude the least connected members from each group. Although this lowers
output it increases the share kept by the firm, and hence profits. This leads to a powerful new
group composition result. We show that it is never optimal for firms to have active groups of
workers where the variance in connectivity is larger than some threshold.

1.1 Related Literature

Our research locates at the interplay between contract and network theory. We begin with the
classic model of moral hazard with a risk-neutral principal, risk-averse agents with CARA pref-
erences, linear contracts and normally-distributed random shocks (Holmstrom, 1982; Mookher-
jee, 1984; Holmstrom and Milgrom, 1991; Macho-Stadler and Pérez-Castrillo, 1993; Bolton
and Dewatripont, 2004). We extend this model by introducing interactions in social networks
(Bramoullé and Kranton, 2007; Ambrus, Mobius, and Szeidl, 2014), and analyze the role of
peer effects on strategic decision-making and resulting economic and social outcomes. To oper-
ationalize such peer effects, we rely on the parametrization and functional form of the agent’s
utility function outlined in the work of Ballester, Calvó-Armengol, and Zenou (2006). Inter-
ventions on these type of games is common in the networks literature (Bramoullé and Kranton,
2007; Galeotti et al., 2020; Parise and Ozdaglar, 2023). Moreover, evidence on the existence of
peers has been documented in team productivity (Mas and Moretti, 2009; Bandiera, Barankay,
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and Rasul, 2005; Hamilton, Nickerson, and Owan, 2003), wages (Cornelissen, Dustmann, and
Schönberg, 2017), and education (Calvó-Armengol, Patacchini, and Zenou, 2009). Recent
related literature has explored optimal compensation using equity instruments (Dasaratha,
Golub, and Shah, 2023; Shi, 2022) and linear contracts in weighted networks (Claveria, 2024).
Our model complements and advances this literature by providing a theoretical foundation for
the general case of agents heterogeneous in several dimensions, providing a direct mapping from
network features to Principal’s profits, and exploring the implications of limiting a principal’s
decision to coarser forms of contracts.

The remainder of the paper is organized as follows. Section 2 presents the basic model. In
Section 3 we present the main implications of optimal contract design when individual-based
contracts are offered. When then explore the economic implications when only a coarser set of
contracts is available. In this section we also provide simulations to illustrate our main results.
We conclude with a brief discussion of the main findings.

2 The Model

2.1 Basic Setup

Consider a risk-neutral firm that hires n workers A = {1, 2, . . . , n}, to conduct a joint production
process. Each worker chooses individual effort ei ∈ R+ and the firm’s production is given by

X(e) =
n∑

i=1

ei + ε

where ε ∼ N (0, σ2) is an unobserved random shock to output. Because individual effort is not
observable, contractual wage agreements must be based on observable (and verifiable) outcomes,
such as output. We focus on the case in which the firm offers linear wage schemes of the form1

wi(X) = βi + αiX

1As stressed by Macho-Stadler and Pérez-Castrillo (2016), linear contracts are generally not optimal in the
static setting (Mirrlees, 1999). However, under certain circumstances such as the assumption of continuous
efforts in a dynamic setting, Holmstrom and Milgrom (1987) show that the optimal contract is linear in the
final outcome. Carroll (2015) also shows how linear contracts are optimal in models with limited liability and
risk neutrality, in cases where the principal is uncertain about the technology available to the agent.
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where βi is a fixed payment and αi captures the contract’s performance-based compensation.2

We assume that workers are embedded in a fixed and exogenous peer network represented
by the adjacency matrix G.3 Depending on the application in mind, the network might reflect
the firm’s organizational structure – i.e. how roles and responsibilities are assigned– but it can
also capture the informal bonds of assistance that are forged between workers. Effort costs are
assumed to be a linear-quadratic function of own and neighbors’ efforts following the standard
form in the peer effects literature:

ψi(e) =
1

2
e2i − λei

∑
j

gjiej.

The parameter λ captures the strength of peer effects and can be positive or negative depending
on whether efforts are strategic complements or substitutes in production. When λ = 0 the
model specifies to the classical textbook model in Bolton and Dewatripont (2004).

Workers are assumed to be risk averse with constant absolute risk aversion (CARA) param-
eter r:

ui(ei;αi, βi) = − exp [−r (wi(X)− ψi(ei))]

Since wages are linear and output is normally distributed, expected utility takes a tractable
form as

E[ui(e)] ≡ − exp [−r CEi(e)]

where,

CEi(e) = βi + αi

n∑
j=1

ej − 1

2
e2i + λei

∑
j

gjiej − α2
i

rσ2

2
(1)

The above functional form is conveniently analogous to the utility functions proposed by
Ballester et al. (2006) and Calvó-Armengol et al. (2009), with an additional term correcting
for uncertainty. The last term captures how adding risk into workers’ compensation (through
αi) decreases individual welfare. Indeed, contractual arrangements with larger contingent pay-
ments, more risk averse agents, or highly volatile production processes will deliver lower utility
to workers.

2Although αi can be thought of as a form of equity compensation whereby a share of the firm is transferred
to the worker, one can also consider cases where

∑
i αi > 1 and βi < 0, in which case the contract corresponds

to a franchise contractual arrangement.
3The network is allowed to be directed. A link from i to j is represented by gij = 1 and gij = 0 in the

absence of such a link
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If a contract (αi, βi) is acceptable, worker i will optimally choose the effort level that maxi-
mizes expected utility, taking all other workers’ equilibrium effort levels as given,

e�i ∈ arg max
êi∈R+

CEi(êi, e
�
−i)

A worker accepts the contract only if the certain equivalent in equilibrium is greater than or
equal to her reservation utility, Ui,

CEi(e) ≥ Ui

We take Ui as exogenous and fixed. We consider therefore a situation in which the firm has all
bargaining power and essentially makes a take-it-or-leave-it offer to the worker. In an extension,
we consider how the optimal contract looks like when firms compete for workers.

The firm will select a contract for each worker in order to maximize expected profits. Con-
tracts (α,β) must be individually rational and incentive compatible. Formally we have,

max
α,β

E[π(e | α,β)]

subject to

CEi(e) ≥ Ui, ∀i (IR)

ei ∈ arg max
êi∈R+

CEi(êi, e−i), ∀i (IC)

The solution to this problem characterizes optimal linear contracts as a function of the existing
peer network (α(G), β(G)).

First-Best Contract

As is typical in principal-agent models, we begin by presenting the optimal contract under
symmetric information, to establish a starting point for comparison. In this scenario, effort is
both observable and contractible. As a result, there is no need for incentive compatibility, and
the Principal’s problem can be stated as follows:

max
α,β,e

E[π(e | α,β)]

subject to

CEi(e) = Ui, ∀i (IR)
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Lemma 1 (first best). Under symmetric information agents are fully insured. Wages and
principal’s profits are increasing in peer effects. The optimal contract implies α� = 0 and
e� = (I− 2λG)−11, and with π� = 1

2
1′e�.

Under symmetric information, the principal fully insures risk-averse agents. Moreover, opti-
mallity demands from each worker a level of effort equal to their Bonacich centrality but with
a factor of 2λ. This implies that all agents derive their reservation utility, and optimal profits
are equal to the half the amount of Bonacich centralities.

2.2 Optimal Wage Contracts with Moral Hazard

To solve the model, consider first the optimal effort decision of the worker for any contract
(αi, βi). Recall that ei maximizes worker i’s certainty equivalent consumption as defined in (1).
Workers play a non-cooperative game similar to that in Ballester et al. (2006). The best-reply
function of worker i is thus given by

e�i (e−i) = αi + λ
∑
j

gjiej ∀i ∈ N (2)

Notice that the contract’s fixed payment βi has no effect on workers’ incentives. A worker is
motivated to work only through performance-based compensations αi, and by the actions of
others. Any Nash equilibrium effort profile e� satisfies

(I− λG) e� = α (3)

We now make an assumption about the strength of strategic spillovers. Recall that the spectral
radius of a matrix is the maximum of its eigenvalues’ absolute values.

Assumption 1. The spectral radius of λG is less than 1

Assumption 1 guarantees that equation (3) is a necessary and sufficient condition for best-
responses and ensure that the Nash equilibrium is unique. Under these assumptions, the unique
Nash equilibrium of the game can be characterized by:

e� = (I− λG)−1α

In what follows we will use C = (I−λG)−1, such that e� = Cα. We will also use Bi(λ) = C1i

to denote worker i’s Bonacich centrality with parameter λ.
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Finally, notice that the firm can set fixed payments βi in order to extract all surplus from
workers, such that CEi(e) = Ui. We can therefore rewrite the firm’s problem as:

max
α,β

E[π(e | α,β)]

subject to

CEi(e) = Ui, ∀i (IR)

e� = Cα (IC)

From the (IR) constraint we can obtain an expression for the fixed payments as a function of
equilibrium actions e and incentives payments α. To simplify notation, we normalize outside
options to zero for everyone, i.e. Ui = 0 for all i ∈ N . In the appendix we show results
for a more general model with heterogeneous outside options, risk aversion and productivity
parameters. Therefore, we have that,

βi(α, e) = −αi

∑
k

ek +
1

2
e2i − λei

∑
j

gjiek + α2
i

rσ2

2

We can use this expression to rewrite profits only as a function of α as,

E[π(e | α,β)] =
n∑

i=1

ei −
n∑

i=1

wi

=

(
1−

n∑
i=1

αi

)
n∑

i=1

ei −
n∑

i=1

βi

=
∑

ei − 1

2

∑
i

e2i +
rσ2

2

∑
i

α2
i + λ

∑
ji

gjieiej

Solving the firm’s problem we obtain an explicit characterization of optimal wage contracts
with networked teams. To ensure that the firm’s problem is a concave optimization problem
we must bound peer effects from above, as we did for the worker’s problem in Assumption 1. It
turns out that the firm’s problem requires further restrictions on λ which we summarize below

Assumption 2. The strength of peer effects λ is bounded above:

λμ1(G) ≤ 1 + rσ2 −√
1 + rσ2

rσ2
≤ 1

where μ1(G) is the largest eigenvalue of G.
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Obviously, Assumption 2 implies Assumption 1, so we replace Assumption 1 by this condition
from now on. We are now ready to characterize optimal contracts.

Proposition 1 (Optimal Contracts). Under Assumption 2, there exists a unique profit-maximizing
linear wage function wi(G) = βi + αiX, for each worker i, with

α� =
[
C′(I− λGC) + rσ2I

]−1
C′1

and
β� =

1

2

[
Cα� ◦ (I− 2λG)Cα� +α� ◦ (

rσ2I− 211′C′)α�
]

with C ≡ (I− λG)−1 and where ◦ denotes the Hadamard, element-wise, product.

The intuition behind Proposition 1 is that firms optimally concentrate high-powered incen-
tives on workers who are "closest" to the rest of the workforce, as determined by aggregating
all indirect paths on the peer network. Technically speaking, this measure is obtained by
a weighted average of the canonical Katz-Bonacich measure of centrality, C1.4 In fact, the
(i, j) element of [C(I− λGC) + rσ2I]

−1, which we call ωij, determines how much j’s Bonacich
centrality, Bj ≡ C1j, matters for i’s incentive provision, αi. More concretely, we can write

α�
i =

∑
j

ωij(λ, σ
2)Bj(λ) for all i ∈ N (4)

where we drop the explicit dependence on G to ease notation. In principle, this could imply
that workers that are most central in the sense of Katz-Bonacich might not necessarily receive
the largest incentives. However, we show in Appendix A that Assumption 2 guarantees that

The second part of Proposition 1 describes the fixed portion of the contract β�. This un-
conditional payment is designed to ensure that all workers receive compensation equal to their
reservation utility in expectation. The precise expression of βi is therefore less informative,
since it is determined by Ui – which we fix to 0 for simplicity – and depends on the network
only through α. We therefore focus most of our discussion and comparative statics analysis on
α instead.

Proposition 1 allows us to easily analyze optimal contracts in specific cases. To start with,
4See ? and Ballester et al. (2006) for more details on Katz-Bonacich and related measures of centrality in

graphs.
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when peer effects are absent from the model (i.e. λ = 0), Bi(0) = 1 for all i ∈ N while

ωij(0, σ
2) =

⎧⎨
⎩0 if i 
= j,

1
1+rσ2 if i = j.

This gives rise to the following corollary

Corollary 1 (No Peer Effects). In the abscence of peer effects (i.e. λ = 0) incentives are
constant across workers

α�
i =

1

1 + rσ2
for all i ∈ N

Moreover if risk is not a concern (i.e. σ2 = 0 and/or r = 0) the optimal contract is to franchise
the firm: α�

i = 1 for all i ∈ N .

Corollary 1 shows that when λ = 0 the model specifies to the classical solution for moral
hazard with one principal and one agent, as described for instance in Bolton and Dewatripont
(2004). Since there are no spillovers, the firm finds it optimal to treat each worker separately.5

This is an important first benchmark, but we are most interested in understanding how the
presence of fundamental risk (σ2 > 0) twists the distribution of incentives in networked teams.
To see this consider first the case with no risk (i.e. σ2 = 0). From Proposition 1 we have that,
in this case,

α� = [I− λGC]−1 1.

With a bit of algebra, one arrives at the following corollary

Corollary 2 (No Risk). In the absence of fundamental risk (i.e. σ2 = 0), workers’ incentives
correspond to an affine transformation of Bonacich-centrality

αi =
1

2
[1 + Bi(2λ)] for all i ∈ N

where Bi(2λ) is worker i’s Bonacich centrality with parameter 2λ

A simple comparison with the weights defined in equation (4) shows that when σ2 = 0 the
following is implied:

∑
j �=i ωijBj(λ) = λ

∑
j gij [Bj(2λ)− Bj(λ)]. The first thing to notice is

5Although the contract is assumed to be a linear function of aggregate output, X =
∑

i ei + ε, workers’
problems are separable in the absence of spillovers (i.e. when λ = 0) because CARA utility has no wealth
effects, so at the margin workers’ incentives are as in the individual problem. That’s why the solution for λ = 0
corresponds to the classical principal-agent solution.
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that, even in the absence of risk, incentives are not distributed in proportion to the principal
component of G, as in Galeotti et al. (2020).

We now analyze the optimal distribution of incentives when σ2 > 0. To see the effect of
aggregate risk on incentive contracts, rewrite the general expression in Proposition 1 as:

α� =
1

rσ2

[
1

rσ2
C(I− λGC) + I

]−1

C1

The presence of fundamental risk σ2 > 0 modifies how incentives must be distributed in two

important ways. First, α� scales with 1/(rσ2). Second, the term in brackets converges to I as
rσ2 grows. This implies that although firms decrease incentive provisions when risk is high, the
way in which incentives are distributed becomes proportional to standard Bonacich centrality
(C1).

Corollary 3 (High Risk). Performance-based compensation decreases monotonically with σ2.
However, it does not decrease uniformly for all workers. In the limit, incentives are proportional
to Bonacich centrality. Formally, as σ2 → ∞, α� → qC1 for q vanishingly small

2.3 Firm’s Profits and Network Structure

We have now seen how incentives should be distributed optimally in order to maximize profits
when team members reinforce each other through networked interactions. A natural question
is how optimized profits therefore depend on the team’s network structure. Recall that profits
are equal to total output minus the wage bill.

π� = X(e)−
∑
i

wi

In expectation we have,

E[π�] = (1−
∑
i

αi)
∑
k

ek −
∑
i

βi = 1′e+ λe′Ge− 1

2
e′e− 1

2
rσ2α′α

Therefore, in equilibrium e� = Cα� thus,

E[π�] = 1′e− 1

2
α′ [C′(I− 2λG)C+ rσ2I

]
α
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Figure 1: Complete Bipartite graphs with N = 10. An asymmetric bipartite graph (left panel)
generates lower profits than a symmetric one (right panel)

and since, by Proposition 1 α� = [C′(I − 2λG)C+ rσ2I]
−1

C1, we have:

E(π�) = 1′e� − 1

2
α′C1 =

1

2
1′e� =

1

2
EX(e�)

This leads to the following result.

Proposition 2 (Equilibrium Profits). In expectation, a firm’s profits are maximized at one-half
of equilibrium output for any network G, any level of peer effects λ, and any level fundamental
risk σ2.

This statement is powerful because it shows that a classical result in these kind of models
extends to out setting with teams and complex spillovers across workers. If firms are optimizing
then profits should scale one-to-one with output, no matter the organizational structure of the
firm. Of course, the network structure will matter for what these profits actually look like. In
fact, by decomposing the network effects into its principal components, we can say a lot about
how network structure affects profits in equilibrium. This is the content of the following result.

Proposition 3 (Network Structure and Profits). Let u1,u2, . . .un represent the n unit-eigenvectors
of G associated to eigenvalues μ1 ≥ μ2 ≥ . . . μn, then

E(π�) =
1

2

n∑
�=1

(u′
�1)

2

(1 + rσ2)(1− λμ�)2 − (λμ�)2

Proposition 3 has powerful implications and can be used to compare organizational structures
based on their expected performance. For example, consider a firm that is debating the best
way to delegate responsibilities. Assume that the firm must decide on the relative size of two
divisions whose members interact, and assume for now that all relevant spillovers occur across
divisions. Technically speaking, the organization must choose between all complete bipartite
graphs of size N whose members are split into two divisions of size n and m (n +m = N), as
shown in Figure 1. It is well-known that the eigenvalues associated to this type of graphs are
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Figure 2: All 2-regular graphs with N = 10 give the same profits

λ1 =
√
mn > λ2 = λ3 = . . . = λn−1 = 0 > −√

mn = λn. We show in the appendix that

u1 =

⎧⎨
⎩

1√
2m

if i is in the group of size m

1√
2n

if i is in the group of size n
un =

⎧⎨
⎩

1√
2m

if i is in the group of size m

− 1√
2n

if i is in the group of size n

which means that (u′
11)

2 + (u′
n1)

2 = N . Since
∑

�(u
′
�1)

2 must always equal N for any matrix,
we know that only two terms in the sum in Proposition 3 are relevant for profits. We can
therefore write expected profits easily in terms of n, m and parameters:

E(π�) =

(
m√
2m

+ n√
2n

)2

(1 + rσ2)(1− λ
√
nm)2 − (λ

√
nm)2

+

(
m√
2m

− n√
2n

)2

(1 + rσ2)(1 + λ
√
nm)2 − (λ

√
nm)2

From this expression, we can characterize the profit-maximizing structure among all complete
bipartite graphs.

Corollary 4. Among all complete bipartite graphs with n nodes in group 1 and m nodes in
group 2, expected profits are maximized when n = m

Imagine another application in which a fairly homogeneous organization – i.e. one in which
everyone is (on average) influenced by the same number of peers – considers splitting the
workforce into different divisions. Technically speaking, the CEO might want to know if her N
workers should work in a single d-regular component, or should be split into separate smaller
divisions, as shown in Figure 2. Proposition 3 again can be used to solve this design problem.
It turns out that expected profits are only a function of the local structure of spillovers in these
type of graphs, and not on the component structure. In other words, splitting the organization
into separate divisions is profit-neutral.

Corollary 5. All d−regular graphs of size N generate the same expected profits .

We can also consider how hompohily – the tendency of members of specific groups to connect

12



Figure 3: Planted Partition model with n = 10 and p+ q = 0.8.
Panel A: p = q = 0.4. Panel B: p = 0.6, q = 0.2. Panel C: p = 0.75, q = 0.05

disproportionately within that group – affects profits. To do this we take the planted partition
model (Golub and Jackson) where the workforce is split into two equal-sized groups and connect
randomly with each other. Let p represent the probability of connecting within a group and q the
probability of connecting across groups. Notice that p+ q determines the average connectivity
but not the level of homophily, which is determined by p/q. It turns out that how separated
the two groups are does not affect profits, controlling for average degree.

Corollary 6. In a planted partition model with matching probabilities p and q, expected profits
are only a function of p+ q and not of p/q.

Comparative Statics: Investing in Workers

Should a firm invest in training workers or on team building exercises? Consider an augmented
version of the model with marginal cost to effort v ≥ 1

ψi(e) = v
e2i
2
− λei

∑
j

gjiej

Imagine that a firm can decrease v or increase λ at the same per-unit cost. Should a firm invest
in lowering effort costs or increasing peer effects?

∂E(π)

∂λ
≶

∣∣∣∂E(π)
∂v

∣∣∣
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We can extend Proposition 2 to compute

∂

∂v

1

2v

∑
�

(u′
�1)

2

(1 + vrσ2)
(
1− λ

v
μ�

)2 − (
λ
v
μ�

)2
and similarly w.r.t. λ

Proposition 4. Investing uniformly in team strength (i.e. increasing λ) is superior (inferor) to
investing uniformly in worker productivity (i.e. decreasing v) in those firms where peer networks
satisfy the following condition:

(1− μ�)
(
1 + rσ2 (v − λμ�)

)
< (>) 1/2, for all � with u′

�1 
= 0

The first thing to notice is that as rσ2 grows, it is less profitable to invest in team-building
exercises, everything else equal.6 Intuitively, when the cost associated to providing risky in-
centives increases – either because the firm is very risky or the workforce is very risk averse –
performance-based compensation is costly, so investing in peer effects has little impact.

Example: regular networks, full bipartite graphs. Counter-example: empty network,

3 Coarse Instruments

We now imagine that the firm cannot write a separate contract for each worker based on their
network position. Agents are exogenously sorted into k types (positions or job descriptions).
The Principal is now constrained to offer the same linear wage scheme for all agents in groups
k, thus:

wi(X) = βk + αkX ∀ i ∈ k

Thus, optimal wage schemes are decided at the type (coarsest) level, instead of the individual
(granular) level.

Agents’ cost of providing effort and utility function remain unchanged. This results in the
same certain equivalent and ultimately identical response functions that characterize the Nash
Equilibrium (NE) previously described:

e� = (I− λG)−1α = Cα,

6To see this recall that Assumption 1 requires v > λμ�.
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where in this case αi = αk∀i ∈ k.

Because the principal is now limited to type-based contracts, we must ensure that all α’s and
β’s are the same for the same types. To instrumentalize the coarse contracts, we introduce the
linear operator T as an n× k vector-diagonal matrix such that Ti,j = 1 if individual i belongs
to type j and Ti,j = 0 otherwise. We next define α̂, a k × 1 vector, such that α̂k is the αi

corresponding to all workers of type k, thus α = T α̂. We define β̂ analogously.

Example 1. Take 1 worker of type 1, 2 workers of type 2, and 3 workers of type 3. Thus:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, α̂ =

⎡
⎢⎣α1

α2

α3

⎤
⎥⎦ , α = Tα̂∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α2

α3

α3

α3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Under this setup, the Principal can no longer provide individual βi’s such that the Participa-
tion Constraint (PC) of each agent binds. The participation constraints for agent i considering
the informational rents μi is thus:

CEi(e,G;wk)− μi = 0 ∀ i

μi ≥ 0 ∀ i

The key underlying assumption is that the principal ensures that all agents participate.

Linear operator T together with vector μ allows us to re-write the Principal’s problem under
coarsest instruments as:

max
α̂,β̂,μ

E[π(X,w|e)] =
∑
i

ei −
∑
i

wi

subject to

CEi(e,G;wk)− μi = 0 ∀ i (PC)

μi ≥ 0 ∀ i

e = (I− λG)−1(Tα̂) (IC)

The binding participation constraint implies that the βk component of the wage for agent i in
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group k is:

βk = μi + α2
k

(
rσ2

2

)
+

1

2
e2i − λei

∑
j

gijej − αk

∑
i

ei

By replacing αk and βk intothe problem of the principal, we can reexpress it into vector form
as:

max
α̂,μ

E[π(X,w|e)] = 1′e+ λe′Ge− 1

2
e′e− 1

2
rσ2(Tα̂)′(Tα̂)− 1′μ

subject to

μi ≥ 0 ∀ i

e = (I− λG)−1(Tα̂) (IC)

The solution to the above problem leads to the following proposition:

Proposition 5 (Coarse Contracts). There exists a group wage function w(G) = βk+αkX with
αk, βk ∈ R, such that wk(G) ∝ T ′B(λ,G). In this case, the vector of optimal sharing rules is
given by:

α̂∗ = (T′(rσ2I+C′(I− 2λG)C)T)−1T′C′1

Where C ≡ (I− λG)−1 is an n× n matrix such that CTα̂∗ = Bα(λ,G).

In this setup, group-k’s centrality attributes determine the incentives provided to the whole
group.

Take λ = 0, then α̂∗ = (σ2T ′RT + T ′T )−1T ′1 and:

α∗
i =

1

1 + rσ2
.

As profits are globally decreasing in βk, then the optimal contract requires the smallest βk to
each type in a way that ensures the participation of all agents. This is achieved by considering
the agent (within each type) with the highest cost of providing effort (ψi), thus ensuring that
all agents of that type (and with lower or equal costs) are also motivated to participate:

βk = α2
k

(
rσ2

2

)
− αk

∑
i

ei +max
i∈k

{
1

2
e2i − λei

∑
j

gijej

}
︸ ︷︷ ︸

=maxi∈k{ψi}

.
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It turns out that, within each type, given the impossibility of assigning individual-based fixed
wages, workers with lower effort costs will enjoy rents above their participation constraints:

μi = max
i∈k

{
1

2
e2i − λei

∑
j

gijej

}
−

{
1

2
e2i − λei

∑
j

gijej

}
∀i, k

μi = max
i∈k

{ψi} − ψi ∀i, k,

Where μi can be interpreted as worker i’s centrality rents, equal to zero for the least central
worker in each group. This leads to the following result:

Proposition 6 (Equilibrium Profits with Coarse Contracts). With coarse instruments, a firm’s
profits in expectation are maximized at one-half of equilibrium output minus the sum of total
agent’s centrality, rents for any network G, any level of peer effects λ, and any level fundamental
risk σ2.

The inefficiency of coarse instruments

Proposition 6 implies that profits are equal to half efforts minus the sum of centrality rents:
E(π�) = 1

2
X�−∑

i μi =
1
2

∑
i e

�
i −

∑
i μi. Notice that the losses associated to limiting contracts

to coarse instruments (C), and compared to profits when granular contracts (G) are available,
can be expressed as:

πG − πC− =
1

2
1′eG −

(
1

2
1′eC − 1′μ

)
=

1

2
1′ (eG − eC

)
+ 1′μ

=
1

2
1′C

(
αG −αC

)
+ 1′μ

Because centrality rents are obtained through the impossibility of providing individual-based
betas, then losses associated with coarse instruments can be divided into losses due to difference
in the α and the β components. We explore this effects in the next section by conducting
simulations on different random graphs.
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Figure 4: Components of Difference in Profits for different pER

3.1 Simulations

To illustrate the implications of providing group-based contracts instead of individual-based
wage schemes, we simulate a different random networks using an Erdős-Rényi network gener-
ating process, with parameter pER ∈ [0, 1]. We compute then the optimal contract for each
network assuming individual-based contracts and then assuming that the whole network is
subject to the same wage scheme (i.e., they all belong in the same type).

Figure 4 showcases the effect of coarsen wage contracts and its implications for differ-
ent random network. In Figure 4, the blue line represent the α component of losses (i.e.,
1
2
1′C

(
αG −αC

)
), while the red line display the losses associated to centrality rents (β com-

ponent). The black line are total losses, computed as the sum of both effects.

First, notice that losses vanish in the extreme cases of the Erdős-Rényi network generation
process: the empty and full networks. Moreover, notice that the α effect plays a smaller role in
overall losses as the network grows denser, while the β effect peaks closer to the full network,
before vanishing when the network becomes fully connected. This suggests that certain network
structures are more disadvantageous when Principals are limited to provide wage contracts
that do not discriminate across employees. The relationship between degree and centrality
distributions and losses associated to coarse instruments is a subject of study for later versions
of this paper.
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4 Modular Production

So far, we have assumed that expected output is a linear function of workers’ efforts. Therefore,
while workers may inhabit very different parts of the peer network, we assumed that their formal
role within the organization is substitutable. This allowed us to conveniently isolate the impact
of peer effects on wages and profits, but it fails to capture that a firm’s production function
may actually drive its organization.

Today many products are made by assembling separately-produced components, all of which
are essential constituents of the final good. Partitioning firm production into separable elements
can generate superior, more versatile products, as IBM uncovered when they developed the first
modular computer in 1964. But failures in any one module can also affect overall production.
In an extreme example popularized by Kremer (1993), the Challenger spacecraft exploded
in 1984 because one of its many components, the O-ring, malfunctioned. In this section we
consider how our results on incentive contracts with peer complementarities play out in firms
with fragmented organizational structures.

To do this we modify our production function by incorporating modules and assume that final
output is determined by the weakest-performing module. Formally, assume that N workers are
distributed into K teams, called k1, k2, . . . , kK , each of which is put in charge of designing a
separate module. Within a team, performance is substitutable but across teams it is perfectly
complementary. We can now write output as,

X(e) = min{
∑
i∈k1

ei,
∑
i∈k2

ei, . . . ,
∑
i∈kK

ei}+ ε (5)

How should incentives contracts be designed under modular production? And how will it
depend on the network of spillovers within and across teams? In this section we revisit our
results under this alternative production function.

The first thing to notice is that, for any linear incentive contract (αi, βi)i∈N , there are multiple
equilibria of the effort provision game played by workers. For example, everyone playing ei = 0

is always an equilibrium.7 Secondly, notice that in any equilibrium each team will exert the
same total effort because a team exerting more than the weakest team will gain from reducing
effort. Therefore

∑
i∈k ei = ê for all modules k ∈ K, and some ê ≥ 0.

Which values of ê constitute a Nash equilibrium? Imagine that every team is contributing ê

7To see this notice that unilaterally raising ei can never benefit worker i, given everyone else’s equilibrium
strategy and the production function assumed in equation (5).
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and consider if a worker can profitably deviate. Given technology (5), a worker can never gain
by increasing effort. Decreasing effort, however, is profitable as long as the marginal cost to
lowering ei – given by αi – is less than the marginal benefit: ei − λ

∑
j gijej. This implies that

in any equilibirum all teams exert the same effort ê and the following condition holds:

αi ≥ ei − λ
∑
j

gijej ∀i ∈ N.

Now, although there are many values of ê that constitute an equilibrium, we focus in this section
on the maximal equilibrium: given any choice of α by the firm, there will be a value of e(α)

that constitutes a Nash equilibrium of the game, such that any ê > e is not a Nash equilibrium
because some worker will profitably reduce her effort. Notice that if the above inequality is
strict for any worker i, the firm can always lower αi without affecting the equilibrium effort
provision. Since the firm always prefers the lowest α that guarantees a specific e, we can
conclude that, in the maximal equilibrium, e(α) =

∑
i∈k ei and,

αi = ei − λ
∑
j

gijej ∀i ∈ N

Take as a concrete example the case where every worker makes up a separate module. In that
case With this we arrive at the following result

Proposition 7. Whem modules are of size 1 multiplicative effect is lost and incentives are
assigned based on the number of connections across modules

α∗
i =

1− λdi∑
i (1− 2λdi) + σ2r (1− λdi)

2

5 Discussion

We offer valuable insights into the dynamics of optimal wage design in organizations with
productivity spillovers. By analyzing the interplay between individual effort, network centrality,
and group composition, we have provided a framework for designing efficient wage contracts that
balance incentives and risk mitigation. Our findings underscore the importance of considering
both individual and group-level factors when determining optimal wage structures, highlighting
the significance of network centrality in targeting incentives effectively.

Moreover, our research highlights the trade-offs involved in wage discrimination based on

20



network position, revealing how firms can extract surplus while accommodating workers’ risk
exposure. The distinction between individualized and group-based contract designs sheds light
on the strategic decisions firms face in optimizing their organizational structure. By elucidating
these complexities, our study contributes to the literature on incentive design and organiza-
tional economics, offering practical implications for firms seeking to enhance productivity and
profitability in collaborative work environments.
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A Proofs

A.1 Proof of Proposition 1

Notice that the principal’s problem can be written in matrix form as:

max
α

E[π(e | α,β)]

subject to

e� = Cα (IC)

With C ≡ (I − λG)−1 depending exclusively on given parameters. Using the (IC), we can
rewrite the problem as:

max
α

E[π(e | α,β)] = α′C′1− 1

2
α′C′Cα+ λα′C′GCα− 1

2
σ2rα′α

The first-order conditions with respect to α imply:

C′1−C′Cα� + 2λC′GCα� − σ2rα� = 0

⇒ α� =
(
C′(I− 2λG)C+ σ2rI

)−1
C′1

As (I− 2λG)C = I− λGC, we have:

α� =
(
C′(I− λGC) + σ2rI

)−1
C′1

Finally, we have that:

βi(α, e) =
1

2
e2i − λei

∑
j

gijek + α2
i

rσ2

2
− αi

∑
k

ek

and thus:

β�(α�, e�) =
1

2
(e� ◦ e�)− (e� ◦ λGe�) +

1

2
(rσ2)(α� ◦α�)−α� ◦ 1(1′e�)

where ◦ denotes the Hadamard, element-wise, product.

As e� = Cα�, the above can be re-expressed as
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β�(α�) =
1

2

[
Cα� ◦ (I− 2λG)Cα� +α� ◦ (

rσ2I− 211′C′)α�
]

A.2 Proof of Proposition 2

We know that:
α� =

[
C′(I− 2λG)C+ σ2rI

]−1
C′1,

and

E[π] = α
′
C′1− 1

2
α

′
C′Cα+ λα

′
C′GCα− 1

2
σ2rα

′
α

= α
′
C′1− 1

2
α

′ [
C′(I− 2λG)C+ σ2rI

]
α.

Thus,

E[π∗ ′
] = α∗ ′

C′1− 1

2
α∗ ′ [

C′(I− 2λG)C+ σ2rI
] [

C′(I− 2λG)C+ σ2rI
]−1

C′1︸ ︷︷ ︸
=α�

= α∗ ′
C′1− 1

2
α∗ ′

C′1

=
1

2
α∗ ′

C′1

=
1

2
e∗

′
1.

And therefore, E[π�] = 1
2
X�.

A.3 Proof of Proposition 3

We first do the proof for symmetric G. Following Proposition 1, we can write the worker’s
equilibrium condition as

e� = Cα = C(2I−C+C−1rσ2)−11

Rewriting, we have that

(
2C−1 − I+ rσ2C−2

)
e� = 1 =⇒ (

I− 2λG+ rσ2(I− λG)2
)
e� = 1
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Assuming that G is symmetric, we have G = UΣU′ where U = (u1,u2, . . . ,un) is a matrix
of unit-eigenvectors of G, while Σ = diag(μ1, μ2, . . . , μn) is a diagonal matrix of corresponding
eigenvalues. We can therefore write

(
I− 2λUΣU′ + rσ2(I− λUΣU′)2

)
e� = 1

multiplying both sides on the left by U′ and factoring we have

(
(1 + rσ2)(I− 2λΣ) + rσ2λ2Σ2

)
U′e� = U′1

which means that we can write

e� = U
(
(1 + rσ2)(I− 2λΣ) + rσ2λ2Σ2

)−1
U′1

where, conveniently,

(
(1 + rσ2)(I− 2λΣ) + rσ2λ2Σ2

)−1
=

diag

(
1

(1 + rσ2)(1− 2λμ1) + rσ2(λμ1)2
, . . . ,

1

(1 + rσ2)(1− 2λμn) + rσ2(λμn)2

)

and U′1 = (u′
11,u

′
21, . . . ,u

′
n1)

′. This means that we can write worker i’s equilibrium effort as
a function of the graph’s spectral properties. Letting u�,i represent the ith element of vector
u�, we have

e�i =
∑
�

u�,i (
∑

i u�,i)

(1 + rσ2)(1− 2λμ�) + rσ2(λμ�)2

Finally, combining this expression with our result of Proposition 2, which states that E(π�) =
1
2

∑
i e

�
i gives our final result.

Now consider the case of directed networks. This means we can no longer assume that G is
symmetric. However, we continue to assume that G is diagonalizable (i.e. all eigenvectors are
linearly independent). In other words, we now have G = UΣU−1, where U−1 = (v1, . . . ,vn)

is the matrix of left eigenvectors of G. Following similar steps we arrive at the following
generalized expression for profits

E(π�) =
1

2

∑
�

(v′
�1)(u

′
�1)

(1 + rσ2)(1− 2λμ�) + rσ2(λμ�)2
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A.4 Proof of Proposition 5

We aim to maximize:

max
α̂,μ

E[π(X,w|e)] = e′1+ λe′Ge− 1

2
e′e− 1

2
rσ2(Tα̂)′(Tα̂)− 1′μ

subject to

μi ≥ 0 ∀ i

e = (I− λG)−1(Tα̂) (IC).

Replacing e = (I− λG)−1(Tα̂) = CTα̂ eliminates the IC, reducing the problem to:

max
α̂,μ

E[π] = (CTα̂)′1+ λ(CTα̂)′G(CTα̂)− 1

2
(CTα̂)′(CTα̂)− 1

2
rσ2(Tα̂)′(Tα̂)− 1′μ

subject to

μi ≥ 0 ∀ i

Taking derivatives with respect to α̂ , we find the first-order conditions (FOCs) as follows:

∂E[π]

∂α̂
= T′C′1+ 2λT′C′GCTα̂−T′C′CTα̂− rσ2T′Tα̂

= T′C′1−T′(rσ2I+C′(I− 2λG)C)Tα = 0

⇒ α̂∗ = (T′(rσ2I+C′(I− 2λG)C)T)−1T′C′1

A.5 Proof of Proposition 6

We know that:

α� = Tα̂ =T(σ2rT′T+T′C′(I− 2λG)CT)−1T′C′1

e� = Cα� = CT(σ2rT′T+T′C′(I− 2λG)CT)−1T′C′1

X� = 1′e� = 1′CT(σ2rT′T+T′C′(I− 2λG)CT)−1T′C′1.

Knowing that w = αX + β, we get:

π� = 1′e� − 1′w

= (1−α)′e� − 1′β.
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From the maximization problem, we know that βi is defined by the agent with the highest
effort cost ψ̄k = maxi∈k{ψi}:

βk = α2
k

(
rσ2

2

)
−αkX + ψ̄k, ∀i ∈ k

We define μi as the rents perceived by i due to the impossibility of fully extracting rents, thus:

βk = α2
k

(
rσ2

2

)
−αkX + (ψ̄k − ψi)︸ ︷︷ ︸

=μi

+ψi, ∀i ∈ k

Which in turn allows us to define profits as:

π� = 1′e−α′e− rσ2

2
α′α+α′e− 1′μ− 1′ψ

= 1′e− rσ2

2
α′α− 1′ψ − 1′μ

= 1′e− rσ2

2
α′α−

(
1

2
e′e− e′λGe

)
︸ ︷︷ ︸

=1′ψ

−1′μ

= 1′e− rσ2

2
α′α− 1

2
e′ (I− 2λG) e− 1′μ

= 1′e− rσ2

2
α′α− 1

2
α′C′ (I− 2λG)Cα− 1′μ

= 1′e− 1

2
α′ (rσ2I+C′ (I− 2λG)C

)
α− 1′μ

= 1′e− 1

2
(Tα̂)′

(
rσ2I+C′ (I− 2λG)C

)
(Tα̂)− 1′μ

= 1′e− 1

2
α̂′ (rσ2T′T+T′C′ (I− 2λG)CT

)
α̂− 1′μ

And by replacing with the optimal α̂�, we get:

π� = 1′e− 1

2
α̂′ (rσ2T′T+T′C′ (I− 2λG)CT

)
(σ2rT′T+T′C′(I− 2λG)CT)−1T′C′1︸ ︷︷ ︸

=α̂

−1′μ

= 1′e− 1

2
α̂′ (rσ2T′T+T′C′ (I− 2λG)CT

)
(σ2rT′T+T′C′(I− 2λG)CT)−1︸ ︷︷ ︸
=I

T′C′1− 1′μ

= 1′e− 1

2
α̂′T′C′1− 1′μ
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And therefore, using α̂′T′C′ = α′C′ = e′ and the fact that 1′e = e′1, we get:

π� = 1′e− 1

2
α̂′T′C′1− 1′μ

= 1′e− 1

2
α′C′1− 1′μ

= 1′e− 1

2
e′1− 1′μ

=
1

2
1′e− 1′μ

And thus, π� = 1
2
e′1− 1′μ.
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B Heterogeneous Agents and Coarse Instruments

Consider the case with agents heterogeneous in their productivity per unit of effort (θi), relative
cost of effort (vi), risk aversion (ri), and reservation utility (Ui). Moreover, we allow for peer-
effects that are not necessarily bilateral nor homogeneous, and captured by matrix Λ, where
Λij is the effort reduction for i, given its interaction with j. We allow for asymmetries in Λ,
and thus Λij 
= Λji is allowed. Under these conditions total output is given by:

X(e) =
n∑

i=1

θiei + ε

Where θi represents the productivity per unit of effort of agent i. Again, the Principal focuses
on the case of linear wage contracts of the form wi(X) = βi + αiX, as described above. In this
case, the cost of effort of agent i is given by:

ψi(e,Λ) =
1

2
vie

2
i − λei

∑
j

Λijej

Where vi represents the relative cost per unit of effort of agent i. As before, the certain
equivalent of the utility function for each agent, which takes into account the agent’s wage,
cost of effort, and risk preferences is given by:

CEi(e,Λ) = βi + αi

n∑
i=1

θiei − 1

2
vie

2
i + λei

∑
j

Λijej − α2
i

riσ
2

2

Following the non-cooperative game described, the optimal level of effort chosen by agent i is
given by the first order conditions with respect to ei, in this case:

e�i =
θi
vi
αi +

λ

vi

∑
j

Λijej

As before, the equilibrium in this case is a Nash equilibrium. To ease computations we define
V = diag(v), Θ = diag(θ), R = diag(r). Therefore, the vector of best responses is:

e = V−1Θα + λV−1Λe
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In this case, any Nash equilibrium effort profile e� of the game satisfies:

e� =
[
I− λV−1Λ

]−1
V−1Θα

The above equilibrium is well defined whenever the spectral radius of λV−1Λ is less than 1 and
all eigenvalues of G are distinct. Under this setup, the Principal solves:

max
α,β

E[π(X,w)|e] =
n∑
i

θiei −
n∑
i

wi

subject to

CEi(e,G) ≥ Ui, ∀i (PC)

e� =
[
I− λV−1Λ

]−1
V−1Θα (IC)

As in Proposition 1, the PC is binding. Thus the Principal’s expected profits:

max
α,β

E[π(X,w)|e] =
n∑
i

θiei −
n∑
i

wi

=

(
1−

n∑
i

αi

)
n∑
i

θiei −
n∑
i

βi,

become:

max
α

E[π(X,w)|e] =
n∑
i

{
θiei − Ui − 1

2
vie

2
i −

σ2

2
α2
i ri + λei

∑
j

Λijej

}

Which obviating the
∑n

k Uk constant terms, can be expressed in matrix form as:

max
α

E[π(Θ,V,R,Λ)] = {e′Θ1− 1

2
e′Ve− σ2

2
α′Rα+ λe′Λe}

subject to

e� =
[
I− λV−1Λ

]−1
V−1Θα (IC)

Taking C̃ ≡ [I− λV−1Λ]
−1

V−1Θ and replacing e = C̃α and e′ = α′C̃′, the above maximiza-
tion problem becomes:

max
α

E[π] = {α′C̃′Θ1− 1

2
α′C̃′VC̃α− σ2

2
α′Rα+ λα′C̃′ΛC̃α}
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Using matrix calculus, the first order conditions with respect to α imply:

0 = C̃′Θ1− C̃′VC̃α� − σ2Rα� + 2λC̃′ΛC̃α�

⇒ α� =
(
C̃′(V − 2λΛ)C̃+ σ2R

)−1

C̃′Θ1

Therefore, in a network of n heterogeneous agents, fully characterized by the adjacency matrix
Λ, the optimal linear contract is given by:

α� =
(
C̃′(V − 2λΛ)C̃+ σ2R

)−1

C̃′Θ1

The optimal induced effort in this case is given by e� = C̃α� and the vector of optimal fixed
payments β� can be recovered using for each βi:

βi(α
�
i , e

�
i ) = Ui − α�

i

n∑
k

θke
�
k +

1

2
vie

2
i − λe�i

n∑
j

Λije
�
k + (α�

i )
2 riσ

2

2
.

Or, in vector form:

β�(α�) =
1

2

[
C̃α� ◦ (V − 2λΛ) C̃α� +α� ◦

(
σ2R− 211′ΘC̃′

)
α�

]
.

Analogous to the case without agent heterogeneity, we analyze the case when the Principal
is limited to offer coarse instruments for each worker i in group k, and recalling that we define
linear operator T as an n× k vector-diagonal matrix such that Ti,j = 1 if individual i belongs
to type j and Ti,j = 0 otherwise, the optimal contract is given by:

α�,Coarse = Tα̂ = T
(
T′

(
C̃′(V − 2λΛ)C̃+ σ2R

)
T
)−1

T′C̃′Θ1

βk = α2
k

(
rσ2

2

)
−αkX + ψ̄k, ∀i ∈ k

Where ψ̄k is defined as highest effort cost in k, ψ̄k = maxi∈k{ψi}.
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