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Abstract

Large economic and financial panels often contain time series that influence the entire
cross-section. We name such series granular. In this paper we introduce a panel data
model that allows to formalize the notion of granular time series. We then propose a
methodology, which is inspired by the network literature in statistics and economet-
rics, to detect the set of granulars when such set is unknown. The influence of the i-th
series in the panel is measured by the norm of the i-th column of the inverse covariance
matrix. We show that a detection procedure based on the column norms allows to con-
sistently select granular series when the cross-section and time series dimensions are
large. Importantly, the methodology allows to consistently detect granulars also when
the series in the panel are influenced by common factors. A simulation study shows
that the proposed procedures perform satisfactorily in finite samples. Our empirical
studies demonstrate, among other findings, the granular influence of the automobile
sector in US industrial production.
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1 Introduction

Traditionally, theoretical models in economics and finance assume that in large systems the

influence of individual entities is negligible. This view has recently been challenged by a num-

ber of influential contributions, inter alia, Gabaix (2011), Acemoglu, Carvalho, Ozdaglar and

Tahbaz-Salehi (2012) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015). The main theme

of this strand of the literature is that entity specific shocks – through different mechanisms

– impact the entire system. This is called by Gabaix (2011) the granular hypothesis. These

models have been applied to explain aggregate fluctuations in macroeconomics and financial

stability in finance.

One of the main hurdles in bringing these theories to the data is that in large macroeco-

nomic or financial systems it is often the case that the set of granular entities is unknown.

It is natural to ask if it is possible to introduce a methodology to recover the set of granular

entities from the data. In this paper we tackle this challenge by (i) introducing a panel

model that allows us to formalize the granular detection problem for a panel of stationary

time series and (ii) developing a methodology to detect the set of granular series from the

data when such set is unknown.1

We begin by introducing a model for a panel of time series that formalizes the notion

of granularity used in this paper. We assume that the panel is partitioned into a (finite)

set of series labeled as granular and a remaining set of non-granular series. The granular

series coincide with their respective idiosyncratic shocks, which we call granular shocks.

Each non-granular series is modeled as a linear combination of the granular shocks and an

idiosyncratic non-granular shock. We work under the assumption that the researcher does

not know whether a given series belongs to the set of granulars nor the total number of

granular series.

1Our work is complementary to the large macroeconomic literature that uses input-output tables, or other
criteria such as firm size, to determine whether a certain series is granular, see among others Gabaix (2011),
Acemoglu et al. (2012), Di Giovanni and Levchenko (2012), Carvalho and Gabaix (2013), Di Giovanni,
Levchenko and Mejean (2014), Bernard, Jensen, Redding and Schott (2017), Pesaran and Yang (2016),
Gaubert and Itskhoki (2016) and Ghysels, Liuy and Raymondz (2017). Instead of relying on potentially
arbitrary criteria for granular selection we detect granular series based on the covariance properties of the
output data directly.
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Our granular detection methodology is based on the properties of the inverse covariance

matrix of the panel, hereafter concentration matrix, and is inspired by the literature on

graphical and network models in statistics (cf Lauritzen (1996), Pourahmadi (2013, Chapter

5)).2 As it is well known, the i, j element of the concentration matrix is proportional to the

partial correlation between series i and j. This motivates us to use as a natural measure of

the influence of series i in the panel the norm of the i-th column (or row) of the concentration

matrix. We show – under appropriate identification assumptions – that the column norms of

the concentration matrix that correspond to granular series are larger than the non-granular

ones. This implies that ranking series in the panel according to the value of the column

norm ranks the granular series higher than the non-granular ones. Building on this result we

show that the ratio among subsequent ordered column norms is maximized when comparing

the column norms of the last granular with the first non-granular series. This implies that

we can identify the number of granular series as the index that maximizes the sequential

column norm ratio. This criterion is analogous to the eigenvalue ratio criterion proposed by

Ahn and Horenstein (2013) for the selection of the number of factors.

In large panels of time series common factors typically explain a large portion of the total

variability, see for example Foerster, Sarte and Watson (2011). To this extent, we consider

an extension of the model in which the series in the panel are additionally influenced by

a set of common factors.3 We show – under fairly weak additional assumptions – that the

column norms of the concentration matrix maintain their detection properties in this setting.

Importantly, the results imply that in order to detect granulars the researcher does not need

to know the number of common factors.

We operationalize our identification results by estimating the column norms of the con-

centration matrix using the sample covariance matrix of the panel. We show that the column

norms of the inverse sample covariance matrix consistently estimate their population analog

2See also research by Meinshausen and Bühlmann (2006), Peng, Wang, Zhou and Zhu (2009), Diebold
and Yılmaz (2014) and Hautsch, Schaumburg and Schienle (2015).

3See Long and Plosser (1987) and Forni and Reichlin (1998) for earlier work on the trade-off between
idiosyncratic and aggregate shocks in macroeconomics.
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when the cross-sectional dimension and the number of time series observations are large.

This result allows us to establish that our column norm estimator leads to consistent rank-

ing and selection of the granular series. Our estimation results rely on distributional and

dependence assumptions made in the literature on large dimensional covariance estimation,

see for example Fan, Liao and Mincheva (2011).

Alternative approaches for granular detection can be based on principal components or

maximum likelihood methods. In brief, such methods are based on two steps: first they

estimate the space spanned by the granular shocks and the common factors simultaneously

and second such estimates are used to determine which series are granular, either by regres-

sion analysis or hypothesis testing.4 The success of these methods depends crucially on the

consistency of the first step, see for example the discussion in Onatski (2012). We show that

our one-step methods, that are based on the concentration matrix, compare favorable both

in theory and in finite samples.

A simulation study is carried out to assess the performance of our methodology in finite

samples. In the study we simulate a granular model with common factors and then use

our granular detection methodology to recover the granular series. Results show that the

granular detection methodology procedures performs satisfactorily in finite samples when

the strength of the granulars is sufficiently large.

We apply our methodology in two empirical studies. First, we consider detecting granular

series in a large panel of industrial production series that was previously considered in

Foerster et al. (2011). The documented granular series are mostly related to the automobile

industry and secondly to the production of aluminum, plastic and paper products. These

findings correspond with conjectures concerning granular sectors made in Acemoglu et al.

(2012). At the same time the set of granular series is different from the set that is detected

by conventional methods. The number of granulars ranges between two and five and is

4 Examples of such methods based on principal components analysis are developed in Stock and Watson
(2002a), Bai and Ng (2006), Parker and Sul (2016) and Siavash (2016). We provide a detailed comparison
in Section 4. We emphasize that none of these methods are developed for granular detection. Instead their
objective is to provide interpretation for the otherwise hard to pin down common factors in an approximate
factor model.
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increasing for more recent sampling periods. In the second study, we use our framework to

detect granulars in a panel of CDS spreads of Eurozone financial institutions over a sample

covering the 2007–2009 Great Financial Crisis as well as the 2010–2012 European Sovereign

Debt Crisis. Our methodology identifies as granulars two of the largest Eurozone periphery

banks that suffered severe distress in this period: Banco Santander and BBVA.

The remainder of this paper is organized as follows. Section 2 formalizes the granular

detection problem and discusses applications in macroeconomics and finance. Section 3

introduces our granular detection methodology and it establishes its large sample properties.

Section 4 compares our methodology to alternative methods based on principal components

analysis and maximum likelihood. Section 5 carries out a simulation study to assess the

finite sample performance of the proposed methodology. Section 6 presents the results of

two empirical studies and concluding remarks follow in Section 7.

2 The granular detection problem

In this section we formalize the granular detection problem and discuss its application for

empirical studies in economics and finance. Let yt be an n-dimensional time series observed

from period t “ 1 to T . We use yi,t to denote the i-th component of yt and yi:j,t with i ă j

to denote the pj ´ i ` 1q-dimensional time series containing the i-th to j-th components of

yt.

We assume that there are k (fixed) time series whose idiosyncratic shocks gt influence

the entire panel. We label these time series as granular and the k ˆ 1 vector of shocks gt as

granular shocks.5 For simplicity and without loss of generality we assume that the granular

series are the first k series in the panel. The other n ´ k time series are the non-granular

series whose idiosyncratic shocks are denoted by εt. All series in the panel are influenced

by a set of r common shocks, or factors, ft. The granular panel data model with common

5It is important to emphasize that in this work the term shock refers to reduced form innovations that
may have structural interpretation depending on further identification restrictions.
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factors is defined as

y1:k,t “ Λ1ft ` gt,

yk`1:n,t “ Λ2ft ` βgt ` εt,
(1)

where β is the pn´kqˆk granular loading matrix and Λ1 and Λ2 are the kˆr and pn´kqˆr

loading matrices for the common factors. Precise assumptions on the model are spelled out

in the following sections.

In this paper we work under the assumption that the data is generated according to

model (1) and that the researcher does not know (i) which series are granular and (ii) the

number of granular series k. Our objective is to introduce a methodology that allows to

consistently recover this information from the data.6 We point out that in our framework

the researcher does not need to know the number of common factors r in order to detect

granular series.7 Further, it is important to clarify that while model (1) has a factor model

representation, the methodology that we introduce in this paper is different from the standard

techniques that are adopted in the factor model literature, like maximum likelihood and

principal components. Specifically, our detection strategy is based on the partial correlation

properties of the panel. In Section 4 we compare our methodology to alternative methods.

We discuss two leading examples that illustrate how our framework can be used to for-

malize different problems in macroeconomics and finance. We return to these examples in

the empirical part of the paper.

6We notice that if the set of granular series is known, then model (1) is equivalent to a factor model with a
subset of the necessary identification restrictions fixed. See Stock and Watson (2016) for a detailed overview
of identification restrictions for (structural) factor models and note that – pending further identifying re-
strictions – the model can be viewed as a structural factor model or factor augmented vector autoregressive
model. Also, the specification in (1) implies that, conditional on the factors, the series in the panel have
a block triangular “Cholesky” structure in which granular series influence the non-granular ones but not
vice-versa.

7 However, notice that in order to carry out inference on the model knowledge of r is required. Existing
methods for factor selection introduced in the literature (e.g. Bai and Ng (2002) and Onatski (2010)) may
be applied for this task.
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2.1 Granular sectors in industrial production

The industrial production index in the United States is constructed as a weighted average

of production indices across many sectors. Yet the aggregate volatility of the index is large.

This implies that much of the variability in the index does not average out across different

sectors.

Two leading explanations for this phenomenon have been proposed, see Foerster et al.

(2011). First, aggregate shocks may exist that influence many sectors at the same time.

Examples include, monetary policy shocks, exchange rate shocks and technology shocks.

Second, sector specific idiosyncratic shocks may affect a large number of other sectors. For

example, this may be a consequence of the interconnectedness in the production network,

as in Acemoglu et al. (2012). In reality, it is reasonable to assume that a mixture of both

aggregate and idiosyncratic shocks influence aggregate volatility.

Model (1) can disentangle both explanations. When we define yt as the vector of sector

specific industrial production outcomes, model (1) implies that aggregate volatility is deter-

mined by the k granular shocks gt and the r aggregate shocks ft. Both have influence over

the entire panel. Our methodology may be used to determine which sectors are granular

and how many there are.

2.2 Granular institutions in the financial system

One of the lessons from the financial crisis is that the distress of few yet highly influential

financial entities may impair the entire system. The model of Acemoglu et al. (2015) formal-

izes this insight and shows that a highly interconnected financial system may be vulnerable

to the idiosyncratic shocks of the most interconnected institutions.

These ideas have motivated a large literature that aims at detecting and ranking institu-

tions in the financial system according to their “systemicness”, see for instance Adrian and

Brunnermeier (2016) and Brownlees and Engle (2017). A number of papers in this area have

proposed to measure systemic risk on the basis of network models like Billio, Getmansky,
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Lo and Pellizzon (2012) and Diebold and Yılmaz (2014). Broadly speaking, these contribu-

tions measure how systemic an institution is on the basis of the number and magnitude of

spillovers effects of that institution on the rest of the financial system. Despite the intuitive

appeal of these proposals, these papers do not introduce a model that precisely defines when

an institution is indeed systemic, and, consequently, they do not establish the properties of

their ranking/selection procedures.

We can cast the problem of detecting systemic institutions as yet another instance of a

granular detection problem. Following Diebold and Yılmaz (2014) we may define yt as a

vector of risk measures such as volatilities or credit default swap (CDS) spreads for a set of

financial institutions. Assuming that the panel is generated by model (1), the methodology

introduced in this work may be used detect granular/systemic institutions while controlling

for system wide sources of risk through the common factors.

3 Methodology

In this section we introduce the granular detection methodology. We first consider a simpli-

fied version of the granular panel data model (1) where there are no common factors. We

extend the identification results to allow for common factors in section 3.2 and section 3.3

discusses the estimation of the granular detection statistics based on large data panels.

3.1 Granular panel model

The granular panel data model without common factors is given by

y1:k,t “ gt,

yk`1:n,t “ βgt ` εt,
(2)

where y1:k,t denotes the k granular series, yk`1:n,t denotes the n´ k non-granular series, gt is

the k ˆ 1 vector of granular shocks, β is the pn ´ kq ˆ k granular loading matrix and εt is

the pn´ kq ˆ 1 vector of non-granular shocks.
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We propose a granular detection strategy that is based on the properties of the concen-

tration matrix of the panel. It is straightforward to check that, if gt and εt are uncorrelated,

the covariance matrix Σ “ Varpytq and the concentration matrix K “ Σ´1 of the panel are

given by

Σ “

»

—

–

Σg Σgβ
1

βΣg βΣgβ
1 `Σε

fi

ffi

fl

, K “

»

—

–

Σ´1
g ` β1Σ´1

ε β ´β1Σ´1
ε

´Σ´1
ε β Σ´1

ε

fi

ffi

fl

. (3)

As an example, assume that the norms of the columns of the β matrix are larger than one and

that Σε is the identity matrix. Then, it is straightforward to verify that the norms of the first

k columns (or rows) of the concentration matrix are larger than the norms of the last pn´kq

columns (or rows). Thus, the set of granular series can be identified simply by checking

which series are associated with the largest column (or row) norms of the concentration

matrix.

The example above suggests that if the elements of the granular loading matrix β are

sufficiently large relative to the covariance matrix of the non-granular shocks Σε, then the

column (or row) norms of the concentration matrix K can be used to identify the granular

series. This motivates us to base our granular detection methodology on the column norms

of the concentration matrix, that is

}Ki} for i “ 1, . . . , n, (4)

where Ki denotes the i-th column of K.8,9

Our detection strategy has a natural interpretation in terms of a partial correlation net-

work model, e.g. Pourahmadi (2013, Chapter 5). The partial correlation network represen-

tation of the panel consists of a graph defined over n vertices where each series corresponds

to a vertex and vertices i and j are connected by an edge if i and j are correlated given

8For an arbitrary vector v “ pv1, . . . , vnq
1 the norm }v} is defined as

a

řn
i“1 v

2
i .

9Notice that the decomposition (3) implies that the column norm is not the only function of the concen-
tration matrix that can be used for granular detection.
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the remaining series in the panel. The concentration matrix embeds the partial dependence

structure of the panel: Series i and j are partially uncorrelated if the pi, jq element of the

concentration matrix K is zero.10

Thus, heuristically, granular time series can be though of as hubs in a partial correlation

network representation of the panel and the granular detection parameter }Ki} can be though

as a parameter proportional to the number of connections, or degree, of each vertex. This

interpretation is illustrated in the top panel of Figure 1 where we show the partial correlation

network representation of the panel when n “ 6, k “ 1 and Σε is a diagonal matrix. The

granular series corresponds to the node with the largest number of connections.11

We impose a number of assumptions on the components of model (2) to establish the

identification results.12

Assumption 1.

(i) Epgtq “ 0 and Epgtg
1
tq “ Σg with Σg ą 0.

(ii) Epεtq “ 0 and Epεtε
1
tq “ Σε with Σε ą 0.

(iii) Epgtεi,tq “ 0 for all i, t.

(iv) We have that β1β Ñ Dβ as n Ñ 8, with µkpDβq ą 0 and µ1pDβq ă 8. Also, there

exists an integer N ą k such that for all n ą N the columns of β, denoted by βi for

i “ 1, . . . , k, satisfy

}βi} ą κβκε,

where κε and κβ are the condition numbers of the matrices Σε and β1β respectively.

10More precisely, we have that the partial correlation between series i and j ρij is related to the concen-
tration matrix K through the relation

ρij “ ´
Kij

a

KiiKjj

.

11We emphasize that in our framework standardizing the elements of K by rescaling, e.g. Kij{
a

KiiKjj ,
is inappropriate as this distorts the ordering of the column norms.

12The following notation is adopted. The k-th largest eigenvalue of an N ˆ N matrix B is denoted as
µkpBq, B ą 0 indicates that B is positive definite and B ľ 0 indicates that B is positive semi-definite.
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Assumptions piq, piiq and piiiq are standard and ensure that Σg and Σε are invertible,

and that gt and εi,t are uncorrelated, which is standard for regression models, e.g. White

(2000, Chapter 2). Assumption pivq is important as it characterizes the granular model.

First, we require β1β to be non-vanishing when n increases. Second, we require the norm

of the columns of the granular loading matrix to be larger than a threshold that depends

on the degree of collinearity among the non-granular shocks and the granular loadings. The

threshold is such that, the larger the degree of collinearity the larger the column norms of

the loading matrix β.

To understand exactly how weak the granular influence can be while still satisfying

assumption (iv) it is useful to consider an example. Let k “ 1 such that κβ “ 1. In this

setting the elements of β can be local to zero, in the sense that βi “ δ{
?
n with δ ą κε, and

still satisfy assumption (iv). A boundary case occurs when Σε is proportional to the identity

matrix which requires δ ą 1.

Assumption 1 is sufficient to rank the granular series higher than the non-granular ones

when ordering series on the basis of the column norms of the concentration matrix of yt.

The following lemma establishes the population ranking result formally.

Lemma 1. Let yt be generated by model (2). Under assumption 1 we have that K exists

and for n ą N we have that

}Ki} ą }Kj} for all i “ 1, . . . , k, and j “ k ` 1, . . . , n.

All proofs are collected in the appendix.

In order to select the number of granular time series in the panel we use a strategy

that is inspired by the eigenvalue ratio criterion proposed by Ahn and Horenstein (2013)

for the selection of the number of factors. Let Kpsq denote the s–th largest column of the

concentration matrix.13 Consider the ratio between two subsequent ordered column norms,

13Columns are ordered on the basis of their norms.
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that is

}Kpsq} { }Kps`1q} , (5)

for s “ 1, ..., n ´ 1. Heuristically, the column norms are large for granular series and small

otherwise. Thus, the ratio ought to be largest when comparing the last column norm corre-

sponding to the granular series with the first column norm corresponding to the non-granular

series. This suggests that the sequential column norm ratio ought to be maximized when s

is equal to k. In order to identify the number of granulars using the sequential column norm

ratio we need strengthen assumption 1-pivq.

(iv*) We have that β1β Ñ Dβ as n Ñ 8, with µkpDβq ą 0 and µ1pDβq ă 8. Also, there

exists an integer N ą k such that for all n ą N the columns of β, denoted by βi for

i “ 1, . . . , k, satisfy

}βi} ą κ2βκε

ˆ

κε `
µ1pΣεq

µkpΣgq

˙

where κε and κβ are the condition numbers of the matrices Σε and β1β respectively.

We emphasize that in practical situations the smallest eigenvalue of the granular vari-

ance µkpΣgq is likely to be larger than the smallest eigenvalue of the non-granular variance

µn´kpΣεq in which case the bound can be simplified to }βi} ą 2κ2βκ
2
ε . The interpretation

of the bound is the similar as for assumption 1-pivq. Given the stronger condition on the

loading matrix we obtain the following lemma.

Lemma 2. Let yt be generated by model (2) under assumption 1 (i)-(iii) and (iv*). Then

we have for n ą N , when k ą 0 that

k “ arg max
s“1,...,n´1

}Kpsq} { }Kps`1q}.

Note that jointly lemmas 1 and 2 are sufficient for the identification of the set of granular

series.

Clearly, the column norm ratio in equation (5) is not the only function of the concen-

tration matrix K that identifies k. In fact, several other functions of the elements of the
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concentration matrix can be used to identify the number of granular series. For instance,

one could consider appropriate variants of selection criteria introduced in the factor model

literature, see, among others, the criteria in Onatski (2009) and Cavicchioli, Forni, Lippi

and Zaffaroni (2016).

We briefly compare our assumptions and identification results to the factor model liter-

ature. Two main differences can be noted in our setup. First, assumptions pivq/piv˚q reflect

that the granular loadings are not orthogonal to each other. Second, it is important to stress

that assumptions pivq/piv˚q are satisfied when we would impose the stronger assumption

that the loadings average out proportional to n and that the largest eigenvalue of Σε is

bounded, e.g. n´αβ1β Ñ Dβ for α ą 0 and µ1pΣεq ă 8.14 Instead, we impose lower bounds

on the norms of the columns of the granular loading matrix that are sufficient to carry out

granular detection.

It is important to stress that in our framework granular series do not necessarily maximize

the explained variance in the panel. The granular series are merely those that have a non-

vanishing influence in the cross-section. Last, we point out that assumptions pivq/piv˚q are

comparable to weak factor assumptions considered in Onatski (2009), Onatski (2010) and

Onatski (2012). See also Pesaran (2012) and Chudik, Pesaran and Tosetti (2011) for more

discussion on the distinction between weak and strong factors.

3.2 Granular panel model with common factors

We now consider the general version of the granular panel data model (2) in which the series

are influenced by a set of common factors. The complete granular panel data model is given

by

y1:k,t “ Λ1ft ` gt

yk`1:n,t “ Λ2ft ` βgt ` εt,
(6)

14Such assumptions are common in the factor model literature, see for example Bai and Ng (2002), Bai
(2003), Ahn and Horenstein (2013)
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where ft is the r ˆ 1 vector of common dynamic factors and Λ1 and Λ2 are the k ˆ r and

pn´ kqˆ r loadings matrices. All other components are the same as in the previous section.

To identify the granular series in this setting we make the following additional assump-

tions.

Assumption 2.

(i) Epftq “ 0 and Epftf
1
tq “ Σf with Σf ą 0.

(ii) Epftg
1
tq “ Σfg for all t and Σg ´ΣgfΣ

´1
f Σfg ą 0, where Σgf “ Σ1

fg.

(iii) Epftεi,tq “ 0 for all i, t.

(iv) Let Λ “ pΛ1
1,Λ

1
2q
1 and Λ1Λ Ñ Dλ as nÑ 8, with µrpDλq ą 0 and µ1pDλq ă 8.

Assumption piq is standard. Assumption piiq allows for contemporaneous correlation

between the factors and the granular shocks. The correlation is restricted by requiring

the Schur complement Σg ´ ΣgfΣ
´1
f Σfg to be positive definite. Assumptions Σf ą 0 and

Σg ´ΣgfΣ
´1
f Σfg ą 0 together are the same as the requirement that the variance of pf 1t , g

1
tq
1

is positive definite, see Horn and Johnson (2013, pp. 25). This allows, importantly, for

feedback effects between common factors and granular series. Assumption piiiq imposes that

the factors, similar as the granular shocks, are uncorrelated with the non-granular shocks.

Assumption pivq imposes the that factors are non-vanishing when n increases. Overall,

this set of additional assumptions for the factors corresponds to the weak factor model

assumptions considered in Onatski (2009) and Onatski (2012).15

We provide lemmas that extend the identification results established in the previous

section for the baseline granular model to the case of a granular model with common factors.

Lemma 3. Let yt be generated by model (6) under assumptions 1 (i)–(iv) and 2 (i)–(iv).

Then K “ Σ´1, where Σ “ Varpytq, exists and we have for n ą N that

}Ki} ą }Kj} for all i “ 1, . . . , k, and j “ k ` 1, . . . , n .

15We emphasize that our identification lemmas are also applicable for the case where the loadings increase
proportional to n, e.g. n´αΛ1Λ Ñ Dλ as nÑ8 for α ě 0, with µrpDλq ą 0 and µ1pDλq ă 8.
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Lemma 4. Let yt be generated by model (6) under assumptions 1 (i)–(iii) and (iv*) and 2

(i)–(iv). Then we have for for n ą N and k ą 0 that

k “ arg max
s“1,...,n´1

}Kpsq} { }Kps`1q} .

It is important to emphasize that in our framework the presence of factors does not

alter the detection properties of the column norms of the concentration matrix. It is also

important to emphasize the results imply that it is not required to know the number of

factors r to carry out granular detection.

To intuitively understand why granular detection based on the concentration matrix is

unaffected by the inclusion of additional common factors we show in the lower panel of

Figure 1 the concentration matrix of a simple factor model: the case where n “ 6, r “ 1,

k “ 0 and Σε is equal to the identity matrix. We find that the concentration matrix for this

model is full and the partial correlation network implies that each series is connected to all

other series. This implies that the column norms of the concentration matrix are roughly

equal to each other and thus when we augment the granular model with common factors the

concentration matrix of the complete model still has larger column norms for the granular

series.16

3.3 Estimation

We estimate the column norms of the concentration matrix }Ki} for each of the n series in

the panel using a sample of T observations from the process yt. Let Σ̂ denote the sample

covariance matrix T´1
řT
t“1 yty

1
t and let K̂ denote the sample concentration matrix Σ̂´1. A

natural estimator of the granular statistic of series i is the norm of the i-th column of the

sample concentration matrix, that is }K̂i}.

We need to impose appropriate dependence and distributional assumptions on yt in order

16Heuristically, imagine placing the concentration matrices of the top and lower panels of Figure 1 on top
of each other. The granular series will remain to have the largest connections. In other words the inclusion
of the common factors implies merely a low rank perturbation of the original variance matrix which has an
equal influence over all the columns of the concentration matrix.
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to establish the large sample properties of our estimator. Let F0
´8 and F8

s denote the σ-

algebras generated by tys : ´8 ď s ď 0u and tys : t ď s ď 8u, respectively. We define the

α-mixing coefficients of the yt process as

αptq “ sup
APF0

´8,BPF8t
|P pAqP pBq ´ P pABq| .

We make the following assumptions.

Assumption 3. Let yt be an n-dimensional time series process.

(i) tytu is stationary and ergodic.

(ii) tytu is α-mixing. There exists positive constants γ1 and C1 such that for all positive

integers t we have that the α-mixing coefficients satisfy

αptq ď expp´C1t
´γ1q .

(iii) There exists positive constants γ2 and C2 such that for any s ą 0 and any i “ 1, ..., n

Prp|yi,t| ą sq ď expp1´ ps{C2q
γ2q .

(iv) Let γ be defined as γ´1 “ γ´11 ` 2γ´12 . Then, γ ă 1.

These are similar to the dependence and distributional assumptions made in Fan et al.

(2011). In particular, assumption piiq states that yt is strongly mixing and assumption piiiq

states that the marginal distributions of the components of yt have generalized-exponential

tails. The parameter γ defined in assumption pivq is a key quantity in this work and measures

the degree of dependence and tail thickness of the data: The smaller the parameter the more

dependent and thick tailed the data are.

These assumptions allow to apply a Bernstein-type inequality for mixing processes derived

in Merlevede, Peligrad and Rio (2011), which is one of the main tools needed to establish
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the results of this section. Notice that we directly impose the assumptions on the observed

series yt instead of on ft, gt and εt separately. This is only for convenience and the results of

this section may also be obtained by assuming that ft, gt and εt satisfy assumption 3. We

establish the following result concerning the sample covariance matrix.

Theorem 1. Let yt be generated by model (6) under assumptions 1, 2 and 3. Suppose

n Ñ 8 and T “ Opn2{γ´1q. Then, for any η ą 0 there exists positive constants C1, . . . , C5

such that

(i) µnpΣq ´ C1

a

n
T
ď µnpΣ̂q ď µ1pΣ̂q ď µ1pΣq ` C2

a

n
T

(ii)
›

›

›
Σ̂´Σ

›

›

›
ď C3

a

n
T

(iii)
›

›

›
K̂´K

›

›

›
ď C4

a

n
T

(iv) }K̂i} ´ }Ki} ď C5

a

n
T

at least with probability 1´Opn´ηq.

Theorem 1 piq establishes a Bai-Yin-type law (Bai and Yin (1993)) for the largest

and smallest eigenvalues of the sample covariance matrix of strongly mixing data with

generalized-exponential tails. The theorem states that the eigenvalues of the sample co-

variance matrix are bounded away from zero and infinity when n and T are large. The

proof of the theorem follows the arguments laid out in Vershynin (2012), with appropriate

modifications for the present setting. Let us emphasize that the theorem extends the results

of Vershynin (2012) for a set of assumptions that are more convenient for economic and

financial applications. Theorem 1 part piq facilitates the derivation of the subsequent parts

piiq to pivq.

We use Theorem 1 to establish two important results concerning the selection properties

of the granular statistic }K̂i}. First, in light of Lemma 3, it is natural to rank the series in

the panel on the basis of the value of the granular statistic }K̂i}. Define the event

ER “
!

}K̂i} ą }K̂j} for all i “ 1, ..., k and j “ k ` 1, ..., n
)

, (7)
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that is the event that the granular statistics of the granular series are larger than the ones

of the non-granular series. Then, the following corollary establishes that when n and T are

large the probability of the event ER approaches one.

Corollary 1. Let yt be generated by model (6) under assumptions 1, 2 and 3. Consider the

event ER defined in equation (7). Suppose that n Ñ 8 and T “ Opn2{γ´1q. Then, for any

η ą 0

PpERq ě 1´Opn´ηq .

In other words, the corollary shows that the granular statistic consistently ranks the

granular series ahead of the non-granular ones. Second, in light of Lemma 4, it is natural to

estimate the number of granular series by

k̂ “ arg max
s“1,...,n´1

}K̂psq}{}K̂ps`1q} , (8)

where K̂psq denotes the s–th sample concentration matrix column when the columns are

ordered on the basis of their norm in decreasing order. Define the event

ES “
!

k̂ “ k
)

, (9)

that is the event that the correct numbers of granular series are selected. The following

corollary establishes that when n and T are large the probability of the event ES approaches

one.

Corollary 2. Let yt be generated by model (6) under assumptions 1 piq-piiiq and piv˚q, 2 and

3. Consider the event ES defined in equation (9). Suppose that n Ñ 8 and T “ Opn2{γ´1q.

Then, for any η ą 0

PpESq ě 1´Opn´ηq .

A number of additional comments are in order. For the sample concentration matrix

K̂ to be well defined we require n ď T . This can possibly be circumvented by employing
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some regularized estimator for K. See Fan, Liao and Liu (2016) for an overview of the rele-

vant literature. However, regularized estimators would typically require to make additional

assumptions on the model specification (for instance, sparsity assumptions). Further, it is

unclear what the properties of such estimators are in the presence of an unknown number of

common factors. Therefore we leave this extension for further research. Finally, it is impor-

tant to highlight that the results of this section can also be obtained by making assumptions

similar to those in Stock and Watson (2002a), Bai and Ng (2002) and Doz, Giannone and

Reichlin (2012). Such results rely on weaker distributional assumptions than the ones spelled

out in assumption 3. However they rely on stronger dependence assumptions.

4 Comparison to other methods

In this section we compare our granular detection methodology with methods based on

principal components and maximum likelihood, see Stock and Watson (2002b), Bai and Ng

(2006), Parker and Sul (2016), Doz et al. (2012), Bai and Li (2016) and Jungbacker and

Koopman (2015). We emphasize that none of these methods are specifically designed to

detect granular series as they are defined in our setting. However, given that our model has

a factor model representation it is not unreasonable to consider such methods for granular

detection. It is important to note that none of the alternative methods exploit the partial

correlation structure that is imposed by the granular model. The next sections explain in

detail the strength and weakness of these alternative approaches.

4.1 Principal components based methods

Stock and Watson (2002b), Bai and Ng (2006) and Parker and Sul (2016) propose methods

based on principal components analysis to give meaning to the otherwise hard to interpret

estimates for common factors. They estimate the factors in an approximate factor model

using principal components and subsequently use regression analysis to find the series that

correlate most with the factors.
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Upon first sight, it seems that these methods could be adopted to detect granular series

as well and it is true that in some settings these methods will yield the same set of granular

series when compared to detection based on the column norms. However, there are several

important scenarios in which a principal components based method will not be able to detect

the granular series.

First, we outline some obvious differences. Principal components based methods are

two-step procedures whereas our column norm method requires only a single step. Also, any

principal components method amounts to detecting the series that explain the most variance

in the panel. This follows as the common factors from principal components are estimated

to maximize the explained variance. Our definition of granular series, as formulated in

assumption 1, does not necessarily imply those series that explain the most variance.

Second, it follows that principal components based methods perform well when the granu-

lars explain a significant portion of the variance. At the same time, when the granular shocks

have low signal-to-noise ratios principal components methods have low detection power. A

simple example of this is the following. Consider the baseline granular model (2) with k “ 1

and the following parametrization

y1,t “ gt Varpgtq “ 1

y2:n,t “ δ?
n´1

ιn´1gt ` εt Varpεtq “ In´1c,

where ιn is an nˆ 1 vector of ones and δ and c are constants. For this model the condition

number of Σε is given by κε “ 1 and the identification assumption 1-(iv) is satisfied when

δ ą 1. In contrast, the detection power of the principal components method depends on the

value of c. When c is large the first principal component will not correlate with the granular

series.17 Moreover, estimators for the number of factors, such as those developed in Bai and

Ng (2002) and Ahn and Horenstein (2013) will not detect any factors.

This problem becomes more prominent when common factors ft are also present in the

17We refer to Onatski (2012) for a detailed discussion regarding the behavior of the principal components
estimates in the weak factor setting.
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model. When these explain a lot of variance the principal components method primarily

detects these and the subsequent regressions, that aim to find which series correlate most

with the estimated factors, will detect also those series that load on the common factors.

Third, recovering the number of granular series is difficult using any principal components

based method. To see this consider again the simple example above, but now for the case

where c is small relative to δ. Clearly for large n, T the R2 from the regression of the first

principal component on the first series will tend to one. However, for small c the R2’s from

the other regressions also become arbitrarily close to one. This makes selecting the number

of granular series difficult, because the same principal component can also be generated by

multiple correlated granular series.

More specifically, principal components based methods cannot distinguish between: (i) a

model with one granular series that implies one large eigenvalue in Σ and (ii) a model with

k ą 1 correlated granular series that also implies one large eigenvalue in Σ. The column

norm statistics are able to distinguish between these two scenarios with ease.

These observations are verified in the Monte Carlo study in the next section. There

we confirm that the detection power of the principal components based methods does not

perform satisfactorily under weak factor settings and when there are additional common

factors in the model. Also, and of utmost importance, in the empirical section we show that

the documented rankings of granular series can be vastly different for principal components

and column norm methods.

4.2 Likelihood based methods

Doz et al. (2012), Bai and Li (2016) and Jungbacker and Koopman (2015) show that, if the

granular series are known, the parameters of the granular model (6) can be estimated con-

sistently under mild assumptions using the maximum likelihood method. Hence, a straight-

forward method for granular detection would be to consider the granular model for different

orderings of the variables in yt and to subsequently compare appropriate goodness-of-fit

statistics across the different orderings.
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To outline the practical difficulty with this approach notice that for a given k this would

involve estimating
`

n
k

˘

possible models. For k “ 1 or k “ 2 this approach is quite feasible.

But for n “ 100 and k “ 3 this already involves estimating 161700 different models making

this a computationally prohibitive task, see also Elliott, Gargano and Timmermann (2013).

Potentially smart search algorithms could be considered but we do not explore this route

further. Also, determining the number of granular series is difficult using such approach

as different combinations of granular series and common factors can lead to observationally

equivalent goodness-of-fit statistics.

Alternatively, it is possible to think about granular detection as testing for zero mea-

surement error. This approach is explored for small scale models in Kolenikov and Bollen

(2012) who build on earlier work of Heywood (1931).18 To outline the difficulties with this

approach for large panels consider the factor representation of the granular panel model

yt “ Lht ` ζt

where ht “ pf 1t , g
1
tq
1. A likelihood based detection method proceeds by first estimating L

and the variance matrix of ζt, say Σζ , and in the second step testing whether the diagonal

elements of Σζ are zero.

The main technical difficulty of such approach is that one needs to solve a multiple

hypothesis testing problem on the boundary of the parameter space. In particular, under

the null of zero measurement error the assumptions for parameter consistency in Doz et al.

(2012) and Bai and Li (2012) are violated and the limiting distribution is unknown. We

conclude that detecting granular series in a computationally efficient manner for large panels

using likelihood based methods is currently infeasible.

18Note that the context of these works is completely different to the setting in which we work.
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5 Simulation Study

We perform a simulation study to assess the finite sample performance of our proposed

methodology. We evaluate the performance of the detection methods based on the granular

statistic }K̂i} under different data generating processes. The outcome criteria that we are

interested in are as follows. First, we evaluate the fraction of the true granular series that

correspond to the k largest granular statistics and second we consider the frequency by

which we correctly select the number of granular series. We compare the performance of our

granular statistics to other methods that are based on principal components analysis.

5.1 Simulation design

We generate data panels from the granular panel data model with common factors given in

equation (6). We consider data panels with dimensions n “ 50, 100 and T “ 200, 400. The

number of granular series that we include is equal to k “ 3, 5 and the number of common

factors that we include is equal to r “ 0, 3, 5.

The granular shocks and common factors follow the vector autoregressive process

»

—

–

ft

gt

fi

ffi

fl

“

»

—

–

Φff Φfg

Φgf Φgg

fi

ffi

fl

»

—

–

ft´1

gt´1

fi

ffi

fl

`

»

—

–

ηf,t

ηg,t

fi

ffi

fl

. (10)

The variance matrix Ση “ Varpηf,t, ηg,tq has ones on the main diagonal and correlation

coefficient cη on the off-diagonal elements. We note that cη captures the contemporaneous

correlation among the granular shocks and the common factor shocks. We vary its value by

taking cη “ 0, 0.5. The elements for the diagonal of Φ “ rΦff ,Φfg : Φgf ,Φggs are drawn

uniformly for each panel over the range (0.5,0.95). The off-diagonal elements are drawn from

Np0, 0.1q. The transformations of Ansley and Kohn (1986) are applied to ensure that (10)

admits a stationary vector autoregressive process.
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We generate the non-granular idiosyncratic shocks from

et “ Γet´1 ` ηe,t ηe,t „ NID p0, In´k ´ ΓΓ1q ,

where Γ is diagonal with elements Γii „ Up0.5, 0.95q and Upa, bq indicates the uniform

distribution over the range pa, bq. The specification ensures that et follows a stationary

vector autoregressive process with variance In´k. From this we generate εt “ Σ
1{2
ε et such

that Varpεtq “ Σε. For the latter we consider (a) diagonal, (b) banded and (c) sparse

structures. For the diagonal structure we have Σ
1{2
ε,i,j „ Up0.5, 1.5q for all i “ j and zero else.

For the banded structure we have Σε,i,j „ Up0.5, 1.5q if i “ j, Σ
1{2
ε,i,j “ cε with cε “ 0.2 if i ą j

and i ´ j ă 10 and zero else. Finally, the sparse structure is given by Σ
1{2
ε,i,j „ Up0.5, 1.5q

if i “ j, if i ą j Σ
1{2
ε,i,j „ Up´0.5, 0.5q with probability 0.2{r

?
n´ k logpn ´ kqs and zero

else, and if i ă j the value is zero. Notice that this implies that for each case Σ
1{2
ε is lower

triangular and Σε “ Σ
1{2
ε Σ

1{21

ε . The banded structure is similar as in Stock and Watson

(2002a) and Bai and Ng (2002) whereas the sparse structure is similar as considered in Fan

et al. (2011).

The influence of the granular shocks is determined by β. We vary the variance of the

granular loadings in order to change the magnitude of their effect. In particular, we have

βi,j „ NIDp0, σ2
b q, where σ2

b “ 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1. The loadings of the common

factors are drawn from a standard normal distribution. Small values of σ2
b reflect the scenario

where the common factors explain more variance in the observations when compared to the

granular shocks. Such settings are argued to be empirically relevant in for example Foerster

et al. (2011).

In total we have six dimensions along which we vary the granular panel data model: (i)

panel dimensions, (ii) number of granulars, (iii) number of factors, (iv) effect of the granulars,

(v) correlation among the granulars and factors and (vi) specification of the non-granular

shocks. For each possible combination across these six dimension we draw S “ 1000 different

data panels.
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5.2 Granular detection results

We begin by studying the finite sample properties of our ranking methods. Corollaries 1

and 2, that are based on the consistency of the column norms, imply that we can correctly

identify the granular series when n and T become large. For each simulated panel we rank

the series in the panel according to the column norms of the concentration matrix, and then

we select the number of granulars using the column ratio statistic given in equation (8).

When selecting the number of granulars, we set the maximum number of possible granular

series to n{2, see also Ahn and Horenstein (2013).

We summarize the performance of the detection procedure by reporting the average

proportion of correctly ranked granular series and the proportion of correctly selected number

of granulars. Given the large number of simulations considered, we only discuss the case

where the non-granular errors have the banded and sparse designs. These cases are the most

relevant for empirical applications. We only report the cases where the correlation between

the granular shocks and the common factors is fixed at cη “ 0.5. Changing this coefficient

has no effect on the detection results based on the column norm statistic. Finally, we only

show r “ 0, 5 and leave out the intermediate case where r “ 3.

We present the results for the average proportion of correctly ranked granular series in

Table 1 and the proportions of correctly selected number of granulars in Table 2. The tables

reveal some interesting patterns.

First, the key parameter for which the outcomes fluctuate the most is the magnitude

of the granular loadings as captured by the standard deviation coefficients σ2
b . When this

variance is close to zero this implies that the granular loadings are close to zero and by result

ranking the granulars correctly becomes more challenging. When the variance increases the

percentage of correctly ranked granulars increases rapidly. Notice that when σ2
b “ 0.1, which

still implies that the coefficients are on average local-to-zero for n “ 100 the detection rate is

close to one for most cases. Hence for reasonably connected granular series we should expect

to detect them easily. For estimating the correct number of granular series a similar pattern

is detected. However, as obtaining the correct number of granulars requires a stronger
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identification condition, see Lemma 2, we see that the percentages are overall lower for this

statistic.

Second, the panel dimensions imply that larger panels n, T improve the detection results.

Both increases in n and T improve the ranking and the estimation of the number of granular

series. In line with our theoretical results the increases in accuracy are larger when increasing

T when compared to n.

Third, differences between k “ 3 and k “ 5 granular series are small. Also, the perfor-

mance of the methodology is only mildly affected by the numbers of factors in the specifi-

cation. Only, the selection of the number of granular series suffers slightly when including

additional common factors. This confirms the identification results derived in Lemmas 3 and

4.

Clearly, the key parameter of our simulation setting is the standard deviation of granular

standard deviation coefficients σ2
b . We investigate its interaction with the amount of cross-

sectional correlation in the non-granular shocks. These correlations are captured by cε in

our simulation design for banded errors. In Tables 1 and 2 this value was fixed at 0.2 and

we now vary it between 0 and 0.9. The identification lemmas 1 and 3 suggests that the

interaction between σ2
β and cε is crucial.

Figure 2 reports the plots of the proportion of correctly ranked granulars and the propor-

tion of correct selection of the number of granulars as a function of the granular strength (as

measured by σβ) and the non-granular shocks dependence (as measured by cε). The plots

show that when the degree of dependence among non-granular shocks is weak, our granular

detection methodology performs satisfactorily even when the strength of the granulars is

modest. On the other hand, when the degree of dependence among non-granular shocks is

strong our procedure requires the strength of the granular shocks to be much larger to detect

granulars with sufficiently high probability.

Overall, the simulation study conveys that the granular detection methodology proce-

dures performs satisfactorily in finite samples provided that the strength of the granulars is

sufficiently large.
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5.2.1 Comparison to Factor Model Based Methods

In this section we compare the performance of our methods with granular identification

procedures that are based on principal components analysis, see for example Stock and

Watson (2002b), Bai and Ng (2006) and Parker and Sul (2016).

Here we consider a straightforward implementation of such methods: (i) estimate the

number of factors using Bai and Ng (2002), (ii) regress each time series on the common

factors and (iii) rank according to the R2 of this regression. For estimating the number of

factors we use the IC2 criteria from Bai and Ng (2002) which gave slightly better results

when compared to the eigenvalue ratio estimator from Ahn and Horenstein (2013). Rankings

based on the R2 are commonly reported in the factor model literature (e.g. Stock and Watson

(2002b) and Foerster et al. (2011)) and we emphasize that they are not designed for granular

detection but for interpreting the common factors. Nevertheless, it is interesting to compare

our methodology to this procedure.

In Table 3 we show the ratios between the percentage of correctly ranked granulars

based on the R2’s and the column norm statistic. We find that in all cases the column norm

statistic determines a better ranking when compared to the R2’s. On average – across all

specifications – we find that the column norm ranking method performs 25% better. The

differences are large for small values of σ2
b and tend to zero when the influence of the granular

series becomes larger. This is in line with the theoretical discussion in Section 4 where we

illustrated that the factor based methods become difficult for weak granular series, see also

Onatski (2012).

A comparison for the granular selection statistic k̂, as specified in (8), is omitted as it

is unclear how to choose the number of granular series based on the principal components

method, see the discussion in Section 4. Finally, we comment that more refined principal

components based procedures, such as Parker and Sul (2016), did not lead to different results.

This follows as their methods rely on the same initial R2 ranking.
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6 Empirical Applications

6.1 Granular series in US industrial production

We study the presence of granular series in US industrial production, see also Forni and

Reichlin (1998), Foerster et al. (2011), Pesaran and Yang (2016), Siavash (2016) and Atalay

(2017). We consider a panel of sector specific industrial production monthly growth rates

from 1972 until 2007.19 The panel covers n “ 138 different sectors for a total of T “ 431 time

periods. The panel is standardized such that each series has mean zero and unit variance.

A preliminary factor analysis conveys evidence of factors in the panel. Using the IC2

criteria proposed in Bai and Ng (2002) we find that there is one common factor in the panel.

This is confirmed by the estimators proposed in Onatski (2010) and Ahn and Horenstein

(2013) (see also Foerster et al. (2011) who find one or two factors for a similar panel).

We apply our methodology to detect the set of granular time series. We investigate the

granular set for different sampling periods and compare our results to principal components

based methods. Finally, we adopt standard methods to study the economic importance of

the granular series.

6.1.1 Granular detection results

In the top panel of Figure 3 we show the ordered column norms }K̂i} of the concentration

matrix. We find that there are two series that are clearly distinct from the others: “Motor

Vehicle Parts” and “Automobiles and Light Duty Motor Vehicles”. Both sectors fall within

the transportation, or automobile industry which was signaled as a potentially granular

industry during the financial crises by Alan R. Mulally, the chief executive of Ford, see

Mulally (2008) and the discussion in Acemoglu et al. (2012).

The importance of the automobile industry is further confirmed by a more detailed in-

spection of the granular rankings which we report in the top panel of Table 4. We find

that in the top ten there are four series directly related to the automobile industry. Other

19The data is taken from Mark Watson’s website: https://www.princeton.edu/ mwatson/
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potentially granular sectors that we find are related to aluminum, plastics and paper prod-

ucts. We emphasize that after the first six or seven sectors the differences in the column

norms become small. In the bottom panel of Figure 3 we show the column norm ratios. The

estimator k̂, given in equation 8, indicates that there are two granular series in our panel.

In summary, our granular detection methodology identifies a model with two granular

series: “Motor Vehicle Parts” and “Automobiles and Light Duty Motor Vehicles”.

6.1.2 Time dependence in granular detection

Next, we consider the stability of the granular detection method for different sampling pe-

riods. In particular, we follow Foerster et al. (2011) and split the sample into two different

periods, 1972-1983 and 1984-2007, and repeat the previous analysis.

We report the rankings over the two sub-samples in the middle and bottom panels of Table

4. For the 1972-1983 period we still find “Motor Vehicle Parts” as the top granular sector.

That said, for this sampling period the top ten granular series displays more heterogeneity

and the role of the automobile industry is not as prominent as in the full sample.

For the 1984-2007 sampling period we find a similar ranking as for the full sample. In

particular, nine of the top ten series are also in the top twenty for the full sample and the

top five series are practically unchanged. The automobile industry is even more visible in

this sub-sample with half of the top ten granular series being directly related. The estimator

for k now indicates that there are five granular series in the model. This is in-line with

the finding in Foerster et al. (2011) who find that idiosyncratic shocks have become more

important in recent years.

6.1.3 Comparison to principal components based methods

We compare our granular detection method to methods based on principal components. Like

in the simulation study we consider a ranking based on the R2 of the regression of the ith

series on the principal components. A similar ranking is also presented in Foerster et al.
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(2011) and we follow their construction by using two principal components.20

In Table 5 we show the selected granular series that result from the R2 ranking (over the

full sample as well as the two sub-periods). It is interesting to point out that in this case find

a quite different set of granular series and in particular automobile industry related sectors

do not show up in the rankings. A possible explanation for this is that the sectors related to

the automobile industry do not explain much of the variance in the panel, hence principal

components have difficulty detecting these, see the discussion in Section 4.

6.1.4 Influence of the granular series

We study the economic importance of the granular series using standard methods from

the empirical macroeconomic literature, see Stock and Watson (2016). We take the set of

granular series as given. In order to carry out the analysis we require estimates for the

parameters of model (6). We model the granular shocks and common factors by a vector

autoregressive process of order one, see equation (10), and rely on likelihood based methods

to estimate the model parameters. Since the granular series are highly correlated we consider

the model with only one granular series: “Motor Vehicle Parts”.21

While assumptions 1 and 2 are sufficient to identify the granular series using the column

norms, they are not sufficient to identify the model parameters. For this we need to impose

additional restrictions. First, the granular shock gt is turned into an observed factor by

restricting Λ1 “ 0. This allows the model for the non-granular series to be written as a

factor-augmented vector autoregressive model, see Bernanke, Boivin and Eliasz (2005) and

Bai, Li and Lu (2016). Following Bai et al. (2016, Proposition 1) we impose the necessary

r2 ` kr additional restrictions on the model parameters. In particular, we normalize the

shocks to the common factor to have unit variance, we impose that Λ1
2Σ

´1
ε Λ2 is diagonal

and we assume that the granular shocks and common factor shocks are uncorrelated. This set

20The differences with Foerster et al. (2011) stem from the fact that we use monthly growth rates whereas
they consider quarterly growth rates.

21The unconditional correlation between the granular series “Motor Vehicle Parts” and “Automobiles and
Light Duty Motor Vehicles” is 0.857. The results for a model with “Automobiles and Light Duty Motor
Vehicles” as granular series are similar and therefore not presented. Alternatively, one could model both
granular series with a scalar shock ηg,t.
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of identification restrictions is considered in Bai et al. (2016, Restriction IRa). We consider

the model with r “ 1 common factors.22

With these identification restrictions in place we estimate the model parameters by max-

imum likelihood where the likelihood is constructed from the output of the Kalman filter.

Details are given in Durbin and Koopman (2012, Chapter 4 and 7). The impulse responses

from a one standard deviation shock to the granular series are computed as outlined in Stock

and Watson (2016, Section 5). We compute the responses of all non-granular series in the

panel and compute standard errors using the parametric bootstrap described in Stock and

Watson (2016, Section 5.1.3). The impulse responses are interpretable as a shock to the

automobile, or transportation, industry while controlling for general economic conditions

via the common factor.

In the left panels of Figure 5 we show the impulse responses for several series which

are chosen based on the magnitude of the loadings β. In particular, we show the impulse

response for the series that correspond to the 14th largest βi (top 10%), the median βi and

the 124th largest βi (bottom 10%). We find that in general the responses are short lived,

and that within half a year the influence on the growth rates has vanished. This is due to the

fact that the growth rates of industrial production have little persistence. Nevertheless, we

find that the impulse response that corresponds to the largest 14th largest βi is significantly

positive and remain so for 4 months ahead. In total 65 out of 136 non-granular series have

a significant positive response for the initial time period. This increases to 111 series for

one-period ahead after which it decays gradually. For comparison purposes, in the right

panels we also plot the responses of the same series to a shock to the common factor. It

is clear that the influence of the common factor is overall much larger. For most series the

magnitude of the impulse response for the common factor is more than twice as large on

impact.

22The choice for r “ 1 is motivated by our preliminary factor analysis mentioned above. In particular, the
IC2 criteria of Bai and Ng (2002) and the eigenvalue ratio criteria ofAhn and Horenstein (2013) estimated
r “ 1. We comment that the model with r “ 2 common factors gave nearly identical results for the granular
impulse responses.
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Next, having established that the granular series has a positive influence over a non-

negligible part of the panel we investigate which sectors are most influenced. For this we

plot in Figure 6 the impulse responses per sector level where the specific impulse response

is chosen based on the median estimate of βi within each sector. We find that the granular

influence is highest for various textile sectors, wood products, furniture and fabricated metal

products. These sectors rely heavily on transportation for both receiving intermediate goods

and delivering final products. Interestingly, food, mining and electric and gas utilities are

all not influenced by the granular shocks. These more primary consumption goods are less

influenced by shocks to the automobile industry.

We conclude that there is evidence for granular influence in US industrial production.

The influence comes through the automobile, or transportation, industry and has significant

effects on several industries that depend on it.

6.2 Granular detection in the Eurozone financial system

We study the presence of granular series in a CDS spreads panel of Eurozone financial

institutions. More precisely, we consider a panel of daily growth rates of CDS spreads for a

set of financial entities across 10 Eurozone countries from January 3rd, 2006 to December

31, 2013. The panel contains n “ 69 institutions for T “ 2080 time periods. Table 6

contains the list of companies in the panel. CDS spreads are a market based measure of

default risk that have been used for systemic risk analysis in a number of papers, like Ang

and Longstaff (2013) and Oh and Patton (2017). Under appropriate assumptions (cf Oh

and Patton (2017)), changes in CDS spreads reflect changes in the underlying probability of

default of an institution. The panel is standardized such that each series has mean zero and

unit variance.

The results of a preliminary factor analysis reveal that the panel also has a factor struc-

ture. In particular, the IC2 criteria selects one factor for the panel. Principal component

analysis shows that the first component explains 28.8% of the total variability whereas the

second component explains 3.7%.
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Analogously to the previous section, we apply our methodology to detect the granulars

in the panel and then study granular influence using impulse response analysis. We also

report some robustness checks regarding stability of the rankings over different subsamples

and a comparison with principal components.

6.2.1 Granular detection results

We show the granular statistics in the top panel of Figure 4. The plot shows that the top

two series in the rankings have a rather large value for the granular statistic. Interestingly,

these are the two largest Spanish banks: Banco Santander and BBVA. It is important to

recall that following the burst of the Spanish housing bubble and the beginning of the Great

Financial Crisis the Spanish financial system has been in great distress which in turn spilled

over other financial institutions in the Eurozone. The worsening of the distress following

the European sovereign debt crisis forced the Spanish government to apply for a European

rescue package to recapitalize its financial system. Besides, these two banks the top 10 is

also dominated by large German and French financial institutions. In the bottom panel of

Figure 4 we show the column ratio statistics. Their estimate for the number of granulars is

equal to two.

6.2.2 Time dependence in granular detection

It is interesting to assess the stability of the rankings over different subsets. In particular, it

is interesting to investigate granularity rankings before the beginning of the Great Financial

Crisis of 2008–2009 as well as the European sovereign debt crisis of 2010–2012. We report

these in the middle and bottom panels of Table 4. The rankings show that Banco Santander

and BBVA are consistently ranked as top granular institutions. The number of selected

granular institutions selected by the column ratio statistic varies depending on the sample.

In the January 2006 to September 2008 sample, the list of selected granulars contains BBVA

only, while in the January 2006 to April 2010 the selected granulars are Banco Santander,

BBVA, Assicurazioni Generali and Allianz.
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6.2.3 Comparison to principal components based methods

We also construct granularity rankings on the basis of principal components, following the

procedure described in the previous section. We report the rankings over the full sample

as well as two subsamples in Table 5. Interestingly, for this application our procedure and

principal components deliver substantially close rankings. In particular, Banco Santander

and BBVA are identified, respectively, as the first and third most granular institutions in all

samples. More generally, the rank correlation between the two sets of rankings is above 0.90

in all samples considered. A possible explanation for the large overlap is that the granular

series explain a relatively large proportion of variability in the panel, see the discussion in

Section 4. We investigate this explanation further below.

6.2.4 Influence of the granular series

We study the influence of the Spanish granular banks in the Eurozone. We estimate the

parameters of the granular panel data model (6) using the same specification and identifi-

cation restriction considered for the industrial production application. We consider in this

analysis Santander only as a granular series and we consider the model with one common

factor. Also, the impulse responses and confidence bands are constructed following the same

procedure used for the industrial production application.

In the left panels of Figure 7 we show the impulse responses for different series chosen on

the basis of the magnitude of the loadings β. Specifically, we report the impulse response

for the series that correspond to the 7th largest βi (top 10%), the median βi and the 63rd

largest βi (bottom 10%). For comparison purposes, in the right panels of the figure we plot

the responses of the same series to a shock to the common factor. We find that responses are

short lived and that after a few days the influence of the granular shock becomes insignificant.

This is to be expected given the weak persistence of the CDS growth rates. That said, the

effect of the granular shock is significant for all series in the panel and its magnitude is

comparable, yet weaker, to the one of the factor.

In Figure 8 we plot impulse responses per country where the specific impulse response is
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chosen based on the median estimate of βi within each country. We find that the granular

influence is highest for financial entities in the Eurozone periphery, in particular Ireland, Italy

and Portugal. This is consistent with the fact that during the European Sovereign debt crisis

Eurozone periphery financial institutions experienced strong spillover effects among them,

in particular Spanish and Italian banks. We note that the impact of the granular shock on

Greek banks is not particularly strong. However, it has to be noted that throughout the

sample Greek CDSs have a large variability and weak correlation with all other series in the

panel.

7 Conclusion

In this work we introduce a panel model in which the idiosyncratic shocks of a (finite) subset

of time series influence the entire cross-section. We call these series granular in the sense

that the influence of such series does not vanish when the system dimension is large. We

work under the assumption that the set of granular series is unknown and our objective is to

introduce a selection methodology that consistently detects the set of granular series from

the data. A key property of the model that we introduce is that the column norms of the

concentration matrix of the panel are large for the granular series. This motivates us to

introduce a granular detection framework based on the norms of the sample concentration

matrix. In particular, we use this statistic to construct indices to rank granulars as well as

selecting their number. The large sample properties of the proposed procedures are analyzed

and we establish that when the time series and cross-sectional dimensions are sufficiently

large our procedure consistently detects the set of granulars. A simulation study is used to

show that our proposed procedure performs satisfactorily in finite samples. Two empirical

applications are used to showcase our methodology. In the first application, we analyze

granualarity in US industrial production sectors. Results show that several sectors in the

automobile industry, in particular “Motor Vehicle Parts” are selected as granular. In the

second application we study granularity in a panel of CDS spreads of Eurozone financial
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institutions. In this case our methodology detect as granulars the two largest Spanish banks:

Banco Santander and BBVA.
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Table 1: Granular Ranking Probabilities

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.140 0.800 0.967 1.000 1.000 1.000 1.000
100 200 3 0 0.140 0.926 0.996 1.000 1.000 1.000 1.000
50 400 3 0 0.207 0.941 0.998 1.000 1.000 1.000 1.000
100 400 3 0 0.266 0.992 1.000 1.000 1.000 1.000 1.000
50 200 5 0 0.206 0.813 0.954 0.997 1.000 1.000 1.000
100 200 5 0 0.252 0.932 0.997 1.000 1.000 1.000 1.000
50 400 5 0 0.187 0.905 0.992 1.000 1.000 1.000 1.000
100 400 5 0 0.334 0.991 1.000 1.000 1.000 1.000 1.000
50 200 3 5 0.103 0.676 0.876 0.969 0.983 0.985 0.989
100 200 3 5 0.148 0.865 0.972 0.998 0.998 0.998 0.999
50 400 3 5 0.104 0.800 0.953 0.989 0.992 0.994 0.994
100 400 3 5 0.184 0.967 0.996 0.999 1.000 0.999 1.000
50 200 5 5 0.156 0.721 0.884 0.970 0.988 0.988 0.993
100 200 5 5 0.216 0.878 0.976 0.998 0.999 0.998 0.999
50 400 5 5 0.150 0.822 0.950 0.990 0.995 0.997 0.998
100 400 5 5 0.273 0.966 0.997 1.000 0.999 0.999 1.000

Sparse error design
50 200 3 0 0.201 0.809 0.968 0.999 1.000 1.000 1.000
100 200 3 0 0.225 0.937 0.995 1.000 1.000 1.000 1.000
50 400 3 0 0.214 0.931 0.998 1.000 1.000 1.000 1.000
100 400 3 0 0.312 0.992 1.000 1.000 1.000 1.000 1.000
50 200 5 0 0.269 0.816 0.956 0.998 1.000 1.000 1.000
100 200 5 0 0.293 0.931 0.996 1.000 1.000 1.000 1.000
50 400 5 0 0.284 0.917 0.993 1.000 1.000 1.000 1.000
100 400 5 0 0.373 0.989 1.000 1.000 1.000 1.000 1.000
50 200 3 5 0.138 0.695 0.872 0.966 0.982 0.982 0.986
100 200 3 5 0.177 0.859 0.977 0.996 0.997 0.998 0.998
50 400 3 5 0.147 0.832 0.954 0.989 0.994 0.996 0.996
100 400 3 5 0.232 0.967 0.997 1.000 1.000 1.000 1.000
50 200 5 5 0.214 0.733 0.891 0.972 0.987 0.988 0.991
100 200 5 5 0.241 0.881 0.971 0.997 0.999 0.999 0.999
50 400 5 5 0.222 0.839 0.953 0.991 0.996 0.997 0.997
100 400 5 5 0.311 0.963 0.997 0.999 1.000 1.000 1.000

The table reports the average proportion of correctly ranked granulars.
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Table 2: Granular Selection Probabilities

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.098 0.190 0.520 0.883 0.979 0.992 0.994
100 200 3 0 0.104 0.377 0.773 0.969 0.995 0.999 1.000
50 400 3 0 0.093 0.404 0.833 0.988 0.998 1.000 1.000
100 400 3 0 0.090 0.732 0.974 0.999 1.000 1.000 1.000
50 200 5 0 0.044 0.101 0.357 0.832 0.959 0.969 0.986
100 200 5 0 0.048 0.265 0.782 0.981 0.995 0.998 0.999
50 400 5 0 0.042 0.207 0.661 0.963 0.993 0.997 0.999
100 400 5 0 0.047 0.652 0.941 0.998 1.000 1.000 1.000
50 200 3 5 0.117 0.136 0.310 0.482 0.594 0.587 0.615
100 200 3 5 0.115 0.273 0.556 0.771 0.789 0.781 0.795
50 400 3 5 0.098 0.188 0.418 0.656 0.704 0.708 0.723
100 400 3 5 0.135 0.525 0.785 0.882 0.884 0.875 0.878
50 200 5 5 0.036 0.068 0.141 0.428 0.575 0.626 0.641
100 200 5 5 0.042 0.159 0.507 0.784 0.825 0.838 0.852
50 400 5 5 0.044 0.105 0.296 0.608 0.708 0.746 0.759
100 400 5 5 0.047 0.425 0.787 0.902 0.916 0.922 0.917

Sparse error design
50 200 3 0 0.105 0.201 0.520 0.909 0.977 0.990 0.994
100 200 3 0 0.095 0.409 0.790 0.983 0.997 1.000 1.000
50 400 3 0 0.085 0.397 0.844 0.989 0.997 1.000 1.000
100 400 3 0 0.118 0.739 0.979 1.000 1.000 1.000 1.000
50 200 5 0 0.042 0.117 0.392 0.813 0.948 0.978 0.992
100 200 5 0 0.047 0.248 0.766 0.968 0.996 0.999 1.000
50 400 5 0 0.047 0.248 0.669 0.953 0.988 1.000 0.997
100 400 5 0 0.046 0.632 0.960 0.999 1.000 1.000 1.000
50 200 3 5 0.128 0.156 0.264 0.528 0.608 0.576 0.603
100 200 3 5 0.092 0.231 0.539 0.760 0.778 0.778 0.806
50 400 3 5 0.115 0.205 0.460 0.688 0.738 0.715 0.694
100 400 3 5 0.121 0.510 0.792 0.892 0.884 0.867 0.873
50 200 5 5 0.047 0.087 0.166 0.429 0.565 0.636 0.637
100 200 5 5 0.036 0.176 0.467 0.750 0.832 0.848 0.824
50 400 5 5 0.038 0.131 0.315 0.668 0.727 0.737 0.753
100 400 5 5 0.036 0.426 0.761 0.907 0.913 0.913 0.928

The table reports the average proportion of times the correct number of granulars is selected.
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Table 3: Granular Ranking Probabilities: R2
i versus }Ki}

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.062 0.582 0.835 0.977 0.993 0.995 0.995
100 200 3 0 0.000 0.561 0.860 0.991 0.997 0.999 0.999
50 400 3 0 0.056 0.701 0.949 0.999 1.000 1.000 1.000
100 400 3 0 0.006 0.855 0.993 1.000 1.000 1.000 1.000
50 200 5 0 0.044 0.636 0.843 0.954 0.977 0.979 0.976
100 200 5 0 0.036 0.655 0.899 0.992 0.997 0.998 0.999
50 400 5 0 0.000 0.618 0.874 0.981 0.992 0.992 0.994
100 400 5 0 0.002 0.754 0.966 0.999 1.000 1.000 1.000
50 200 3 5 0.419 0.331 0.544 0.830 0.935 0.952 0.954
100 200 3 5 0.153 0.218 0.591 0.938 0.991 0.999 0.996
50 400 3 5 0.365 0.299 0.554 0.876 0.963 0.980 0.979
100 400 3 5 0.136 0.201 0.655 0.983 0.999 1.000 1.000
50 200 5 5 0.446 0.347 0.502 0.736 0.859 0.884 0.891
100 200 5 5 0.207 0.250 0.536 0.904 0.983 0.991 0.992
50 400 5 5 0.461 0.312 0.492 0.762 0.899 0.936 0.942
100 400 5 5 0.160 0.242 0.604 0.967 0.998 1.000 0.999

Sparse error design
50 200 3 0 0.685 0.622 0.692 0.704 0.764 0.850 0.908
100 200 3 0 0.524 0.524 0.653 0.556 0.485 0.529 0.621
50 400 3 0 0.765 0.775 0.820 0.840 0.890 0.926 0.948
100 400 3 0 0.600 0.690 0.659 0.553 0.486 0.533 0.579
50 200 5 0 0.807 0.619 0.792 0.830 0.902 0.940 0.953
100 200 5 0 0.508 0.790 0.894 0.928 0.951 0.977 0.981
50 400 5 0 0.627 0.543 0.739 0.661 0.664 0.768 0.848
100 400 5 0 0.706 0.793 0.777 0.668 0.673 0.707 0.773
50 200 3 5 0.390 0.460 0.712 0.904 0.964 0.967 0.966
100 200 3 5 0.143 0.465 0.788 0.963 0.986 0.984 0.987
50 400 3 5 0.306 0.355 0.645 0.830 0.859 0.871 0.849
100 400 3 5 0.102 0.440 0.685 0.794 0.830 0.826 0.823
50 200 5 5 0.451 0.535 0.744 0.917 0.965 0.968 0.964
100 200 5 5 0.184 0.472 0.792 0.969 0.987 0.989 0.993
50 400 5 5 0.369 0.507 0.755 0.890 0.915 0.910 0.903
100 400 5 5 0.129 0.539 0.794 0.872 0.866 0.860 0.850

The table reports the ratio between the average proportion of correctly ranked granulars based on the

R2 statistic and the the column norm statistic.
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Table 4: Granular series US Industrial Production

1972 – 2007

Sector }K̂piq}
}K̂piq}

}K̂pi`1q}

Motor Vehicle Parts 11.284 1.161
Automobiles and Light Duty Motor Vehicles 9.718 1.603
Aluminum Extruded Products 6.062 1.004
Plastics Products 6.039 1.004
Miscellaneous Aluminum Materials 6.013 1.049
Motor Vehicle Bodies 5.732 1.076
Paper and Paperboard Mills 5.328 1.095
Household and Institutional Furniture and Kitchen Cabinets 4.867 1.067
Commercial and Service Industry Machines 4.561 1.016
Motor Homes 4.490 1.011

1972 – 1983

Sector }K̂piq}
}K̂piq}

}K̂pi`1q}

Motor Vehicle Parts 4546.027 1.150
Household and Institutional Furniture and Kitchen Cabinets 3953.440 1.340
Plastics Products 2949.915 1.083
Commercial and Service Industry Machines 2722.886 1.069
Automobiles and Light Duty Motor Vehicles 2547.430 1.004
Foundries 2538.000 1.057
Organic Chemicals 2401.269 1.170
Semiconductors and Other Electronic Components 2053.029 1.027
Farm Machinery and Equipment 1998.120 1.022
Animal Slaughtering and Meat Processing Ex Poultry 1954.887 1.036

1984 – 2007

Sector }K̂piq}
}K̂piq}

}K̂pi`1q}

Motor Vehicle Parts 26.253 1.039
Automobiles and Light Duty Motor Vehicles 25.261 1.356
Aluminum Extruded Products 18.626 1.014
Miscellaneous Aluminum Materials 18.365 1.183
Motor Vehicle Bodies 15.530 1.455
Truck Trailers 10.675 1.009
Carpet and Rug Mills 10.575 1.010
Paper and Paperboard Mills 10.474 1.064
Motor Homes 9.843 1.034
Concrete and Products 9.519 1.035

The table reports the ranking of granular series for US industrial production.
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Table 5: Granular series US Industrial Production based on R2

1972 – 2007
Sector R2

Plastics Products 0.651
Household and Institutional Furniture and Kitchen Cabinets 0.520
Metal Valves Except Ball and Roller Bearings 0.462
Architectural and Structural Metal Products 0.448
Other Miscellaneous Manufacturing 0.441
Fabricated Metals Spring and Wire Products 0.422
Commercial and Service Industry Machines 0.405
Fabricated Metals Forging and Stamping 0.402
Coating Engraving Heat Treating and Allied Activities 0.355
Other Textile Product Mills 0.332

1972 – 1983
Sector R2

Plastics Products 0.733
Household and Institutional Furniture and Kitchen Cabinets 0.634
Metal Valves Except Ball and Roller Bearings 0.626
Architectural and Structural Metal Products 0.597
Fabricated Metals Spring and Wire Products 0.588
Other Miscellaneous Manufacturing 0.534
Other Textile Product Mills 0.486
Fabricated Metals Forging and Stamping 0.486
Plastics Materials and Resins 0.485
Communication and Energy Wires and Cables 0.481

1984 – 2007
Sector R2

Plastics Products 0.407
Commercial and Service Industry Machines 0.368
Architectural and Structural Metal Products 0.328
Other Miscellaneous Manufacturing 0.327
Household and Institutional Furniture and Kitchen Cabinets 0.301
Coating Engraving Heat Treating and Allied Activities 0.294
Fabricated Metals Forging and Stamping 0.265
Metalworking Machinery 0.232
Metal Valves Except Ball and Roller Bearings 0.217
Fabricated Metals Spring and Wire Products 0.215

The table reports the ranking of granular series for US industrial production.
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Table 6: Eurozone Financial Institutions
Country Abbrev. Name Country Abbrev. Name
Austria WAG Austria INT Intesa Sanpaolo

ERS Erste Bank Group MIL Banca Popolare di Milano
RAI Raiffeisen Bank International MPS Banca Monte dei Paschi di Siena

Belgium FOR Fortis / Ageas Holding POP Banco Popolare S.C.
KBC KBC Bank UDP Unione di Banche Italiane SCPA

France DEX Dexia Crédit Local UNI UniCredit
AXA AXA France Ireland ANG Anglo Irish Bank
BQE Banque Fédérative du Crédit Mutuel DEP Depfa PLC
PEU Banque PSA Finance GOV Governor and Company of the Bank of Ireland
BNP BNP Paribas NAT Irish Nationwide Bank
AGR Crédit Agricole ILP Irish Life and Permanent
CIC Crédit Industriel et Comercial Netherland AEG Aegon NNV
SOC Société Générale NIB NIBC Bank
WEN Wendel RAB Rabobank
GEC Cecine SNS SNS Bank
KLE Klepierre VAN F. van Lanschot Bankiers
SOP Sophia GE ING Ing Bank

Germany ALL Allianz ABN Abn Amro Bank
DBA Deutsche Bank ROD Rodamco Europe
COM Commerzbank ACH Achmea Holding
DBZ DZ Bank Portugal BCO Banco Comercial Portugues
MRV Münchner Rückversicherung CAI Caixa Geral de Depositos
NLB Norddeutsche Landesbank BPI Banco Portugues de Investimiento
HSH HSH Nordbank SAN Espirito Santo Financial Group
LBW Landesbank Baden-Württemberg Spain PAS Banco Pastor
BLB Bayerische Landesbank SAB Banco de Sabadell
LBB Landesbank Berlin MED Caja de Ajorros del Mediterraneo
LHT Landesbank Hessen - Thühringen INT Bankinter
WLB West LB / Portigon AG CAV Caixa de Ahorros de Valencia

Greece NBG National Bank of Greece SAN Banco Santander
EFG EFG Eurobank Ergasias BBV Banco Bilbao Vizcaya Argentaria

Italy ASG Assicurazioni Generali CAB Caja de Ahorros y Pensiones de Barcelona
LAV Banca Nazionale de Lavoro MPM Caja de Ahorros y Monde de Piedad de Madrid
LEA Banca Italease POP Banco Popular Espanol
MED Mediobanca

The table reports the list of entity names, abbreviations and countries of the series in the CDS panel.
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Table 7: Granular series Eurozone Financials CDS

January 2006 – December 2013

Entity }K̂piq}
}K̂piq}

}K̂pi`1q}

SAN (es) 6.176 1.066
BBV (es) 5.796 1.224
ASG (it) 4.737 1.004
ALL (de) 4.716 1.065
MRV (de) 4.430 1.056
BNP (fr) 4.197 1.004
SOC (fr) 4.180 1.005
AXA (fr) 4.158 1.011
AGR (fr) 4.113 1.004
INT (it) 4.098 1.059

January 2006 – September 2008

Entity }K̂piq}
}K̂piq}

}K̂pi`1q}

SAN (es) 6.767 1.127
ASG (it) 6.007 1.017
BBV (es) 5.908 1.017
ALL (de) 5.811 1.121
MRV (de) 5.183 1.094
COM (de) 4.739 1.019
AXA (fr) 4.652 1.051
AEG (nl) 4.428 1.014
AGR (fr) 4.365 1.001
DBA (de) 4.359 1.020

January 2006 – April 2010

Entity }K̂piq}
}K̂piq}

}K̂pi`1q}

SAN (es) 7.319 1.056
BBV (es) 6.934 1.143
ASG (it) 6.069 1.007
ALL (de) 6.028 1.282
AXA (fr) 4.702 1.008
AGR (fr) 4.665 1.015
SAN (pt) 4.596 1.020
INT (it) 4.505 1.002
MRV (de) 4.498 1.025
BCO (pt) 4.387 1.057

The table reports the ranking of granular series for the Eurozone Financial CDS panel.
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Table 8: Granular series Eurozone Financials CDS based on R2

January 2006 – December 2013
Sector R2

SAN (es) 0.725
AGR (fr) 0.706
BBV (es) 0.705
ASG (it) 0.697
SOC (fr) 0.693
INT (it) 0.691
MPS (it) 0.691
BNP (fr) 0.689
ALL (de) 0.673
DBA (de) 0.672

January 2006 – September 2008
Sector R2

SAN (es) 0.701
MRV (de) 0.693
BBV (es) 0.692
ASG (it) 0.692
AGR (fr) 0.688
SOC (fr) 0.668
DBA (de) 0.667
ALL (de) 0.667
POP (it) 0.647
COM (de) 0.645

January 2006 – April 2010
Sector R2

SAN (es) 0.726
AGR (fr) 0.726
BBV (es) 0.721
ASG (it) 0.689
MPS (it) 0.686
DBA (de) 0.676
SOC (fr) 0.676
INT (it) 0.676
ALL (de) 0.665
COM (de) 0.659

The table reports the ranking of granular series for the Eurozone Financial CDS panel.
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Figure 1: Partial Correlation Network Representation
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Figure 2: Granular Ranking and Selection Probabilities

T “ 200 N “ 50

T “ 200 N “ 100

T “ 400 N “ 50

T “ 400 N “ 100

The figure shows the proportion of correctly ranked granulars (left panel) and of correctly selecting the

number of granulars (right panel) as a function of the standard deviation of the granular loadings σb and

the coefficient controlling the degree of dependence of the idiosyncratic shocks cε.
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Figure 3: Granular detection results for the IP series

The figure shows the ordered column norms (top panel) and the column norm ratios (bottom panel) for

a panel of n “ 138 industrial production monthly growth rates from 1972 until 2007 (T “ 431).
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Figure 4: Granular detection results for the CDS spreads series

The figure shows the ordered column norms (top panel) and the column norm ratios (bottom panel) for a

panel of daily growth rates of CDS spreads for a set of n “ 69 financial entities across 10 Eurozone countries

from January 3rd, 2006 to December 31, 2013 (T “ 2080).
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Figure 5: Impulse responses industrial production
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We show the response of a 1-standard deviation shock to the granular series (left column)
and common factor (right column) on the 14th largest (top 10%), the median and the 124th
largest (bottom 10%) non-granular industrial production series, where the ranking is based
on the loadings β.
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Figure 6: Grouped impulse responses industrial production
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Impulse responses industrial production. We show the response of a 1-standard deviation
shock to the granular series on the industrial production series that corresponds to the within
sector median according to the loadings β.
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Figure 7: Impulse responses European CDS spreads
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We show the response of a 1-standard deviation shock to the granular series (left column)
and common factor (right column) on the 7th largest (top 10%), the median and the 64rd
largest (bottom 10%) non-granular CDS growth rates, where the ranking is based on the
loadings β.
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Figure 8: Grouped impulse responses European CDS spreads
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We show the response of a 1-standard deviation shock to the granular series on the CDS
growth rates that corresponds to the within country median according to the loadings β.
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A Proofs

Notation:
For an arbitrary vector v “ pv1, . . . , vnq

1 we have }v} “
a

řn
i“1 v

2
i . For an N ˆ N matrix

B the k-th largest eigenvalue of B is denoted as µkpBq. For an M ˆ N matrix A the k-th
largest singular value of A is denoted as σkpAq. As a matrix norm we generally adopt the
spectral norm is given by }A}2 “

a

µ1pA1Aq. We drop the index when no confusion can

arise and write }A}2 “ }A}. The frobenius norm is given by }A}F “
b

řN
i“1

řN
j“1 a

2
i,j “

a

TracepA1Aq. We have }A}2 ď }A}F ď rankpAq}A}2. For a square matrix B we let B ą 0
indicate that B is positive definite. The selection vector em,i has length m and entries that
are equal to zero except for entry i which is equal to one.

A.1 Identification Results

Before we present the proofs for the identification lemmas we give three useful propositions.

Proposition 1. Let A be an M ˆ N matrix and let Ai be the i-th column of A. Also, let
DA “ A1A. Then,

(i) µNpDAq ď }Ai}
2 ď µ1pDAq

(ii) µNpDAq}Ai}
2 ď }A1Ai}

2 ď µ1pDAq}Ai}
2

Proof of Proposition 1. piq The first inequality follows from the fact that

}Ai}
2
“ }AeN,i}

2
ě min

xPRN
}x}“1

}Ax}2 “ µNpDAq .

The second inequality follows from the fact that

}Ai}
2
“ }AeN,i}

2
ď max

xPRN
}x}“1

}Ax}2 “ µ1pDAq .

piiq The first inequality follows from the fact that

}A1Ai}
2
“

N
ÿ

j“1

pA1
jAiq

2
ě pA1

iAiq
2
“ }Ai}

2
}Ai}

2
ě min

j“1,...,N
}Aj}

2
}Ai}

2
ě µNpDAq}Ai}

2 .

The second inequality follows from the Cauchy–Schwarz inequality.

Proposition 2. For any a, b P Rn and nˆn matrix X, such that a1a´b1b ą 0 and µnpXq ą 0,
we have that

a1Xa´ b1Xb ą 0.

Proof of Proposition 2. First note that a1a´ b1b “ pa´ bq1pa` bq ą 0 such that pa` bqpa´ bq1

is a rank one matrix with one positive eigenvalue and n ´ 1 zero eigenvalues. Hence its
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positive semidefinite. Next, by direct calculation we have

a1Xa´ b1Xb “ pa´ bq1Xpa` bq
“ TrpXpa` bqpa´ bq1q
“

řn
i“1 µipXpa` bqpa´ bq

1q

ě µnpXq
řn
i“1 µippa` bqpa´ bq

1q

“ µnpXqpa´ bq
1pa` bq

“ µnpXqpa
1a´ b1bq ą 0

where the inequality follows from Anderson and Gupta (1963, Theorem 2.2) which is also
given in Ahn and Horenstein (2013, Lemma A4).

Proposition 3. Assumption 1 implies the following bounds:

(i) }pΣ´1
g ` β1Σ´1

ε βqek,i}
2 ě µ2

n´kpΣ
´1
ε qµkpβ

1βq}βi}
2

(ii) }pΣ´1
g ` β1Σ´1

ε βqek,i}
2 ď 2µ2

1pΣ
´1
g q ` 2µ2

1pΣ
´1
ε qµ1pβ

1βq}βi}
2

(iii) }Σ´1
ε βek,i}

2 ě µ2
n´kpΣ

´1
ε q}βi}

2

(iv) }Σ´1
ε βek,i}

2 ď µ2
1pΣ

´1
ε q}βi}

2

(v) }β1Σ´1
ε en´k,j´k}

2 ě µ2
n´kpΣ

´1
ε q}β}

2

(vi) }β1Σ´1
ε en´k,j´k}

2 ď µ2
1pΣ

´1
ε q}β}

2

(vii) }Σ´1
ε en´k,j´k}

2 ě µ2
n´kpΣ

´1
ε q

(viii) }Σ´1
ε en´k,j´k}

2 ď µ2
1pΣ

´1
ε q

Proof of Proposition 3. Follows directly from Proposition 1, the Cauchy-Schwartz inequality
and the fact that for vectors u, v P Rn }u` v}2 ď 2}u}2 ` 2}v}2.

Proof of Lemma 1. First, we show that }K} exists. Under assumptions 1-piq, 1-piiq and
1-piiiq we can write K, as given in equation (3), as

K “

„

Ik ´β1

0 In´k

 „

Σ´1
g 0
0 Σ´1

ε

 „

Ik 0
´β In´k



,

which implies that

}K} ď

›

›

›

›

„

Ik ´β1

0 In´k


›

›

›

›

2 ›
›

›

›

„

Σ´1
g 0
0 Σ´1

ε


›

›

›

›

.

For the first term we have

›

›

›

›

„

Ik ´β1

0 In´k


›

›

›

›

2

ď

›

›

›

›

„

Ik 0
0 In´k


›

›

›

›

2

`

›

›

›

›

„

0 ´β1

0 0


›

›

›

›

2

` 2

›

›

›

›

„

Ik 0
0 In´k


›

›

›

›

›

›

›

›

„

0 ´β1

0 0


›

›

›

›

“ 1` µ1pβ
1βq ` 2

a

µ1pβ1βq
“ p1` }β}q2
nÑ8
Ñ p1`

a

µ1pDβqq
2 ă 8
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where the limit and final bound follow from assumption 1-pivq. For the second term we have

›

›

›

›

„

Σ´1
g 0
0 Σ´1

ε


›

›

›

›

“ maxtµ1pΣ
´1
g q, µ1pΣ

´1
ε qu

“ pmintµkpΣgq, µn´kpΣεquq
´1
ă 8

Since assumption 1-piq implies µkpΣgq ą 0 and 1-piiq requires µn´kpΣεq ą 0. The latter is
preserved for any n ą N by 1-pivq which requires κε ă 8 which implies µn´kpΣεq ą 0 for all
n ą N .

Second, we show that }Ki}
2 ą }Kj}

2 for any i “ 1, ..., k and j “ k ` 1, ..., n, which
implies the claim of the lemma. Note that for i “ 1, . . . , k we have that }Ki}

2 “ }pΣ´1
g `

β1Σ´1
ε βqek,i}

2 ` }Σ´1
ε βek,i}

2 and }Kj}
2 “ }β1Σ´1

ε en´k,j´k}
2 ` }Σ´1

ε en´k,j´k}
2. Sufficient

conditions for }Ki}
2 ą }Kj}

2 are given by }pΣ´1
g ` β1Σ´1

ε βqek,i}
2 ą }β1Σ´1

ε en´k,j´k}
2 and

}Σ´1
ε βek,i}

2 ą }Σ´1
ε en´k,j´k}

2. Using the inequalities from proposition 3 the first condition
immediately gives }βi} ą κβκε and last condition gives }βi} ą κε. Both are satisfied by
assumption 1-pivq.

Proof of Lemma 2. Assume, without loss of generality that the columns of K are ordered in
decreasing order by their norms. We show that assumption 1-piv˚q is sufficient to prove the
lemma after the structure of the covariance matrix is imposed by assumptions 1-piq, 1-piiq
and 1-piiiq. We require that

}Ken,k}
2

}Ken,k`1}2
ą

}Ken,s}
2

}Ken,s`1}2
@ s “ 1, . . . , k ´ 1, k ` 1, . . . , n´ 1.

When s ă k and s ą k the condition can be expressed as, respectively,

}pΣ´1
g ` β1Σ´1

ε βqek,k}
2 ` }Σ´1

ε βek,k}
2

}β1Σ´1
ε en´k,1}2 ` }Σ´1

ε en´k,1}2
ą

}β1Σ´1
ε en´k,s}

2 ` }Σ´1
ε en´k,s}

2

}β1Σ´1
ε en´k,s`1}2 ` }Σ´1

ε en´k,s`1}2
, (11)

}pΣ´1
g ` β1Σ´1

ε βqek,k}
2 ` }Σ´1

ε βek,k}
2

}β1Σ´1
ε en´k,1}2 ` }Σ´1

ε en´k,1}2
ą

}pΣ´1
g ` β1Σ´1

ε βqek,s}
2 ` }Σ´1

ε βek,s}
2

}pΣ´1
g ` β1Σ´1

ε βqek,s`1}
2 ` }Σ´1

ε βek,s`1}
2
.(12)

Both expressions are of the form a`b
c`d

ą
e`f
g`h

with a, . . . , h ą 0. We use that a
c
ą e

g
, a
c
ą

f
h
,

b
d
ą e

g
and b

d
ą

f
h

are sufficient for this condition to hold. We obtain a total of 8 sufficient

conditions. For condition (11) we obtain by direct calculation – using proposition 3 – the
bounds

}pΣ´1
g `β1Σ´1

ε βqek,k}
2

}β1Σ´1
ε en´k,1}2

ą
}β1Σ´1

ε en´k,s}
2

}β1Σ´1
ε en´k,s`1}

2 ñ }βk} ą κβκ
2
ε

}pΣ´1
g `β1Σ´1

ε βqek,k}
2

}β1Σ´1
ε en´k,1}2

ą
}Σ´1

ε en´k,s}
2

}Σ´1
ε en´k,s`1}

2 ñ }βk} ą κβκ
2
ε

}Σ´1
ε βek,k}

2

}Σ´1
ε en´k,1}2

ą
}β1Σ´1

ε en´k,s}
2

}β1Σ´1
ε en´k,s`1}

2 ñ }βk} ą κ2ε
}Σ´1

ε βek,k}
2

}Σ´1
ε en´k,1}2

ą
}Σ´1

ε en´k,s}
2

}Σ´1
ε en´k,s`1}

2 ñ }βk} ą κ2ε
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and for (12) we have

}pΣ´1
g `β1Σ´1

ε βqek,k}
2

}β1Σ´1
ε en´k,1}2

ą
}pΣ´1

g `β1Σ´1
ε βqek,i}

2

}pΣ´1
g `β1Σ´1

ε βqek,i`1}
2 ñ }βk} ą κ2βκε

´

κε `
µ1pΣεq

µkpΣgq

¯

}pΣ´1
g `β1Σ´1

ε βqek,k}
2

}β1Σ´1
ε en´k,1}2

ą
}Σ´1

ε βek,i}
2

}Σ´1
ε βek,i`1}

2 ñ }βk} ą κ2βκ
2
ε

}Σ´1
ε βek,k}

2

}Σ´1
ε en´k,1}2

ą
}pΣ´1

g `β1Σ´1
ε βqek,i}

2

}pΣ´1
g `β1Σ´1

ε βqek,i`1}
2 ñ }βk} ą κβκε

´

κε `
µ1pΣεq

µkpΣgq

¯

}Σ´1
ε βek,k}

2

}Σ´1
ε en´k,1}2

ą
}Σ´1

ε βek,i}
2

}Σ´1
ε βek,i`1}

2 ñ }βk} ą κ2βκ
2
ε .

These are all implied by assumption 1-piv˚q.

Proof of Lemma 3. For convenience we rewrite model (6) as follows

yt “ Λft ` ξt ξt “ Bgt ` ε̃t

where B “ pIk,β
1q1 and ε̃t “ p0, ε

1
tq
1. Under assumptions 1 and 2, the variance Σ “ Varpytq

is given by
Σ “ E ppΛft ` ξtqpΛft ` ξtq

1q

“ Ω`RR1,

where R “ ΛΣ
1{2
f `BΣgfΣ

´1{2
f and

Ω “

„

pΣg ´ΣgfΣ
´1
f Σfgq pΣg ´ΣgfΣ

´1
f Σfgqβ

1

βpΣg ´ΣgfΣ
´1
f Σfgq βpΣg ´ΣgfΣ

´1
f Σfgqβ

1 `Σε



.

The concentration matrix M “ Ω´1 is given by

M “

„

pΣg ´ΣgfΣ
´1
f Σfgq

´1 ` β1Σ´1
ε β ´β1Σ´1

ε

´Σ´1
ε β Σ´1

ε



(13)

where we note that pΣg´ΣgfΣ
´1
f Σfgq

´1 exists by assumption 2-piiq. When we apply Lemma
1 with M it follows that under assumptions 1 and 2 we have that M exists and }Mi} ą }Mj}

for all i “ 1, . . . , k and j “ k ` 1, . . . , n.23

Next, using the Woodbury identity we express the concentration matrix of the complete
model K “ Σ´1 by

K “ M´MRpIr `R1MRq´1R1M.

To show that the concentration matrix K exists note that

}K} “
1

µnpΣq
“

1

µnpΩ`RR1q
ď

1

µnpΩq
“ }M} ă 8

where the inequality follows from Horn and Johnson (2013, Corollary 4.3.12) as Ω ą 0 and
}M} ă 8 is shown above.

Next, we show that under assumptions 1 and 2 }Ken,i}
2 ě }Ken,j}

2 for all i “ 1, . . . , k

23Note the only difference between K in Lemma 1 and M is that Σg is replaced by Σg ´ ΣgfΣ
´1
f Σfg.

Since both are positive definite the lemma applies equally for M.
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and j “ k ` 1, . . . , n. We define

S “ MRpIr `R1MRq´1R1

such that we have for all s “ 1, . . . , n

}Ken,s}
2 “ }Ms ´ SMs}

2

“ pMs ´ SMsq
1pMs ´ SMsq

“ M1
sMs ´M1

sS
1Ms ´M1

sSMs `M1
sS
1SMs

“ M1
spIn ´ S1 ´ S` S1SqMs

We show that In ´ S1 ´ S` S1S is positive definite. We have

In ´ S1 ´ S` S1S “ pIn ´ Sq1pIn ´ Sq.

and since ΩM “ In we have

In ´ S “ In ´MRpIr `R1MRq´1R1

“ pM´MRpIr `R1MRq´1R1MqΩ
“ pΩ`RR1q´1Ω
“ KΩ

and since K “ Σ´1 exist and Ω´1 “ M also exists we have that In ´ S is invertible and
hence its square pIn ´ Sq1pIn ´ Sq is positive definite. It follows from proposition 2 that

}Ken,i}
2
´ }Ken,j}

2
“ M1

ipIn ´ S1 ´ S` S1SqMi ´M1
jpIn ´ S1 ´ S` S1SqMj ą 0

as In ´ S1 ´ S` S1S is positive definite and }Mi} ą }Mj} as shown above.

Proof of Lemma 4. Let M be defined as in the proof of Lemma 3 equation (13). Recall that
we established that }Mi} ą }Mj} for all i “ 1, . . . , k and j “ k`1, . . . , n. Now, without loss
of generality, assume that the columns of M are ordered in decreasing order by their norms.
Under assumption (1) and assumption (1)-piv˚q the proof of Lemma 2 may be applied to
verify

}Men,k}
2

}Men,k`1}2
ą

}Men,s}
2

}Men,s`1}2
@ s “ 1, . . . , k ´ 1, k ` 1, . . . , n´ 1. (14)

Further, from Lemma 3 we have that for all i “ 1, . . . , n

}Ken,i}
2
“ M1

ipIn ´ S1 ´ S` S1SqMi “ M1
iXMi

where we have defined X “ In ´ S1 ´ S` S1S and recall that µnpXq ą 0. We need to proof
that for all s “ 1, . . . , k ´ 1, k ` 1, . . . , n´ 1 we have

}Ken,k}
2

}Ken,k`1}2
ą

}Ken,s}
2

}Ken,s`1}2

This can be written as
M̃1

kXM̃k ą M̃1
sXM̃s
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where M̃i “ Mi{pM
1
i`1XMi`1q

1{2 for all i “ 1, . . . , n. Next, we verify that M̃1
kM̃k´M̃1

sM̃s ą

0 for all s ‰ k. We define M̀i`1 “
Mi`1

pM1
iMiq

1{2 such that we can write

M̃1
kM̃k ´ M̃1

sM̃s “
1

M̀1
k`1XM̀k`1

´
1

M̀1
s`1XM̀s`1

which becomes
M̀1

s`1XM̀s`1 ´ M̀1
k`1XM̀k`1

M̀1
k`1XM̀k`1M̀1

s`1XM̀s`1

This is greater than zero when the numerator is greater than zero (note that the denominator
is positive). Hence we show that M̀1

s`1M̀s`1 ´ M̀1
k`1M̀k`1 ą 0. The latter requirement can

be written as
M1

s`1Ms`1

M1
sMs

´
M1

k`1Mk`1

M1
kMk

ą 0

When taking the inverse on both sides we have that

M1
kMk

M1
k`1Mk`1

´
M1

sMs

M1
s`1Ms`1

ą 0

which is shown in equation (14). This implies M̀1
s`1M̀s`1 ´ M̀1

k`1M̀k`1 ą 0 which, working
backwards, gives using proposition 2 that

M̀1
s`1XM̀s`1 ´ M̀1

k`1XM̀k`1 ą 0

and hence M̃1
kM̃k ´ M̃1

sM̃s ą 0 and thus by applying proposition 2 again that

M̃1
kXM̃k ´ M̃1

sXM̃s ą 0

which is equivalent to
}Ken,k}

2

}Ken,k`1}
2 ą

}Ken,s}2

}Ken,s`1}2
.

A.2 Estimation Results

Proposition 4. Let X be a zero mean random variable. Then, the following properties are
equivalent for positive constants Ci i “ 1, 2 differing from each other by at most an absolute
constant factor:24

(i) Prp|X| ą sq ď expp1´ ps{C1q
γq for any s ą 0

(ii) pE|X|pq1{p ď C2p
1{γ for any p ě 1

24That is, for any i, j “ 1, 2 there exists an absolute constant K such that Ci ď KCj .
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Proof of Proposition 4. We begin by showing that piq implies piiq. Note that

E|X|p “

ż 8

0

Prp|X| ě xqpxp´1dx

ď

ż 8

0

e1´px{C1q
γ

pxp´1dx

“
ep

γ
Cp

1

ż 8

0

e´px{C1q
γ

ˆ

x

C1

˙γpp{γ´1q
γ

Cγ
1

xγ´1dx

“
ep

γ
Cp

1

ż 8

0

e´uup{γ´1du (change of variable)

“
ep

γ
Cp

1Γ

ˆ

p

γ

˙

ď
ep

γ
Cp

1C

ˆ

p

γ

˙p{γ

(since Γpxq ď Cxx for x ą 0)

pE|X|pq1{p ď pepq1{pγ´1{p´1{γC1C
1{pp1{γ

ď C2p
1{γ ,

where C2 is a suitably choosen constant. Next we show that piiq implies piq. Note that it
follows from Markov inequality that for any p ą 0 we have that

Prp|X| ą sq ď
E|X|p

sp
ď

ˆ

C2p
1{γ

s

˙p

where we have applied piiq. By choosing p “ ´ps{peC2qq
γ we have that

Prp|X| ą sq ď exp

ˆ

´

ˆ

s

eC2

˙γ˙

“ exp p´ps{C1q
γ
q ,

where C1 is a suitably chosen constant.

Proposition 5. (i) Let X be a zero mean random variable satisfying Prp|X| ą sq ď
expp1´ps{Cqγq. Then aX satisfies Prp|aX| ą sq ď expp1´ps{C 1qγq where C 1 “ |a|C.

(ii) Let X1 and X2 be zero mean random variables satisfying Prp|Xi| ą sq ď expp1´ps{Ciq
γq

for i “ 1, 2. Then X1 ` X2 satisfies Prp|X1 ` X2| ą sq ď expp1 ´ ps{C 1qγq where C 1

differs by at most an absolute constant factor from C1 ` C2.

Proof of Proposition 5. (i) The first claim follows from observing that

Prp|aX| ą sq “ Pr

ˆ

|aX|

|a|
ą

s

|a|

˙

“ Pr

ˆ

|X| ą
s

|a|

˙

ď exp

ˆ

1´

ˆ

s

|a|C

˙γ˙

.

(ii) We begin by noting that by Minkowski inequality and Proposition 4(i) imply

pE|X ` Y |pq1{p ď pE|X|pq1{p ` pE|Y |pq1{p ď pC3 ` C4qp
1{γ .

where C3 and C4 differ by at most an absolute constant factor from, respectively, C1 and
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C2. The claim of the proposition then follows from Proposition 4(ii) for C 1 where C 1 differs
by at most an absolute constant factor from C3 ` C4 and, consequently, from C1 ` C2.

The following is an immediate consequence of Proposition 5.

Corollary 3. Let Xi for i “ 1, ..., k be zero mean random variable satisfying Prp|Xi| ą sq ď
expp1´ ps{Ciq

γq and let

Y “
k
ÿ

i“1

aiXi .

Then Y is satisfies Prp|Y | ą sq ď expp1 ´ ps{C 1qγq where C 1 differs by at most an absolute
constant factor from

řk
i“1 |ai|Ci.

Proof of Corollary 3. It follows from Proposition 5(1) that each term aiXi i “ 1, . . . , k
satisfies Prp|aiXi| ą sq ď expp´ps{p|ai|Ciqq

γq. Then, it follows from Proposition 5(ii) that
řk
i“1 aiXi satisfies Prp|

řk
i“1 aiXi| ą sq ď expp´ps{C 1qγq where C 1 differs by at most an

absolute constant factor from
řk
i“1 |ai|Ci .

The following proposition is similar to Lemma A.2 in Fan et al. (2011).

Proposition 6. Let X1 and X2 be two random variables. Let γ, C be positive constants
such that for any s ą 0

Prp|Xi| ą sq ď expp1´ ps{Cqγq,

for i “ 1, 2. Then there exists a positive constant C 1 such that for any s ą 0

Prp|X1X2| ą sq ď expp1´ ps{C 1qγ{2q .

Proof. For any s ą 0 we have that

Prp|X1X2| ą sq ď Prp|X1| ą s1{2q ` Prp|X2| ą s1{2q ď 2 expp1´ ps1{2{Cqγq

“ expp1` log 2´ ps{C2
q
γ{2
q .

Let C 1 “ p1` log 2q2{γC2. When s ą C 1 we have that

log 2´ ps{C2
q
γ{2
ă ´ps{C 1qγ{2 .

To see this note that, wlog, for s “ C 1p1` δq2{γ for any δ ą 0 we have that

log 2´ ps{C2
q
γ{2
` ps{C 1qγ{2 “ log 2´ p1` log 2qp1` δq ` p1` δq “ ´ log 2 ¨ δ .

This implies that when s ą C 1

Prp|X1X2| ą sq ď expp1` log 2´ ps{C2
q
γ{2
q ă expp1´ ps{C 1qγ{2q . (15)

When s ď C 1 we have that

Prp|X1X2| ą sq ď 1 ď expp1´ ps{C 1qγ{2q . (16)

The inequalities in Equations (15) and (16) imply the claim of the proposition.
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The following proposition is in Merlevede et al. (2011) and is reported here for complete-
ness.

Theorem 2. Let Xt be a n-dimensional stationary and ergodic time series process with zero
mean satisfying:

(i) The tXtu process is α-mixing. There exists positive constants γ1 and C1 such that for
all positive integers t we have that the α mixing coefficients satisfy

αptq ď expp´C1t
´γ1q .

(ii) There exists positive constants γ2 and C2 such that for any s ą 0 and i “ 1, ..., n

Prp|Xi t| ą sq ď expp1´ ps{C2q
γ2q .

(iii) Let γ´1 “ γ´11 ` γ´12 . Then, γ ă 1.

Then, there exists positive constants C3, C4, C5, C6 and C7 that only depend on C1, C2,
γ1 and γ2 such that for T large enough

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

Xt

ˇ

ˇ

ˇ

ˇ

ˇ

ą s

¸

ď T exp

ˆ

´
pTsqγ

C3

˙

`exp

ˆ

´
pTsq2

C4p1` C5T q

˙

`exp

ˆ

´
pTsq2

C6T
exp

ˆ

pTsqγp1´γq

C7plogpTsqqγ

˙˙

.

Proof. See Theorem 1 in Merlevede et al. (2011).

The following three propositions are in Vershynin (2012) and are reported here for com-
pleteness.

Proposition 7. Consider a matrix B that satisfies

}B1B´ I} ď maxpδ, δ2q (17)

for some δ ą 0. Then
1´ δ ď µnpBq ď µ1pBq ď 1` δ . (18)

Conversely, if B satisfies (18) for some δ ą 0 then }B1B´ I} ď 3 maxpδ, δ2q.

Proof of Proposition 7. See Lemma 5.36 in Vershynin (2012).

Proposition 8. Let A be symmetric nˆ n matrix and let Nε be an ε-net of Sn´1 for some
ε P p0, 1q. Then

}A} “ sup
xPSn´1

|x1Ax| ď p1´ 2εq´1 sup
xPNε

|x1Ax| .

Proof of Proposition 8. See Lemma 5.4 in Vershynin (2012).

Proposition 9. Let Sn´1 denoted the unit Euclidean sphere equipped with the Euclidean
metric and let N pSn´1, εq denote an ε-net of Sn´1. Then, for every ε ą 0 we have that
N pSn´1, εq ď

`

1` 2
ε

˘n
.

Proof of Proposition 9. See Lemma 5.2 in Vershynin (2012).

64



Proof of Theorem 1. Part (i). We begin by noting that

Σ̂y “ Σ1{2
y

ˆ

1

T
V1V

˙

Σ1{2
y ,

where V is an T ˆ n matrix with t-th row defined as Σ
´1{2
y yt. It follows from an application

of Ostrowsky’s Theorem (Horn and Johnson (2013, Theorem 4.5.9)) to the last equation
that

µnpΣyqµn

ˆ

1

T
V1V

˙

ď Σ̂y ď µ1pΣyqµ1

ˆ

1

T
V1V

˙

.

We first show that if nÑ 8 and T “ Opn2{γ´1q for any η ą 0 there exists positive constants
C1 and C2 such that

1´ C1

˜

c

n

T
`

c

η log n

T

¸

ď µn

ˆ

V1V

T

˙

ď µ1

ˆ

V1V

T

˙

ď 1` C2

˜

c

n

T
`

c

η log n

T

¸

,

(19)
with probability at least 1 ´ Opn´ηq. It follows from Proposition 7 that to show (19) it
suffices to show that

›

›

›

›

1

T
V1V ´ I

›

›

›

›

ď ε “ C˚

˜

c

n

T
`

c

η log n

T

¸

,

with probability at least 1 ´ Opn´ηq. It follows from Proposition 8 that we can bound the
norm in the last expression using a 1

4
-net N of the unit sphere Sn´1, that is

›

›

›

›

1

T
V1V ´ I

›

›

›

›

ď 2 max
xPN

ˇ

ˇ

ˇ

ˇ

1

N
}Vx}22 ´ 1

ˇ

ˇ

ˇ

ˇ

where N . Then to complete the proof it suffices to show that

max
xPN

ˇ

ˇ

ˇ

ˇ

1

N
}Vx}22 ´ 1

ˇ

ˇ

ˇ

ˇ

ď
ε

2

with the prescribed probability. We begin by noting that, for a given x in Sn´1, we have

1

T
}Vx}22 ´ 1 “

1

T

T
ÿ

t“1

pV 1t xq
2
´ 1 “

1

T

T
ÿ

t“1

`

pV 1t xq
2
´ 1

˘

“
1

T

T
ÿ

t“1

Zt ,

where Zt “ pV 1t xq
2 ´ 1. Notice that by construction Zt has an expected value of zero.

Moreover, it follows from Assumptions 3 and Propositions 5 and 6 that Zt satisfies the
Assumptions of the Bernstein-type inequality of Merlevede et al. (2011) (Theorem 2) and we
have that there exists positive constants only depending on C1, C2, γ1 and γ3 of Assumption
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3 labeled C3, C4, C5, C6 and C7 such that for T large enough

P

ˆ
ˇ

ˇ

ˇ

ˇ

1

T
}Vx}22 ´ 1

ˇ

ˇ

ˇ

ˇ

ą
ε

2

˙

“ P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

Zt

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

2

¸

ď T exp

ˆ

´
pTεqγ

C32γ

˙

` exp

ˆ

´
T 2ε2

4C4p1` C5T q

˙

` exp

ˆ

´
T 2ε2

4C6T
exp

ˆ

pTεqγp1´γq

2γp1´γqC7plogpTεqqγ

˙˙

. (20)

where γ´1 “ γ´11 ` 2γ´12 and it is such that γ ă 1. The first term on the right hand side of
(20) can be bounded using Jensen’s inequality by

T exp

ˆ

´
pTεqγ

C32γ

˙

“ T exp

ˆ

´
pC˚qγp

?
Tn`

?
Tη log nqγ

C32γ

˙

ď T exp

ˆ

´
pC˚qγ

C32γ
pTn` Tη log nqγ{2

˙

.

For nÑ 8 and T “ Opn2{γ´1q there exists a positive constant C such that

pTn` Tη log nqγ{2

pn` η log nq
“
pTnqγ{2

n

`

1` η logn
n

˘γ{2

`

1` η logn
n

˘ “ Op1q

ˆ

1`
η log n

n

˙γ{2´1

ă C .

It follows that there exists a postive constant C 1 such that

T exp

ˆ

´
pTεqγ

C32γ

˙

ď exp p´C 1pn` η log nqq . (21)

The second term on the right hand side of (20) can be bounded by

exp

ˆ

´
T 2ε2

4C4p1` C5T q

˙

“ exp

˜

´
T 2pC˚q2p

a

n{T `
a

η log n{T q2

4C4p1` C5T q

¸

ď exp

ˆ

´
T 2pC˚q2pn{T ` η log n{T q

4C4p1` C5T q

˙

“ exp

ˆ

´
pC˚q2

4C4{T ` 4C4C5

pn` η log nq

˙

where second inequality follows from the fact that a2 ` b2 ď pa` bq2 if a, b ě 0. For nÑ 8

and T “ Opn2{γ´1q there exists a positive constant C2 such that

exp

ˆ

´
T 2ε2

4C4p1` C5T q

˙

ď exp p´C2pn` η log nqq . (22)

Using steps similar to the ones used to establish (21) and (22) it is straightforward to see
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that for n Ñ 8 and T “ Opn2{γ´1q the third term on the right hand side of (20) can be
bounded by

exp

ˆ

´
T 2ε2

4C6T
exp

ˆ

pTεqγp1´γq

2γp1´γqC7plogpTεqqγ

˙˙

ď exp p´C3pn` η log nqq . (23)

where C3 is a suitable positive constant. From (21) (22) and (23) we get that there exists
a positive constant C such that for nÑ 8 and T “ Opn2{γ´1q

P

ˆˇ

ˇ

ˇ

ˇ

1

T
}Vx}22 ´ 1

ˇ

ˇ

ˇ

ˇ

ą
ε

2

˙

ď 3 exp p´Cpn` η log nqq .

It follows from Proposition 9 that we can choose the N net so that it has a cardinality
|N | ď 9n. Using the union bound we get that

P

ˆ

max
xPN

ˇ

ˇ

ˇ

ˇ

1

T
}Vx}22 ´ 1

ˇ

ˇ

ˇ

ˇ

ą
ε

2

˙

ď 9n ¨ 3 exp p´Cpn` η log nqq ď 2 expp´Cη log nq “ Opn´ηq ,

which implies the claim.

Part (ii). It follows Proposition 7 and Part (i).

Part (iii). We begin by noting that

}K̂´K} “ }K̂pΣy ´ Σ̂yqK} ď }K̂}}Σy ´ Σ̂y}}K} “ µnpΣ̂yq
´1
}Σy ´ Σ̂y}µnpΣyq

´1 .

It follows from Part (i) and (ii) that the events

!

}Σy ´ Σ̂y} ď C3

a

n{T
)

and
!

µnpΣ̂yq ě µnpΣyq ` C1

a

n{T
)

are true at least with probability 1 ´ Opn´ηq. It follows from Fréchet inequality that with
at least probability 1´Opn´ηq we have that

}K̂´K} ď
´

µnpΣyq ` C1

a

n{T
¯´1

¨ C3

a

n{T ¨ µnpΣyq
´1
“ C4

a

n{T .

Part (iv). Note that

}K̂i} ´ }Ki} “ }K̂i `Ki ´Ki} ´ }Ki} ď }Ki} ` }K̂i ´Ki} ´ }Ki} “ }pK̂´Kqei}

ď }K̂´K} .

The claim then follows from Part(iii).

Proof of Corollary 1. The proof consist of showing that the probability of inconsistent se-
lection of the granular series converges to zero under the assumptions of the corollary. First,
note that by Theorem 1 (i) we have that that for n Ñ 8 and T “ Opn2{γ´1q we have that
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K̂ exists with high probability. Next, note that

PpEcRq “ P

ˆ

min
i“1,...,k

}K̂i} ă max
j“k`1,...,n

}K̂j}

˙

“ P

ˆ

max
j“k`1,...,n

}K̂j} ` max
i“1,...,k

p´}K̂i}q ą 0

˙

ď pn´ kq k max
j“k`1,...,n
i“1,...,k

P
´

}K̂j} ´ }K̂i} ą 0
¯

“ pn´ kq k max
j“k`1,...,n
i“1,...,k

P
´

}Kj} ´ }Ki} ` p}K̂j} ´ }Kj}q ´ p}K̂i} ´ }Ki}q ą 0
¯

ď pn´ kq k max
j“k`1,...,n
i“1,...,k

P
´

}Kj} ´ }Ki} `

ˇ

ˇ

ˇ
}K̂j} ´ }Kj}

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
}K̂i} ´ }Ki}

ˇ

ˇ

ˇ
ą 0

¯

“ pn´ kq k max
j“k`1,...,n
i“1,...,k

P
´ˇ

ˇ

ˇ
}K̂i} ´ }Ki}

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
}K̂j} ´ }Kj}

ˇ

ˇ

ˇ
ą }Ki} ´ }Kj}

¯

ď pn´ kq k max
j“k`1,...,n
i“1,...,k

max
l“i,j

P

ˆ

ˇ

ˇ

ˇ
}K̂l} ´ }Kl}

ˇ

ˇ

ˇ
ą
}Ki} ´ }Kj}

2

˙

.

Note that by Theorem 1 (iv) for any η1 ą 0 there exists positive a positive constant C such
that

P

ˆ

ˇ

ˇ

ˇ
}K̂l} ´ }Kl}

ˇ

ˇ

ˇ
ą
}Ki} ´ }Kj}

2

˙

ď 2P

ˆ

}K̂l} ´ }Kl} ą C

c

n

T

˙

“ Opn´η
1

q ,

note that this follows from Lemma 1 that establishes }Ki} ´ }Kj} ą 0. Thus, using the
union bound we can bound the probability of misclassification by

PpEcRq “ nOpn´η
1

q “ Opn´η
1`1
q.

The claim of the corollary then follows by choosing η “ η1 ´ 1.

Proposition 10. Let yt be generated by model (6) under assumptions 2 and 3. Suppose
n Ñ 8 and T “ Opn2{γ´1q. Then, for any η ą 0 there exists positive constant C such that
for any i “ 1, . . . , n´ 1

}K̂piq}

}K̂pi`1q}
´

}Kpiq}

}Kpi`1q}
ě C

c

n

T
.

at least with probability OpT´ηq.

Proof of Proposition 10. For any i “ 1, . . . , n´ 1 we have that

}K̂piq}

}K̂pi`1q}
´

}Kpiq}

}Kpi`1q}
“

}Kpiq} ` }K̂piq} ´ }Kpiq}

}Kpi`1q} ` }K̂pi`1q} ´ }Kpi`1q}
´

}Kpiq}

}Kpi`1q}
.

Recall that C1 ă µnpKq ď }Kpi`1q} ď µ1pKq ă C2 where C1 and C2 are positive constants.
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Condition on the event E1 “ t}K̂pi`1q} ´ }Kpi`1q} ď 1{2µnpKqu. It follows from Theorem
1 that for n Ñ 8, T “ Opn2{γ´1q and any η ą 0 we have that PpE1q ě 1 ´ OpT´ηq. This
allows us to write

}K̂piq}

}K̂pi`1q}
´

}Kpiq}

}Kpi`1q}
ď

}Kpiq} ` }K̂piq} ´ }Kpiq}

}Kpi`1q} ´

ˇ

ˇ

ˇ
}K̂pi`1q} ´ }Kpi`1q}

ˇ

ˇ

ˇ

´
}Kpiq}

}Kpi`1q}
.

Using the fact that for 0 ă x ă a{2 we have that 1{pa´ xq ď 1{a` p2{a2qx and after some
computations we get that there are positive constants C1, C2 and C3 such that

}K̂piq}

}K̂pi`1q}
´

}Kpiq}

}Kpi`1q}
ď C1

ˇ

ˇ

ˇ
}K̂piq} ´ }Kpiq}

ˇ

ˇ

ˇ
` C2

ˇ

ˇ

ˇ
}K̂pi`1q} ´ }Kpi`1q}

ˇ

ˇ

ˇ

`C3

ˇ

ˇ

ˇ
}K̂piq} ´ }Kpiq}

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
}K̂pi`1q} ´ }Kpi`1q}

ˇ

ˇ

ˇ
,

Condition on the events E2 “
!

}K̂piq} ´ }Kpiq} ď C4

a

n{T
)

and E3 “
!

}K̂pi`1q} ´ }Kpi`1q} ď C5

a

n{T
)

.

It follows from Theorem 1 that for n Ñ 8, T “ Opn2{γ´1q and any η ą 0 we can choose
constants C4 and C5 such that PpEiq ě 1 ´ OpT´ηq for i “ 2, 3. Then we have that for n
and T sufficiently large there exisits a positive constant C6 such that

}K̂piq}

}K̂pi`1q}
´

}Kpiq}

}Kpi`1q}
ď C6

c

n

T
.

Last, note that
PpE1 X E2 X E3q ě 1´OpT´ηq ,

which implies the statement of the proposition.

Proof of Corollary 2. The proof consists in showing that the probability of inconsistent se-
lection of k converges to zero under the assumptions of the corollary. We note that the event
of inconsistent selection can be written as

EcS “ tk̂ ‰ ku “
ď

j“1,...,n´1
j‰k

#

}K̂pkq}

}K̂pk`1q}
ă

}K̂pjq}

}K̂pj`1q}

+

.

We begin by analyzing the probability of the event EcS conditional on the event ER, i.e.
that the granular series are correctly ordered. It follows from corollary 1 that for n Ñ 8,
T “ Opn2{γ´1q and any η1 ą 0 we have that PpERq ě 1 ´ OpT´η

1

q. Using the union bound,
we get that

PpEcS| ERq ď pn´ 2q max
j“1,...,n´1

j‰k

P

˜

}K̂pkq}

}K̂pk`1q}
ă

}K̂pjq}

}K̂pj`1q}

¸

“ pn´ 2q max
j“1,...,n´1

j‰k

P

˜

}K̂pjq}

}K̂pj`1q}
´

}K̂pkq}

}K̂pk`1q}
ą 0

¸

.
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Next we note that for any j “ 1, . . . , n´ k with j ‰ k we have

}K̂pjq}

}K̂pj`1q}
´

}K̂pkq}

}K̂pk`1q}
“

}Kpjq}

}Kpj`1q}
´

}Kpkq}

}Kpk`1q}
`

˜

}K̂pjq}

}K̂pj`1q}
´

}Kpjq}

}Kpj`1q}

¸

´

˜

}K̂pkq}

}K̂pk`1q}
´

}Kpkq}

}Kpk`1q}

¸

ď
}Kpjq}

}Kpj`1q}
´

}Kpkq}

}Kpk`1q}
`

ˇ

ˇ

ˇ

ˇ

ˇ

}K̂pjq}

}K̂pj`1q}
´

}Kpjq}

}Kpj`1q}

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

}K̂pkq}

}K̂pk`1q}
´

}Kpkq}

}Kpk`1q}

ˇ

ˇ

ˇ

ˇ

ˇ

.(24)

Note that here Kpkq denotes the population analog of K̂pkq (that is Kpkq is based on the same

ordering on the columns used to rank K̂pkq). Using the inequality in (24) we get that

P

˜

}K̂pjq}

}K̂pj`1q}
´

}K̂pkq}

}K̂pk`1q}
ą 0

¸

ď 2 max
l“k,j

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

}K̂plq}

}K̂pl`1q}
´

}Kplq}

}Kpl`1q}

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

2

ˆ

}Kpkq}

}Kpk`1q}
´

}Kpjq}

}Kpj`1q}

˙

¸

.

(25)

where we have used the facts (i) for random variables X1, X2 with P pX1 ď X2q “ 1 we have
that P pX1 ą 0q ď P pX2 ą 0q; (ii) for positive random variables X1, X2 and constant C we
have that PpX1 `X2 ą Cq ď 2 maxi“1,2 PpXi ą 1{2Cq.

We now focus on showing that the probability on the right hand side of (25) is small
when n and T are large. First, note that lemma 4 implies that for any j “ 1, ..., n´ 1 with
j ‰ k we have that there exists a positive constant C such that

}Kpkq}

}Kpk`1q}
´

}Kpjq}

}Kpj`1q}
ą C.

By applying proposition 10 we have that for n Ñ 8, T “ Opn2{γ´1q and any η1 ą 0 there
exists a positive constant C such that

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

}K̂l}

}K̂l`1}
´

}Kl}

}Kl`1}

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

2

ˆ

}Kk}

}Kk`1}
´

}Kj}

}Kj`1}

˙

¸

ď P

˜

}K̂l}

}K̂l`1}
´

}Kl}

}Kl`1}
ě C

c

n

T

¸

ď OpT´η
1

q .

Thus, an upper bound on the probability of incorret selection is given by

PpEcS|ERq ď nOpT´η
1

q ď OpT´η
1`1
q.

Finally, the unconditional probability of correct selection is bounded by

PpESq ě PpES, ERq “ PpES|ERqPpERq ě p1´OpT´η
1`1
qqp1´OpT´η

1

qq ě 1´OpT´η
1`1
q .

The claim of the corollary then follows by choosing η “ η1 ´ 1.
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