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Abstract

We propose the �average approach,�where the worth of a coalition is a weighted

average of its worth for di¤erent partitions of the players�set, as a unifying method

to extend values for characteristic function form games. Our method allows us to

extend the equal division value, the equal surplus value, the consensus value, the

�-egalitarian Shapley value, and the least-square family. For each of the �rst three

extensions, we also provide an axiomatic characterization of a particular value for

partition function form games. And for each of the last two extensions, we �nd a

family of values that satisfy the properties.
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1 Introduction

A central question in game theory is how players can share the gains from cooperation.

Shapley (1953) addresses this issue for cooperative games in characteristic function form,

where the description of a game speci�es the resources every group of players has available

for distribution among its members. He proposes the use of a sharing rule, or a value

(known as the �Shapley value�), that satis�es the axioms of symmetry, carrier (which

amounts to the e¢ ciency plus dummy player axioms), and additivity. The Shapley value

has been studied, interpreted, and characterized in many di¤erent ways.1 Its greatest

appeal is the fact it arises from apparently distinct and unrelated approaches (axiomatic,

marginalistic, potential, dividends). It has also been extremely in�uential in later pro-

posals for surplus sharing. Many researchers have followed the path he laid out and put

forward some modi�cations of the Shapley axioms to de�ne new values for sharing the

surplus generated through cooperation.

A shortcoming of describing a cooperative environment through a characteristic func-

tion form game is that it disregards the possible existence of externalities among groups.

Externalities in economic or political environments are the norm rather than the ex-

ception. For instance, research joint ventures, mergers and acquisitions, international

negotiations on environmental issues, and trade agreements all exhibit important cross

e¤ects, namely, the gain that a group of agents obtains depends on the groups formed

by the other players. A formal description of such settings with externalities is given by

Thrall and Lucas (1963) who introduce games in partition function form.

To allow value theory to address environments with externalities, several papers adapted

and at times augmented the Shapley axioms of e¢ ciency, symmetry, linearity, and dummy

player to partition function form games. This led to several new sharing methods for en-

vironments with externalities (see, e.g., Myerson, 1977; Bolger, 1989; Albizuri, Arin, and

Rubio, 2005; Macho-Stadler, Pérez-Castrillo, and Wettstein, 2007; Pham Do and Norde,

2007; and McQuillin, 2009).2

In this paper, we suggest a unifying method, the �average approach,� of extending

1See, for instance, Roth (1988).
2Di¤erent methods to extend the Shapley value are proposed by de Clippel and Serrano (2008), who

rely on the marginal approach, and by Dutta, Elhers, and Kar (2010), who use the potential approach.
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any value for characteristic function form games that satis�es the above axioms of e¢ -

ciency, symmetry, and linearity to partition function form games. The average approach

associates to each group of players a worth that is some weighted average of what they

can obtain for all possible partitions of the other players. This yields a game with no ex-

ternalities, the value of which determines the value for the original game. The axiomatic

basis for this method is given by a natural extension of the symmetry axiom for partition

form games, the �strong symmetry axiom,�that is introduced by Macho-Stadler, Pérez-

Castrillo, and Wettstein (2007) (MPW, 2007, hereafter). The strong symmetry axiom

captures the idea that all players with identical in�uence in a game should receive the

same outcome.

We use this approach to propose extensions of several well-known values as well as

families of values de�ned for games without externalities. In addition, we suggest gen-

eralizations of the axioms proposed for characteristic function form games (such as the

nullifying player, the neutral dummy player, or the coalitional monotonicity axioms), to

adapt them to situations with externalities. Our method allows us to extend the equal

division value (Van den Brink, 2007), the equal surplus value (Driessen and Funaki, 1991),

the consensus value (Ju, Borm, and Ruys, 2007), the �-egalitarian Shapley value (Joosten,

1996), and the least-square family (Ruiz, Valenciano, and Zarzuelo, 1998). For each of the

�rst three extensions, we also provide an axiomatic characterization of a particular value

for partition function form games. It is worth noting that the extension of the consensus

value through the average approach coincides with the one proposed by Ju (2007).3 For

each of the last two extensions, a family of values that satisfy the properties is found.

The paper proceeds as follows. In section 2, we present the environment. Section 3

introduces the basic axioms and the average approach. Each of the sections 4 to 8 presents

the extension of one value or family of values. Finally, section 9 brie�y concludes.

3Besides the previous papers, Hernández-Lamoneda, Sánchez-Pérez, and Sánchez-Sánchez (2009) ex-

tend the solidarity value (Nowak and Radzik, 1994) to games with externalities.
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2 The environment

The economic environment we study can be described as follows. We denote by N =

f1; :::; ng the set of players. A coalition S is a group of s players, that is, a non-empty
subset of N; S � N . An embedded coalition speci�es the coalition as well as the structure

of coalitions formed by the other players, that is, an embedded coalition is a pair (S; P ),

where S is a coalition and P 3 S is a partition of N . Let P be the set of all partitions of
N and ECL the set of embedded coalitions de�ned as:

ECL = f(S; P ) j S 2 P; P 2 Pg :

We denote by v a game in partition function form (PFF), where v : ECL ! R is a

function that associates a real number with each embedded coalition (S; P ). Let GN be
the set of games in PFF with players in N . We interpret v(S; P ) as the worth of coalition

S when the players are organized according to the partition P . We assume that players

in a coalition can make transfers among them, that is, we consider transferable utility

(TU) games. The worth v(S; P ) may depend on the partition P . This implies that the

organization of the players outside S may create a positive or negative externality on the

payo¤ that players in a coalition S can jointly obtain. We use the convention that the

empty set ? is in P for every P 2 P, and assume that the function satis�es v(?; P ) = 0.
We denote by PS = fP 2 P j S 2 Pg the set of partitions including S. Finally, we denote
by [S] the partition of S consisting of all the singleton players in S, that is, [S] =

�
figi2S

	
.

Examples of games with externalities are the games wS;P de�ned by

wS;P (S; P ) = wS;P (N; (N;?)) = 1; and wS;P (S 0; P 0) = 0 otherwise.

In the game wS;P 2 GN there are only two scenarios where a coalition has a positive worth,
the �rst is for the coalition S when the players are organized according to the partition

P , and the second is for the grand coalition. The games wS;P constitute a basis for the

set GN .
Some games in GN do not have externalities. A game is without externalities if the

worth of any coalition S is independent of the way the other players are organized. A

game without externalities satis�es v(S; P ) = v(S; P 0) for any P; P 0 2 PS and any coalition
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S � N . We denote such a game by v̂: Since in this case the worth of a coalition S can

be written without reference to the organization of the remaining players, we can write

v̂(S) � v̂(S; P ) for all P 2 PS and all S � N . We denote by GN the set of games without

externalities with players in N , which corresponds to the set of TU games in characteristic

function form (CFF).

A solution concept for PFF games, or a value, is a mapping ' which associates with

every game v 2 GN a vector in Rn, specifying the payo¤ of each player, that satis�esP
i2N 'i(v) = v(N; (N;?)). Thus, in this paper, a value always shares the worth of the

grand coalition, that is, it satis�es the e¢ ciency axiom.

Similarly, a value for CFF games is a mapping  which associates with every game

v̂ 2 GN a vector in Rn such that
P

i2N  i(v̂) = v̂(N).

3 Basic axioms and the average approach

Shapley (1953) proposes linearity and symmetry as reasonable requirements to impose on

values for CFF games. To introduce these axioms, we �rst de�ne some operations for the

set of CFF games.

The addition of two games v̂ and v̂0 inGN is de�ned as the game v̂+v̂0 where (v̂+v̂0)(S)

� v̂(S)+ v̂0(S) for all S � N . Similarly, given the game v̂ and the scalar � 2 R; the game
�v̂ is de�ned by (�v̂)(S) � �v̂(S) for all S � N .

Let � be a permutation of N: Then the � permutation of the game v̂ 2 GN denoted

by �v̂ is de�ned by (�v̂)(S) � v̂(�S) for all S � N:

C1 Linearity: A value for CFF games  satis�es the linearity axiom if:

C1.1 For any two games v̂ and v̂0;  (v̂ + v̂0) =  (v̂) +  (v̂0).

C1.2 For any game v̂ and any scalar � 2 R;  (�v̂) = � (v̂).

C2 Symmetry: A value for CFF games  satis�es the symmetry axiom if for any per-

mutation � of N ,  (�v̂) = � (v̂).

In this paper, we consider the family of values  that, in addition to e¢ ciency, satisfy

symmetry and linearity.
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The operations, and the linearity and symmetry axioms can be easily extended to

PFF games. The addition of two games v and v0 in GN is de�ned as the game v + v0

where (v + v0)(S; P ) � v(S; P ) + v0(S; P ) for all (S; P ) 2 ECL. Also, given the game v

and the scalar � 2 R; the game �v is de�ned by (�v)(S; P ) � �v(S; P ) for all (S; P ) 2
ECL. Similarly, the � permutation of the game v 2 GN denoted by �v is de�ned by

(�v)(S; P ) � v(�S; �P ) for all (S; P ) 2 ECL:
Then we can de�ne two basic axioms for a value ':

P1 Linearity: A value ' satis�es the linearity axiom if:

P1.1 For any two games v and v0; '(v + v0) = '(v) + '(v0).

P1.2 For any game v and any scalar � 2 R; '(�v) = �'(v).

P2 Symmetry: A value ' satis�es the symmetry axiom if for any permutation � of N ,

'(�v) = �'(v).

As explained in MPW (2007), the symmetry axiom imposes much more structure on

a value for CFF games than it does on a value for PFF games. The strong symmetry

axiom strengthens the symmetry axiom by requiring that the payo¤ of a player should

not change after permutations in the set of players in NnS; for any embedded coalition
structure (S; P ). It imposes in addition to symmetric treatment of individual players, the

symmetric treatment of �externalities�generated by players in a given embedded coalition

structure. As a consequence, exchanging the names of the players inducing externalities

does not a¤ect the payo¤ of any player.

Formally, given an embedded coalition (S; P ), we denote by �S;PP a new partition

such that S 2 �S;PP; and the other coalitions result from a permutation of the set

NnS applied to PnS. That is, in the partition �S;PP; the players in NnS are reor-

ganized in sets whose size distribution is the same as in PnS. Given the permutation
�S;P , the permutation of the game v denoted by �S;Pv is de�ned by (�S;Pv)(S; P ) =

v(S; �S;PP ), (�S;Pv)(S; �S;PP ) = v(S; P ), and (�S;Pv)(R;Q) = v(R;Q) for all (R;Q) 2
ECLn f(S; P ); (S; �S;PP )g :

P2�Strong Symmetry: A value ' satis�es the strong symmetry axiom if:
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P2�.1 For any permutation � of N , '(�v) = �'(v);

P2�.2 For any (S; P ) 2 ECL and for any permutation �S;P , '(�S;Pv) = '(v).

For the basic games wS;P , the strong symmetry axiom is equivalent to the properties

that (a) 'i(wS;P ) = 'j(wS;P ) for all i; j 2 S and for all i; j 2 NnS and (b) 'i(wS;P ) only
depends on the size of S and the size distribution of the coalitions in P .

Besides the axiomatic approach, MPW (2007) provide an alternative method to go

from values for CFF games to values for PFF games. The average approach �rst trans-

forms a PFF game to a CFF game by assigning to any coalition of players an average of

the di¤erent worths of this group for all the possible organizations of the other players.

Then, it uses a value for CFF games (the Shapley value in MPW, 2007) to determine the

payo¤s of the players.

Formally, the average approach constructs a value ' for PFF games using a value

for CFF games  as follows. First, for any game v 2 GN , it constructs an average
game ~v by assigning to each S � N the average worth ~v(S) �

P
P2PS �(S; P )v(S; P );

with
P

P2PS �(S; P ) = 1. We refer to �(S; P ) as the �weight�of the partition P in the

computation of the value of coalition S 2 P . We restrict attention to symmetric and non-
negative weights, that is, �(S; P ) � 0 and it depends solely on the size of the coalition S
and the size distribution of the coalitions in P .4 Second, we de�ne 'i(v) =  i (~v) :

The following theorem establishes the relationship between the average approach and

the strong symmetry axiom, when we consider symmetric and linear values for CFF.

Theorem 1 The value ' can be constructed through the average approach using a value

for CFF games  that satis�es linearity and symmetry if and only if ' satis�es linearity

and strong symmetry.

The proof of Theorem 1 is constructive in part and relies heavily on the linearity

axiom that allows to extend properties over a �basis�for GN , to all of GN . We also make
4The weights �(S; P ) can only depend on the sizes of the coalitions if we consider symmetric and

linear values. This property allows us, in the Appendix, to sometimes use the expression �(s; p) instead

of �(S; P ) for the weights, where p is the vector describing the size distribution of the coalitions in the

partition P .
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use of the fact that the value for CFF games  generating a value for PFF games ' is

uniquely determined by ', since both values must coincide for CFF games, when viewed

as PFF games (without externalities). Besides its intuitive appeal, as we will see shortly,

the average approach provides a structured method of extending CFF values satisfying

linearity and symmetry to linear and (strongly) symmetric PFF values.

As discussed in the Introduction, the most prominent value for CFF games that satis-

�es linearity and symmetry is the Shapley value. MPW (2007) use the average approach

to extend the Shapley value to PFF games. Given that we will use this extension in some

of the next sections, and also for completeness, we include it here. It requires de�ning a

dummy player and the dummy player axiom.

Player i 2 N is a dummy player in v̂ 2 GN if player i contributes nothing to any

coalition, that is, v̂(S [ fig) = v̂(S) for all S � N with i 2 NnS:

C3 Dummy player : A value for CFF games  satis�es the dummy player axiom if

 i(v̂) = 0 whenever i is a dummy player in v̂:

Shapley (1953) shows that a value for CFF games  satis�es symmetry, linearity, and

dummy player if and only if it is the Shapley value,  Sh:

 Shi (v̂) =
X
S�N

�i(S)v̂(S) for all i 2 N;

where

�i(S) =

8<:
(s�1)!(n�s)!

n!
for all S � N; if i 2 S

� s!(n�s�1)!
n!

for all S � N; if i 2 NnS:

Moving now to PFF games, we say that player i is a dummy player in v 2 GN if he
alone receives zero for any partition of the other players and furthermore, has no e¤ect

on the worth of any coalition S (that is, the worth of S in partition P is constant for

all possible assignments of player i to some coalition in P ). More formally, player i is a

dummy player in v 2 GN if for every (S; P ) 2 ECL with i 2 S and each T 2 P , T 6= S,

v(S; P ) = v(Snfig; f(Snfig; R [ fig [ Pn(S;R)g).5

5For R = ?; we slightly abuse notation by assuming that the partition (Pn(?; S)) [ (? [ fig; Snfig)
also includes the empty set.
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P3 Dummy player : A value ' satis�es the dummy player axiom if for any dummy

player i in the game v; 'i(v) = 0.

Adopting this dummy player axiom in combination with linearity and symmetry allows

identifying a family of values that extend the Shapley value to PFF games.

Theorem 2 (MPW, 2007) The value ' can be constructed through the average approach

with weights that satisfy

�(S [ i; P ) =
X

R2Pn(S[fig)

�(S; (Pn(R; (S [ fig))) [ (R [ fig; S)) (1)

for all i 2 NnS and for all ((S [ fig); P ) 2 ECL , using a value for CFF games  that
satis�es linearity, symmetry, and dummy player if and only if ' satis�es linearity, strong

symmetry, and dummy player.

4 Extension of the equal division value

The equal division value distributes the worth of the grand coalition equally among all

players. This value, which only takes into account the worth of the grand coalition and

ignores the worth of any intermediary organization, is characterized by van den Brink

(2007) using the notion of �nullifying players.�A nullifying player is one whose presence

in a coalition implies that the coalition generates zero worth. Formally, player i 2 N is a

nullifying player in v̂ 2 GN if v̂(S) = 0 for all S � N with i 2 S. The following axiom

proposed by Van den Brink (2007) captures the idea that such players should get zero in

the game:

C4 Nullifying player : A value for CFF games  satis�es the nullifying player axiom if

 i(v̂) = 0 whenever i is a nullifying player in v̂:

He shows that replacing the dummy player axiom in the characterization of the Shapley

value with the nullifying player axiom yields the equal division solution: a value  for

CFF games satis�es symmetry, linearity, and nullifying player if and only if it is the equal

division value  ED, where

 EDi (v̂) =
v̂(N)

n
for all i 2 N:
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To extend  ED to PFF games, we �rst adapt the de�nition of a nullifying player and

the nullifying player axiom. We say that player i 2 N is a nullifying player in v 2 GN

if any coalition containing player i earns zero independently of the organization of the

players outside the coalition. Formally, player i 2 N is a nullifying player in v 2 GN if
v(S; P ) = 0 for all S � N with i 2 S. The C4 axiom can now be stated for PFF games

as follows:

P4 Nullifying player : A value ' satis�es the nullifying player axiom if 'i(v) = 0 when-

ever i is a nullifying player in v:

Theorem 3 shows that extending the equal division value to PFF games through the

average approach is equivalent to requiring that the value satis�es the nullifying player

axiom in addition to linearity and strong symmetry.

Theorem 3 The value ' can be constructed through the average approach using a value

for CFF games  that satis�es linearity, symmetry, and nullifying player if and only if '

satis�es linearity, strong symmetry, and nullifying player.

Given that any extension for PFF games of  ED using the average approach only takes

into account the value of the grand coalition, it is immediate that such an extension leads

to the same value 'ED for any system of weights (�(S; P ))(S;P )2ECL. This allows us to

provide the following extension of the equal division value for PFF games.

Corollary 1 A value ' satis�es linearity, strong symmetry, and nullifying player if and

only if ' = 'ED, where

'EDi =
v(N;N)

n
for all i 2 N:

The literature has o¤ered alternative characterizations of the equal division value. In

particular, Chameni-Nembua and Andjika (2008) prove that the value  for CFF games

is linear, symmetric, and non-negative if and only if  =  ED,6 where non-negativity is

de�ned as follows:
6For additional characterizations of the equal division value, see Chun and Park (2012), Casajus and

Huettner (2014a), Béal et al. (2014), and Béal, Rémila, and Solal (2015).
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C5 Non-negativity: A value for CFF games  satis�es the non-negativity axiom if for

all v̂ 2 GN such that v̂(S) � 0 for all S � N ,  i(v̂) � 0 for all i 2 N is satis�ed.

The natural extension of the non-negativity axiom to PFF games is the following:

P5 Non-negativity: A value ' satis�es the non-negativity axiom if for all v 2 GN such
that v(S; P ) � 0 for all (S; P ) 2 ECL, 'i(v) � 0 for all i 2 N is satis�ed.

Theorem 4 presents a similar result to Theorem 3 but uses the non-negativity axiom

instead of the nullifying player axiom.

Theorem 4 The value ' can be constructed through the average approach using a value

for CFF games  that satis�es linearity, symmetry, and non-negativity if and only if '

satis�es linearity, strong symmetry, and non-negativity.

5 Extension of the equal surplus value

The equal surplus value also distributes the �surplus� obtained by the grand coalition

equally among all the players. The surplus is de�ned as the worth of the grand coalition

minus the sum of the stand-alone worths of all the players. This value is proposed by

Driessen and Funaki (1991), who call it the Center-of-gravity of the Imputation-Set value

(the CIS -value). Since then this value has been given various names such as the egalitarian

value in Chun and Park (2012) and the equal surplus value in Moulin (2003), which is

the terminology that we adopt in this paper.

Several characterizations exist for the equal surplus value. We �rst use the one pro-

vided by Casajus and Huettner (2014a), which is close to the characterizations of the

Shapley and the equal division values. Instead of the dummy player or the nullifying

player axioms, it introduces a �dummifying player�axiom. The presence of a dummifying

player in a coalition implies that there are no gains from cooperation and the worth of the

coalition coincides with the sum of the stand-alone worths of its players (a no-cooperation

scenario). That is, player i 2 N is a dummifying player in v̂ if v̂ (S) =
X
j2S

v̂ (fjg) for all

S � N such that i 2 S. The following axiom proposed by Casajus and Huettner (2014a)
re�ects the idea that such players should get their stand-alone worth in the game:

11



C6 Dummifying player : A value for CFF games  satis�es the dummifying player axiom

if  i(v̂) = v̂ (fig) whenever i is a dummifying player in v̂:

Casajus and Huettner (2014a) show that a value for CFF  satis�es symmetry, lin-

earity, and dummifying player if and only if it is the equal surplus value  ES formally

de�ned as

 ESi (v̂) = v̂ (fig) + 1

n

 
v̂ (N)�

X
j2N

v̂ (fjg)
!

for all i 2 N:

The above expression makes it clear that the equal surplus value uses limited infor-

mation since it ignores the worth of all intermediate coalitions.

Our de�nition of a dummifying player in PFF games uses the same logic as its de�nition

in CFF games. In the set of PFF games, v (fjg ; [N ]) is the worth that player j obtains if
no cooperation exists. Thus, we say that player i 2 N is a dummifying player in v 2 GN

if v (S; P ) =
X
j2S

v (fjg ; [N ]) for all (S; P ) 2 ECL such that i 2 S. This leads to the

following axiom:

P6 Dummifying player : A value ' satis�es the dummifying player axiom if 'i(v) =

v (fig ; [N ]) whenever i is a dummifying player in v:

As is the case for the dummy player axiom (see Theorem 2), using the average approach

to extend the dummifying player axiom imposes restrictions on the weights. Theorem 5

formally states the extension and the restrictions on the weights.

Theorem 5 The value ' can be constructed through the average approach with weights

that satisfy

� (fig; [N ]) = 1 and � (fig; P ) = 0 for all P 6= [N ] (2)

using a value for CFF games  that satis�es linearity, symmetry, and dummifying player

if and only if ' satis�es linearity, strong symmetry, and dummifying player.

Following Theorem 5, Corollary 2, whose proof is immediate, presents and character-

izes our proposed extension of the equal surplus value to PFF games.
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Corollary 2 A value ' satis�es the linearity, strong symmetry, and dummifying player

axioms if and only if ' = 'ES, where

'ESi (v) = v (fig ; [N ]) + 1

n

 
v (N;N)�

X
j2N

v (fjg ; [N ])
!
.

The second characterization we focus on is the one proposed by Ju, Borm, and Ruys

(2007) as it can be naturally extended to PFF games.7 They introduce an axiom involving

dummy players which we refer to as the ES dummy player axiom.

C7 ES dummy player : A value for CFF games  satis�es the ES dummy player axiom

if  i(v̂) =
1
n

 
v̂ (N)�

X
j2N

v̂ (fjg)
!
whenever i is a dummy player in v̂:

The alternative characterization we study can be stated as follows. A value  satis�es

symmetry, linearity, and ES dummy player if and only if it is the equal surplus value  ES.

We now extend the ES dummy player axiom to PFF games following the same logic

used to extend the dummifying player axiom:

P7 ES dummy player : A value ' satis�es the ES dummy player axiom if 'i(v) =

1
n

 
v (N;N)�

X
j2N

v (fjg ; [N ])
!
whenever i is a dummy player in v:

The following theorem 6 uses the ES dummy player axiom to characterize the extension

of the equal surplus value to PFF games. It requires the same condition on the weights

as Theorem 5. It is stated for n > 3; as for n = 3 it holds without the condition (2) on

the weights.

Theorem 6 Suppose n > 3. The value ' can be constructed through the average ap-

proach with weights that satisfy (2) using a value for CFF games  that satis�es linearity,

symmetry, and ES dummy player if and only if ' satis�es linearity, strong symmetry, and

ES dummy player.

7For other characterizations of the equal surplus value for CFF game see Driessen and Funaki (1997),

van den Brink (2007), van den Brink and Funaki (2009), Chun and Park (2012), Casajus and Heuttner

(2014b), and Béal, Rémila, and Solal (2015).
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We note that the restriction (2) is due to the structure imposed on the weights by

either the dummifying player or the ES dummy player axiom. The restriction does not

apply to 3-player games when we use the ES-dummy player axiom because in a 3-player

PFF game if one of the players, say player 1, is a dummy player, then this game has no

externalities.

6 Extension of the consensus value

Ju, Borm, and Ruys (2007) introduce a value inspired by a sequential two-sided ne-

gotiation process through which players proceed to distribute the surplus generated by

cooperation. They recursively use the �standard�solution of two player games whereby

each of the players receives the equal surplus value to obtain the consensus value as a

suitably de�ned average payo¤ to each of the players in the negotiation process. This

value also has an axiomatic characterization using the neutral dummy player axiom.

C8 Neutral dummy player: A value for CFF games  satis�es the neutral dummy player

axiom if  i(v̂) =
1
2n

 
v̂ (N)�

X
j2N

v̂ (fjg)
!
whenever i is a dummy player in v̂:

Ju, Borm, and Ruys (2007) prove that a value for CFF games  satis�es symmetry,

linearity, and neutral dummy player if and only if it is the consensus value, denoted by

 C . They also prove that the consensus value is the average of the Shapley and equal

surplus values, that is,

 Ci (v̂) =
1

2
 Shi (v̂) +

1

2
 ESi (v̂) for all i 2 N:

Our extension of the neutral dummy player axiom to PFF games takes a similar approach

to the one we used in the extension of the ES dummy player axiom.

P8 Neutral dummy player: A value ' satis�es the neutral dummy player axiom if

'i(v) =
1
2n

 
v (N;N)�

X
j2N

v (fjg ; [N ])
!
whenever i is a dummy player in v:

We now state the result that allows extending the consensus value in Theorem 7 for

n > 3. Theorem 7 also holds for n = 3 but without the condition (3) on the weights.
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Theorem 7 Suppose n > 3. The value ' can be constructed through the average approach

with weights that satisfy

� (S; (S; [NnS])) = 1 and � (S; P ) = 0 for all P 6= (S; [NnS]) (3)

using a value for CFF games  that satis�es linearity, symmetry, and neutral dummy

player if and only if ' satis�es linearity, strong symmetry, and neutral dummy player.

Given that the consensus value is a combination of the Shapley and the equal division

values, the weights need to satisfy both conditions (1) and (2), which amounts to condition

(3). Once more, Corollary 3 easily follows from Theorem 7.

Corollary 3 A value ' satis�es linearity, strong symmetry, and neutral dummy player

if and only if ' = 'C, where

'Ci (v) =
1

2
'Sh1i (v) +

1

2
'ESi (v),

with 'Sh1i (v) =  Shi (~v), where ~v uses the weights � (S; (S; [NnS])) = 1 and � (S; P ) = 0
for all P 6= (S; [NnS]).

It is interesting to note that the value 'C that is derived from our approach was

previously introduced and characterized by Ju (2007) using a di¤erent system of axioms.

His axioms were based on the �externality-free�extension of the Shapley value to PFF

games, 'Sh1, proposed and characterized by Pham Do and Norde (2007).8

It is also worth noting that Ju, Borm, and Ruys (2007) extend the consensus value

to general convex combinations of the Shapley and the equal surplus values. They de-

�ne the �-consensus value as  �Ci (v̂) = (1 � �) Shi (v̂) + � ESi (v̂), for any � 2 [0; 1].

They characterize  �C by substituting the neutral player axiom with the �-dummy ax-

iom which is stated as follows: A value  satis�es the �-dummy player axiom if  i(v̂) =

�
n

 
v̂ (N)�

X
j2N

v̂ (fjg)
!
whenever i is a dummy player in v̂: The de�nition of the �-

dummy axiom, Theorem 7, and Corollary 3 can be easily generalized for PFF games

using the average approach for any � 2 (0; 1).9

8An interesting marginality-based axiomatization of 'Sh1 can be found in de Clippel and Serrano

(2008).
9For � = 0,  �C =  Sh and the results hold with condition (1) instead of (3). For � = 1,  �C =  ES

and the results hold with condition (2) instead of (3).
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7 Extension of the �-egalitarian Shapley values

Combining properties of the Shapley and the equal division values, Joosten (1996) intro-

duces the �-egalitarian Shapley values. This family of values is obtained by replacing the

dummy player axiom used in the Shapley value characterization with the �-egalitarian

dummy player axiom (for � 2 [0; 1]).

C9 �-egalitarian dummy player : A value for CFF games  satis�es the �-egalitarian

dummy player axiom if  i(v̂) =
�
n
v̂(N) whenever i is a dummy player in v̂:

Joosten (1996) shows that the �-egalitarian Shapley value for � 2 [0; 1] can be ex-
pressed as  ��(v̂) = (1� �) Shi (v̂) + � EDi (v̂).

We now extend the �-egalitarian dummy player axiom to PFF games as follows:

P9 �-egalitarian dummy player: A value ' satis�es the �-egalitarian dummy player

axiom if 'i(v) =
�
n
v (N;N) whenever i is a dummy player in v:

Theorem 8 generalizes the �-egalitarian Shapley values for � < 1 to PFF games. The

theorem also holds for � = 1, in which case the value corresponds to the equal division

value, but without the condition (1) on the weights, as shown in Theorem 3.

Theorem 8 Let � 2 [0; 1). The value ' can be constructed through the average approach
with weights that satisfy (1) for all i 2 NnS and for all ((S [ fig); P ) 2 ECL, using a

value for CFF games  that satis�es linearity, symmetry, and �-egalitarian dummy player

if and only if ' satis�es linearity, strong symmetry, and �-egalitarian dummy player.

In contrast to the extensions of the consensus value or of the general convex combi-

nations of the Shapley and the equal surplus values, Theorem 8 does not characterize a

unique value for PFF games for a given �. Any ' = (1 � �)'Sh + �'ED extends  ��,

where 'Sh is one of the many values obtained in Theorem 2 satisfying the linearity, strong

symmetry, and dummy player axioms. Particular examples for 'Sh are 'Sh1, or the exten-

sion of the Shapley value suggested by MPW (2007), where the worth of every embedded

coalition matters.
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8 Extension of the least square family

The last extension deals with the least-square family introduced by Ruiz, Valenciano, and

Zarzuelo (1998). Each value in this family selects the unique e¢ cient payo¤ vector which

minimizes the weighted variance of the excesses of the coalitions.10 Formally, let the excess

vector of the coalition S � N at an e¢ cient payo¤ vector x 2 Rn in the game v̂ 2 GN be
e (S; x) = v̂(S)�

P
i2S xi. Also, let the average excess at x be �e(v̂) =

1
2n�1

P
S�N e (S; x) ;

where one can use �e(v̂) instead of �e(v̂; x) because the sum is the same for any e¢ cient

payo¤ vector x. Then, a value for CFF games  belongs to the least square (LS) family

if there exist weights 
 2 Rn+ such that for all v̂ 2 GN ,  (v̂) is the solution to

Min
X
S�N


(s) (e (S; x)� �e(v̂))2

s.t.
X
i2N

xi = v̂(N):

To introduce the axioms that characterize the LS family, we say that a game v̂ 2 GN

is additive if v̂(S) =
P

i2S v̂ (fig) for all S � N and provide the following two axioms:

C10 Inessential game: A value for CFF games  satis�es the inessential game axiom if

 i(v̂) = v̂ (fig) whenever v̂ is additive.

C11 Coalitional monotonicity: A value for CFF games  satis�es the coalitional monotonic-

ity axiom if  i(v̂) �  i(ŵ) for all i 2 S whenever v̂ and ŵ are such that v̂(S) > ŵ(S)

and v̂(R) = ŵ(R) for R 6= S.

Ruiz, Valenciano, and Zarzuelo (1998) prove that  satis�es symmetry, linearity,

inessential game, and coalitional monotonicity if and only if it belongs to the LS fam-

ily.

We now extend the additivity property to games with externalities as follows. A game

v 2 GN is additive if v(S; P ) =
P

i2S v (fig; [N ]) for all (S; P ) 2 ECL. Note that additive
games have no externalities. The above two axioms are now generalized for PFF games

by

10The least square family includes the least square prenucleolus, de�ned in Ruiz, Valenciano, and

Zarzuelo (1996), where all the coalitions have the same weights. It also includes the Shapley value.
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P10 Inessential game: A value ' satis�es the inessential game axiom if 'i(v) = v (fig; [N ])
whenever v is additive.

P11 Coalitional monotonicity: A value ' satis�es the coalitional monotonicity axiom if

'i(v) � 'i(w) for all i 2 S whenever v and w are such that v(S; P ) > w(S; P ) for

some P 2 PS and v(R;Q) = w(R;Q) for (R;Q) 6= (S; P ).

An equivalent statement for the C11 axiom is that a value ' satis�es the coalitional

monotonicity axiom if 'i(v) � 'i(w) for all i 2 S whenever v and w are such that

v(S; P ) � w(S; P ) for all P 2 PS, and v(R;Q) = w(R;Q) for R 6= S, Q 2 PR.
Theorem 9 suggests how to extend the LS family of values to PFF games.

Theorem 9 The value ' can be constructed through the average approach using a value

for CFF games  that satis�es linearity, symmetry, inessential game, and coalitional

monotonicity if and only if ' satis�es linearity, strong symmetry, inessential game, and

coalitional monotonicity.

Given that the LS family in CFF games includes the Shapley value, it is interesting to

note that the extensions of the Shapley value characterized in Theorem 2 are also included

in the extension of the LS family proposed in Theorem 9. This result is an immediate

corollary of the following Proposition 1.

Proposition 1 If the value ' satis�es linearity, strong symmetry, and dummy player,

then it also satis�es inessential game and coalitional monotonicity.

9 Conclusion

In this paper we have used the �average approach� to extend several surplus sharing

methods proposed in the literature for characteristic function form games to partition

function form games. Our method can be applied to any value for CFF games that

satis�es e¢ ciency, linearity, and symmetry. The axiomatic basis for this approach stems

from a natural extension of the symmetry axiom for CFF games to a strong symmetry

concept for PFF games.
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The extensions of the values make it possible to move from normative and distributive

issues pertaining to CFF games to their counterparts in PFF games. They also provide

axiomatic characterizations of several values for PFF games. The method may of course

be applied to values other than those we discussed in this paper and thus we see it as an

expedient link between the analysis of standard transferable utility games and transferable

utility games with externalities.

The approach suggested here may also provide a non-cooperative foundation for values

similar to the one provided in Macho-Stadler, Pérez-Castrillo, and Wettstein (2006) for

the Shapley value extension.

10 Appendix

Proof. of Theorem 1. Suppose that ' can be constructed through the average ap-

proach (AA) using a value  for CFF games that satis�es linearity and symmetry. De-

note by (�(S; P ))(S;P )2ECL the weights used in the AA. Also, we can write  i(v) =P
S�N �i(S)v(S) for any game v; where �i(S) is the value  assigns to player i in the

CFF game where the worth of coalition S is 1 and the worth of any other coalition is 0.

By construction, ' satis�es linearity. We also note that the CFF game ~wS;P corre-

sponding to wS;P satis�es ~wS;P (S) = �(S; P ), ~wS;P (N) = 1, and ~wS;P (S
0) = 0 for any

S 0 di¤erent from S and N . Therefore, for all (S; P ) 2 ECL; 'i(wS;P ) =  i( ~wS;P ) =

�i(S)�(S; P ) + �i(N) for all i 2 N . Given that �i(S) are the same for all players i 2 S;

and are also the same for all players i 2 NnS by the symmetry of  , 'i(wS;P ) = 'j(wS;P )

for all i; j 2 S and for all i; j 2 NnS. Second, �i(S) and �(S; P ) only depend on the sizes
of S and the rest of coalitions in P ; hence, 'i(wS;P ) also satis�es this property. The two

previous properties are equivalent to the strong symmetry axiom for the basic games wS;P .

Linearity implies that the value ' satis�es the strong symmetry axiom for all games if

and only if it satis�es the axiom for the games wS;P for (S; P ) 2 ECL. Hence, ' satis�es
the strong symmetry axiom in GN .
Now assume ' satis�es linearity and strong symmetry. To show it can be constructed

via the AA we look �rst at the values ' assume over games in GN , and de�ne a value

for CFF games  by  (v̂) = '(v̂) for all v̂ 2 GN . The value for CFF games  generates
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the �i(S) which are the payo¤  assigns to player i in the CFF game where coalition S

receives 1 and all other coalitions receive 0. These are the same for all i 2 S and all

i 2 NnS. To recover the candidate weights �(S; P ) remember that 'i (wS;P ) should be
equal to �(S; P )�i(S) + 1

n
. Hence, whenever �i(S) 6= 0, we obtain �(S; P ) =

'i(wS;P )� 1
n

�i(S)
:

When �i(S) = 0, we take any (�(S; P ))P2PS that depend only on the size distribution of

coalitions in P and such that
P

P2PS �(S; P ) = 1:

Since �i(S) are the same for all players i 2 S; as well as for players i 2 NnS; and they
depend only on the size of S, strong symmetry implies �rst that the weights �(S; P ) are

well-de�ned (that is, independent of i when �i(S) 6= 0) and secondly that they depend

only on the sizes of S and the rest of coalitions in P . Also, since ' and hence  are linear,

we obtain
P

P2PS �(S; P ) = 1 for all S � N . To conclude, we claim the value ' can be

constructed through the AA using the value  and the weights �(S; P ). This claim is

valid for any basic game wS;P by construction and by linearity extends to any game in

GN :
Proof. of Theorem 3. Given Theorem 1, we only need to prove the nullifying player

axiom in both senses of the theorem.

a) Suppose that ' can be constructed through the AA using  ED. Let player i 2 N

be a nullifying player in v 2 GN . By construction, 'i(v) =  i (~v).

If i is a nullifying player in v 2 GN , then v(S; P ) = 0 for all S � N with i 2 S.

Therefore, ~v(S) =
P

P3S;P2P �(S; P )v(S; P ) = 0 for all S � N with i 2 S: Consequently,
player i is also a nullifying player in the average game ~v and  EDi (~v) = 0. Hence,

'i(v) = 0. That is, ' satis�es the nullifying player axiom.

b) Suppose now that ' satis�es linearity, strong symmetry, and nullifying player. '

can be obtained through the AA using a value for CFF games  and a system of weights

(�(S; P ))(S;P )2ECL. We note that a nullifying player i in v̂ 2 GN is also a nullifying

player if we consider v̂ as a game of GN . Given that ' coincides with  in games without
externalities,  i(v̂) = 'i(v̂) = 0; that is,  satis�es the nullifying player axiom.

Proof. of Theorem 4. a) Suppose that 'ED(v) =  ED (~v). If v 2 GN is non-

negative, v(S; P ) � 0 for all (S; P ) � ECL. Therefore, ~v(S) � 0 for all S � N and any

(�(S; P ))(S;P )2ECL : Given that  
ED satis�es the non-negative axiom,  EDi (~v) � 0 for all

i 2 N ; hence, 'i(v) � 0 for all i 2 N . That is, ' satis�es the non-negative axiom.
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b) Proceeding as in part b) of the proof of Theorem 3, given that ' coincides with  

in games without externalities,  satis�es the non-negative axiom.

Proof. of Theorem 5. a) Suppose that ' is constructed through the AA with

weights that satisfy (2) using  ES. We prove that ' satis�es the dummifying player

axiom.

For any player i 2 N , by the AA,

'i(v) =  ESi (~v) = ~v (fig) + 1

n

 
~v (N)�

X
j2N

~v (fjg)
!

=
X
P2Pfig

� (fig ; P ) v (fig ; P ) + 1

n

0BB@v (N;N)� X
j2N

P2Pfjg

� (fjg ; P ) v (fjg ; P )

1CCA :(4)

Using (2), we can write 'i(v) as

'i(v) = v (fig ; [N ]) + 1

n

 
v (N;N)�

X
j2N

v (fjg ; [N ])
!
: (5)

Suppose now that i 2 N is a dummifying player in v 2 GN , which implies that v (N;N) =X
j2N

v (fjg ; [N ]). Then, 'i(v) = v (fig ; [N ]) and ' satis�es the dummifying player axiom.

b) Suppose that ' satis�es linearity, strong symmetry, and dummifying player. ' can

be constructed through the AA using a value  that satis�es linearity and symmetry. We

prove that  also satis�es the dummifying player axiom.  coincides with ' on GN . Take

a game v̂ 2 GN . A dummifying player j in v̂ is also a dummifying player in v̂ 2 GN .
Hence,  j(v̂) = 'j(v̂) = v (fjg ; [N ]) = v̂(fjg). Therefore,  satis�es the dummifying
player axiom.

To show the property that must be satis�ed by the weights, we construct the following

PFF game wki, where k 6= i: wki(k; [N ]) = wki(S; P ) = 1 for any S � fk; ig and
wki(S; P ) = 0 otherwise. Player i is a dummifying player in this game and hence

'i(w
ki) = wki (fig; [N ]) = 0.

In the corresponding average game ~wki we have ~wki(fkg) = �(1; (1; :::; 1)); ~wki(fjg) =
0 for j 6= k and ~wki(N) = 1. Since  =  ES we obtain  i( ~w

ki) = 0+ 1
n
(1��(1; (1; :::; 1))).
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Since 'i(w
ki) =  i( ~w

ki), we get �(1; (1; :::; 1)) = 1. Given that the weights associated

with all embedded coalitions of the form (f1g; P ); for P 2 Pf1g, are nonnegative and must
sum to 1; (2) holds.

Proof. of Theorem 6. a) If ' is constructed through the AA with weights that

satisfy (2) using  ES, then (5) holds. Moreover, if i 2 N is a dummy player in v 2 GN ,
then v (fig ; [N ]) = 0 and

'i(v) =
1

n

 
v (N;N)�

X
j2N

v (fjg ; [N ])
!
: (6)

Therefore, ' satis�es the ES dummy player axiom.

We note that in a 3-players PFF game if one of the players, say player 1, is a dummy

player, then this game has no externalities because v (f1g ; [N ]) = v (f1g ; (f1g ; f2; 3g)) =
0, v (f2g ; [N ]) = v (f2g ; (f1; 3g ; f2g)) and similarly for player 3. Hence, equation (6)
directly follows from (4) for any weights.

b) Suppose that ' satis�es linearity, strong symmetry, and ES dummy player. ' can be

constructed through the AA using a value  that satis�es linearity and symmetry. We now

prove that  satis�es the ES dummy player axiom.  coincides with ' onGN . Take a game

v̂ 2 GN . A dummy player j in v̂ is a dummy player in v̂ viewed as a PFF game as well and
hence  j(v̂) = 'j(v̂) =

1
n

�
v̂(N;N)�

P
j2N v̂ (fjg ; [N ])

�
= 1

n

�
v̂(N)�

P
j2N v̂(fjg)

�
;

given that v̂(S; P ) � v̂(S) for all (S; P ) 2 ECL. Therefore,  satis�es the ES dummy

player axiom, which implies  =  ES.

To determine the weights we construct the following PFF game vki de�ned by vki(fkg; [N ]) =
vki(fk; ig; ([Nnfk; ig]; fk; ig)) = v(fkg; ([Nnfk; i; jg]; fkg; fi; jg)) = 1 for j 6= k; i and

vki(S; P ) = 0 otherwise. Player i is a dummy player in vki and hence

'i(v
ki) =

1

n

 
vki (N;N)�

X
j2N

vki (fjg ; [N ])
!
= � 1

n
:

In the corresponding average game ~vki we have ~vki(fkg) = �(1; (1; :::; 1)) + (n �
2)�(1; (2; 1; :::; 1)); ~vki(fjg) = 0 for j 6= k and ~vki(N) = 0. Since  =  ES we obtain

 i(~v
ki) = � 1

n
(�(1; (1; :::; 1)) + (n� 2)�(1; (2; 1; :::; 1))). Using that 'i(vki) =  i(~v

ki), we

get �(1; (1; :::; 1)) + (n � 2)�(1; (2; 1; :::; 1)) = 1. Moreover, the weights associated with

all embedded coalitions of the form (f1g; P ) where P 2 Pf1g are nonnegative and must
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sum to 1 we obtain �(1; (1; :::; 1)) + 1
2
(n � 1)(n � 2)�(1; (2; 1; :::; 1)) � 1. Hence, either

�(1; (2; 1; :::; 1)) = 0 or 1
2
(n � 1)(n � 2) � (n � 2). However, the last inequality cannot

happens for n > 3. Therefore, �(1; (2; 1; :::; 1)) = 0 and �(1; (1; :::; 1)) = 1. This implies

that (2) holds.

Proof. of Theorem 7. a) Suppose n > 3 and that ' can be constructed through

the AA with weights that satisfy (3) using  C . By Theorem 1, ' satis�es linearity and

strong symmetry. We now prove that ' satis�es the neutral dummy player axiom.

For any player i 2 N , by the AA,

'i(v) =  Ci (~v) =
1

2
 Shi (~v) +

1

2n

 
~v (N)�

X
j2N

~v (fjg)
!

=
1

2
 Shi (~v) +

1

2n

0BB@v (N;N)� X
j2N

P2Pfjg

� (fjg ; P ) v (fjg ; P )

1CCA : (7)

Suppose now that player i 2 N is a dummy player in v 2 GN . Given the weights in
(3), i is a dummy player in ~v as well and hence  Shi (~v) = 0. Moreover, we can write (7)

as

'i(v) =
1

2n

 
v (N;N)�

X
j2N

� (fjg ; [N ]) v (fjg ; [N ])
!
: (8)

Therefore, ' satis�es the neutral dummy player axiom.

b) Suppose that ' satis�es linearity, strong symmetry, and neutral dummy player. We

know that ' can be constructed through the AA using a value  that satis�es linearity

and symmetry. We now prove that  satis�es neutral dummy player. Take a game v̂. A

dummy player i in v̂ is a dummy player in v̂ viewed as a PFF game as well and hence

 i(v̂) = 'i(v̂) =
1

2n

 
v̂(N;N)�

X
j2N

v̂ (fjg ; [N ])
!
=
1

2n

 
v̂(N)�

X
j2N

v̂(fjg)
!
;

given that v̂(S; P ) � v̂(S) for all (S; P ) 2 ECL. Therefore,  satis�es the neutral dummy
player axiom, which implies  =  C .

We now prove that equation (3) holds if n > 3. First, we de�ne the game vk as

follows: vk (fkg; [N ]) = vk (fk; ig; ([Nnfk; ig]; fk; ig)) = vk (fkg; ([Nnfi; jg]; fi; jg)) = 0

for any j 2 Nnfk; ig; vk (S; P ) = 1 for any S 3 k and any P 2 PS di¤erent from [N ] and
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([Nnfi; jg]; fi; jg) , ([Nnfk; ig]; fk; ig); vk (S; P ) = 0 if k =2 S. Player i is a dummy player
in vk. Therefore,

'i(v
k) =

1

2n

 
vk (N;N)�

X
j2N

vk (fjg ; [N ])
!
=
1

2n
:

We now proceed to construct the corresponding average game ~vk. Note that ~vk(fkg) is
the sum of weights of all partitions of the n�1 players other than k for which vk assumes
the value of 1. Since all weights sum up to 1 we obtain ~vk(fkg) = 1 � �(1; (1; :::; 1)) �
(n � 2)�(1; (2; 1; :::; 1)): Similarly ~vk(fk; ig) is the sum of weights of all partitions of the

n � 2 players other than k and i for which v assumes the value of 1. Then, ~vk(fk; ig) =
1 � �(2; (2; 1; :::; 1)). For all other embedded coalitions (S; P ), ~vk assumes the values

1 when k 2 S and 0 when k =2 S. Player i�s marginal contribution to any coalition

other than fkg is zero whereas i�s marginal contribution to fkg is �(1; (1; :::; 1)) + (n �
2)�(1; (2; 1; :::; 1))� �(2; (2; 1; :::; 1)).

We know that  Ci (~v
k) = 1

2
 Shi (~v

k) + 1
2n
(1� 0). Since ' can be constructed by the AA

using  C , 1
2n
= 'i(v

k) =  Ci (~v
k) = 1

2
 Shi (~v

k) + 1
2n
. Therefore, it must be the case that

 Shi (~v
k) = 0. This implies

�(1; (1; :::; 1)) + (n� 2)�(1; (2; 1; :::; 1))� �(2; (2; 1; :::; 1)) = 0: (9)

Second, take S � N and i 2 NnS. We de�ne the gamewS as follows: wS (S; ([NnS]; S)) =
wS (S [ fig; ([Nn (S [ fig)]; S [ fig)) = wS (S; ([Nn (S [ fi; jg)]; S; fi; jg)) = 1 for any

j 2 Nn (S [ fig); wS (R;P ) = 0 for any other (R;P ): Player i is a dummy player in game
wS.

Suppose s > 1: Then,

'i(w
S) =

1

2n

 
wS (N;N)�

X
j2N

wS (fjg ; [N ])
!
= 0:

We again proceed to construct the corresponding average game. ~wS(S) = �(s; (s; 1; :::; 1))+

(n�s�1)�(s; (s; 2; 1; :::; 1)) and ~wS(S[fig) = �(s+1; (s+1; 1; :::; 1)). Player i�s marginal

contribution to any coalition other than S is zero whereas i�s marginal contribution to

S is �(s + 1; (s + 1; 1; :::; 1)) � (�(s; (s; 1; :::; 1)) + (n� s� 1)�(s; (s; 2; 1; :::; 1))). Given
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that  Ci ( ~w
S) = 1

2
 Shi ( ~w

S) + 1
2n
(0 � 0) and  Ci ( ~wS) = 'i( ~w

S), it must be the case that

 Shi ( ~w
S) = 0 ; which implies

� (s+ 1; (s+ 1; 1; :::; 1)) = � (s; (s; 1; :::; 1)) + (n� s� 1)� (s; (s; 2; 1; :::; 1)) : (10)

Now suppose s = 1 and S = f1g. Then,

'i(w
f1g) =

1

2n

 
wf1g (N;N)�

X
j2N

wf1g (fjg ; [N ])
!
= � 1

2n
:

Going again through the corresponding average game we obtain. ~wf1g(f1g) = �(1; (1; :::; 1))+
(n� 2)�(1; (2; 1; :::; 1)) and ~wf1g(f1; ig) = �(2; (2; 1; :::; 1)). Player i�s marginal contribu-

tion to any coalition other than f1g is zero whereas i�s marginal contribution to f1g
is �(2; (2; 1; :::; 1)) � (�(1; (1; :::; 1)) + (n� 2)�(1; (2; 1; :::; 1))). Given that  Ci

�
~wf1g

�
=

1
2
'Shi ( ~w

f1g)+ 1
2n
(��(1; (1; :::; 1))� (n� 2)�(1; (2; 1; :::; 1)) = 'i(w

f1g), it must be the case

that

1

2

�
(n� 2)!
n!

(�(2; (2; 1; :::; 1))� �(1; (1; :::; 1))� (n� 2)�(1; (2; 1; :::; 1)
�

+
1

2n
(��(1; (1; :::; 1))� (n� 2)�(1; (2; 1; :::; 1)) = � 1

2n
:

Easy calculations lead to

� (2; (2; 1; :::; 1)) + (n� 1) = n� (1; (1; :::; 1)) + n (n� 2)� (1; (2; 1; :::; 1)) : (11)

From (9) and (11) we obtain

� (2; (2; 1; :::; 1))+(n�1) = n�(2; (2; 1; :::; 1))�n (n� 2)�(1; (2; 1; :::; 1))+n (n� 2)� (1; (2; 1; :::; 1)) ;

that is, �(2; (2; 1; :::; 1)) = 1: This implies that �(2; p) = 0 for any partition p di¤erent from

(2; 1; :::; 1). Also, using (10) recursively, we have � (3; (3; 1; :::; 1)) = � (2; (2; 1; :::; 1)) +

(n� 3)� (2; (2; 2; 1; :::; 1)) = 1: Thus,

� (r; (r; 1; :::; 1)) = 1

for any r > 1. Also, �(2; (2; 1; :::; 1)) = 1 together with (9) imply

�(1; (1; :::; 1)) + (n� 2)�(1; (2; 1; :::; 1)) = 1:
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Moreover

1 =
X
p

�(1; p) � �(1; (1; :::; 1)) +
1

2
(n� 1) (n� 2)�(1; (2; 1; :::; 1))

= 1� (n� 2)�(1; (2; 1; :::; 1)) + 1
2
(n� 1) (n� 2)�(1; (2; 1; :::; 1))

= 1 +
(n� 2)
2

(n� 3)�(1; (2; 1; :::; 1))

Therefore, if n > 3 it is necessarily the case that �(1; (2; 1; :::; 1)) = 0 and thus �(1; (1; :::; 1)) =

0 as well and equation (3) holds. (If n = 3 then �(1; (1; 1; 1)) + �(1; (2; 1)) = 1 always.)

Proof. of Theorem 8. a) Suppose that ' can be constructed through the AA with

weights that satisfy (1) for all i 2 NnS and for all ((S [ fig); P ) 2 ECL using  �E. By
Theorem 1, ' satis�es linearity and strong symmetry. We now prove that ' satis�es the

�-egalitarian dummy player axiom.

For any player i 2 N , by the AA,

'i(v) =  �EDi (~v) = (1� �) Shi (~v) +
�

n
~v (N) : (12)

Suppose now that player i 2 N is a dummy player in v 2 GN . Then, given (1), i is a
dummy player in ~v as well (see proof of Theorem 1 in MPW, 2007) and hence  Shi (~v) = 0.

Since ~v (N) = v(N;N), (12) implies ' satis�es the �-egalitarian dummy player axiom.

b) Suppose that ' satis�es linearity, strong symmetry, and �-egalitarian dummy

player. We know that ' can be constructed through the AA using a linear and sym-

metric value  and we prove that  satis�es �-egalitarian dummy player. Take a game

v̂ 2 GN . A dummy player j in v̂ is a dummy player in v̂ viewed as a PFF game as well

and hence

 j(v̂) = 'j(v̂) =
�

n
v̂(N;N):

Therefore,  satis�es the �-egalitarian dummy player axiom, which implies  =  �ED.

We now prove that (1) holds for all i 2 NnS and for all ((S [ fig); P ) 2 ECL.

We de�ne the game w(S[fig);P for s < n � 1, where i =2 S by w(S[fig);P (S 0; P 0) = 1 for

(S 0; P 0) = ((S [ fig); P ) and for all (S 0; P 0) = (S; (Pn((S [ fig); R))[ (R[ fig; S)) where
R 2 Pn(S[fig); otherwise w(S[fig);P (S 0; P 0) = 0. Player i is a dummy player in the game
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w(S[fig);P and hence,

'i(w
(S[fig);P ) =

�

n
w(S[fig);P (N;N) = 0:

We construct the corresponding average game. ~w(S[fig);P (S [ fig) = �((S [ fig); P ),
~w(S[fig);P (S) =

P
R2Pn(S[fig) �(S; (Pn(R; (S [fig)))[ ((R[fig); S)) and for all coali-

tions T 6= (S [fig); S, ~w(S[fig);P (T ) = 0. For the value of player i in the average game to
be zero we must have its Shapley value equal to zero (recall that ~wS;P (N) = 0).

Player i�s marginal contribution to any coalition other than S is zero whereas i�s

marginal contribution to S is �((S [ fig); P )�
P

R2PnS �(S; (Pn(R;S)) [ (R [ fig; S)).
Hence, it must be the case that �((S[fig); P ) =

P
R2PnS �(S; (Pn(R;S))[((R[fig); S)):

Finally, we note that (1) trivially holds if s = n� 1.
Proof. of Theorem 9. a) Suppose that ' is constructed through the AA using

 from the LS family. We prove that ' satis�es the inessential game and coalitional

monotonicity axioms.

First, if v 2 GN is additive, then

~v(S) =
X
P2PS

�(S; P )v(S; P ) =
X
P2PS

�(S; P )
X
i2S

v (fig; (PnS; [S]))

=
X
i2S

v (fig; (PnS; [S]))
X
P2PS

�(S; P ) =
X
i2S

v (fig; (PnS; [S]))

=
X
P2Pfig

�(fig; P )
X
i2S

v (fig; (PnS; [S])) =
X
i2S

X
P2Pfig

�(fig; P )v (fig; P ) =
X
i2S

~v (fig) :

Hence, ~v is an additive game inGN and 'i(v) =  i (~v) = ~v (fig) =
P

P2Pfig �(fig; P )v (fig; P ) =P
P2Pfig �(fig; P )v (fig; [N ]) = v (fig; [N ]) for all i 2 N . This implies that ' satis�es the

inessential game axiom.

Second, consider v and w such that v(S; P ) > w(S; P ) for some P 2 PS and v(R;Q) =
w(R;Q) for (R;Q) 6= (S; P ): ~v(R) = ~w(R) for all R 6= S and either ~v(S) = ~w(S) (if

�(S; P ) = 0) or ~v(S) > ~w(S). If ~v(S) = ~w(S), then '(v) =  (~v) =  ( ~w) = '(w). If

~v(S) > ~w(S), then given that  satis�es coalitional monotonicity, '(v) =  (~v) �  ( ~w) =

'(w). In both cases, '(v) � '(w) and ' also satis�es the coalitional monotonicity axiom.

b) Suppose that ' satis�es linearity, strong symmetry, inessential game, and coalitional

monotonicity. ' can be constructed through the AA using a linear and symmetric value

 . We now prove that  satis�es inessential game and coalitional monotonicity.
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Suppose that  does not satisfy the coalitional monotonicity axiom. Then, there exist

games v̂; ŵ 2 GN , coalition S 2 N and player i 2 S such v̂(S) > ŵ(S), v̂(R) = ŵ(R) for

all R 6= S, and  i (v̂) <  i (ŵ). Consider now v̂ and ŵ as games without externalities in

GN . They satisfy v̂(S; P ) � ŵ(S; P ) for all P 2 PS, and v̂(R;Q) = ŵ(R;Q) for R 6= S,

Q 2 PR. Given that ' satis�es coalitional monotonicity, 'i (v̂) � 'i (ŵ). However, this

contradicts 'i (v̂) =  i (v̂) <  i (ŵ) = 'i (ŵ).

Suppose that  does not satisfy the inessential game axiom. Then, there exist a game

v̂ 2 GN and a player i 2 N such v̂(S) =
P

j2S v̂ (fjg) and  i (v̂) 6= v̂ (fig). Consider
now v̂ as a game without externalities in GN . v̂ is also an additive game in GN because
v̂(S; P ) = v̂(S) =

P
j2S v̂ (fjg) =

P
j2S v̂ (fjg; [N ]) for all (S; P ) 2 ECL. Given that

' satis�es the inessential game axiom, 'i (v̂) = v̂ (fig; [N ]) : However, this contradicts
 i (v̂) 6= v̂ (fig) since  i (v̂) = 'i (v̂) = v̂ (fig; [N ]) = v̂ (fig) :
Proof. of Proposition 1. Suppose that ' satis�es linearity, strong symmetry, and

dummy player. Let v be an additive game, that is, v(S; P ) =
P

i2S v (fig; [N ]) for all
(S; P ) 2 ECL. We can write v =

P
j2N v

j, where vj is de�ned by

vj(S; P ) = v (fjg; [N ]) if j 2 S

= 0 if j =2 S:

Any player k 6= j is a dummy player in vj. Then, 'k (v
j) = 0 for any k 6= j and

'j (v
j) = v (N;N) = v (fjg; [N ]) : Therefore,

'i (v) =
X
j2N

'i
�
vj
�
= v (fig; [N ])

for any i 2 N . Thus, the value ' satis�es the inessential game axiom.
To prove that ' also satis�es coalitional monotonicity, let v and w be such that

v(S; P ) > w(S; P ) and v(R;Q) = w(R;Q) for (R;Q) 6= (S; P ). Theorem 2 ensures

that ' can be constructed through the AA using some vector of weights �. Let ~v and ~w

be the average games that use the weights �. It is immediate that ~v(R) = ~w(R) for all

R 6= S and ~v(S) � ~w(S). Since  Sh satis�es coalitional monotonicity in CFF games,

'i (v) =  Shi (~v) �  Shi ( ~w) = 'i (w)

for any i 2 S. Therefore, ' satis�es the axiom of coalitional monotonicity.
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