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Appendices A to C are in the main document. This document contains Appendices

D to G.

D Implementation of the Approximate conjugate

algorithm to a VAR

D.1 VAR and the Normal-Inverted Wishart prior

We restate some of the definitions already given in the main paper in order to make

this appendix self-contained. The VAR model with Gaussian shocks is given by

yt =
P∑
p=1

Bp yt−p + c+ ut, ut ∼ N(0,Σ), t = 1, ..., T. (D.1)

The parameters of the VAR are θ = (B,Σ), where B is a K × N matrix defined as

B = (B1, ..., BP , c)
′, K = NP + 1, and Σ is an N × N symmetric positive definite

matrix.
∗Contacts: albert.marcet@iae.csic.es and marek.jarocinski@ecb.int.
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We will work with the conjugate Normal-Inverted Wishart priors for B,Σ given

by

p(B,Σ) = NIW(B,Σ; M,Q, S, v) (D.2)

with parameters M,Q, S, v of dimensions K×N , K×K, N×N and 1×1 respectively.

This density satisfies

p(vecB|Σ) = N (vecM,Σ⊗Q), (D.3)

p(Σ) = IW(S, v), (D.4)

where N denotes the normal density, IW denotes the Inverted Wishart density pa-

rameterized so that E(Σ) = S/(v−N−1). See, e.g., Bauwens et al. (1999) Appendix

A.2.6-A.2.7 for the properties of (D.2)-(D.4).

D.2 G, moments of interest, initialization

We assume that the prior about observables is pY and let z denote the iteration

number.

We set G to be the class of Normal-Inverted Wishart densities conjugate for the

model (D.1), i.e., such that the posterior pg(θ|Y ) is also Normal-Inverted Wishart.

We specify the moments of interest Eq(θ). In the main paper we have spec-

ified the moments M = E(B), D = E(Σ−1), V = E(vecB(vecB)′) and H =

diagE(vec Σ−1 (vec Σ−1)
′
). Note that it is equivalent to work in terms of the two

first moments plus the centered second moments, i.e. M = E(B), D = E(Σ−1),

V = cov(vecB) and H = var(Σ−1). In this appendix it is convenient to work in

terms of the centered moments because some standard formulas are available for

them. Througout this appendix, by ‘var’ we mean a matrix of variances and by ‘cov’

we mean the variance-covariance matrix. To be precise, for a matrix A, var(A) de-

notes the matrix in which each element is the variance of the corresponding element

of A, E
(
(A−E(A))2

)
, while for a vector a, cov(a) is the variance-covariance matrix

of a, E
(
(a−E(a))(a−E(a))′

)
. In the above (and throughout this appendix) we use
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the notation that for a matrix A, A2 denotes a matrix in which each element is the

square of the corresponding element of A.

We initialize the algorithm with a random g0 obtained with the following pro-

cedure. We draw from pY a realization Y . Then we compute the posterior of the

parameters B,Σ conditional on Y . This posterior belongs to G. When computing this

posterior we use the Minnesota prior (described e.g. in the Appendix of the main pa-

per), but, to make it less informative, we blow up its standard deviation by 10u where

u is a random draw from a uniform distribution on (0,3). To introduce additional

variation in the starting points, we draw v randomly from a uniform distribution

between 10 and 200.

D.3 One iteration with the algorithm

This subsection explains in detail how we obtain gz(B,Σ) given gz−1(B,Σ). The

assumptions are as follows.

1. After iteration z − 1 the density of (B,Σ) is Normal-Inverted Wishart,

gz−1(B,Σ) = NIW
(
B,Σ; M z−1, Qz−1, Sz−1, vz−1

)
. (D.5)

2. We have at our disposal a sample of J draws of Y from pY , denoted Y
j
, j = 1...J .

Each drawn Y
j

consists of values of N variables for T1 periods.

Iteration z proceeds in three steps (we number the steps 2a, 2b and 3 consistently

with the numeration in Algorithm 2 in the paper).

Step 2a. For each draw j we compute the posterior density of B,Σ conditional on

Y
j

with prior gz−1(B,Σ). This posterior density, denoted pz(B,Σ|Y j
), is a Normal-

Inverted Wishart density with parameters that we denote as M z,j, Qz,j, Sz,j, vz,j (with

superscript z highlighting the dependence on the prior we are using in iteration z and

superscript j highlighting the dependence on the drawn realization Y
j
). We also

compute Rz,j = (Sz,j)−1. The form of the density and the closed-form expressions
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for its parameters are given in Result D.1 below. The closed-form expressions for its

moments of interest for us are given in the subsequent Result D.2. These results are

known from the literature but we provide them here to keep this section self-contained.

Result D.1. In the VAR given by (D.1) with the prior NIW(B,Σ; Mpri, Qpri, Spri, vpri)

the posterior density is a Normal-Inverted Wishart density,

p(B,Σ|Y ) = NIW (B,Σ; Mpo, Qpo, Spo, vpo) (D.6)

with parameters Mpo, Qpo, Spo, vpo given by

Qpo = (Xpo′Xpo)
−1

, Mpo = (Xpo′Xpo)
−1′

XpoY po

Spo = (Y po −XpoMpo)′(Y po −XpoMpo) and vpo,

where

vpo = vpri + T1, Y po =

Y pri

Y

 , Xpo =

Xpri

X

 .

Y pri and Xpri are defined as follows,

Y pri =

(cholSpri)′

W priMpri

 , Xpri =

 0

W pri

 and W pri = chol
(
(Qpri)−1

)′
. (D.7)

Y and X are defined as follows,

Y
T×N

=


y′1

y′2
...

y′T

 and X
T×K

=


y′0 y′−1 . . . y1−P

′ 1

y′1 y′0 . . . y2−P
′ 1

...
...

...
...

y′T−1 y′T−2 . . . y′T−P 1

 , (D.8)

where T is the number of observations in Y . In words, X is the matrix of lagged values

of Y and exogenous variables (here: ones, corresponding to the constant term). Note

that when constructing X we use the observed pre-sample values y−P+1, ..., y0, which

are treated as given throughout the paper.

4



Proof. It is easy to show that a Normal-Inverted Wishart density with parameters

Mpri, Qpri, Spri, vpri can be equivalently written in terms of parameters Y pri, Xpri,

vpri,

p(B,Σ) ∝ |Σ|−(vpri+K+N+1)/2 exp

(
−1

2
tr(Y pri −XpriB)′(Y pri −XpriB)Σ−1

)
(D.9)

where Y pri and Xpri are given in (D.7). Furthermore, The likelihood of Y is

p(Y |B,Σ) ∝ |Σ|−T/2 exp

(
−1

2
tr(Y −XB)′(Y −XB)Σ−1

)
. (D.10)

Combining the prior (D.9) and the likelihood (D.10) in the standard way we arrive

at the posterior given in (D.6).

Result D.2. When the density of B,Σ satisfies p(B,Σ) = NIW(B,Σ; M,Q, S, v),

then Σ−1 and B have the following moments.

E(Σ−1) = Rv, (D.11)

var(Σ−1) = v
(
R2 + diag(R) diag(R)′

)
, (D.12)

E(B) = M, (D.13)

cov(vecB) =
1

v −N − 1
S ⊗Q, (D.14)

where R ≡ S−1, R2 is a matrix in which each element is the square of the corre-

sponding element of R and diagR is a column vector containing the main diagonal

of R.

Proof. (D.11) and (D.12) follow from the fact that the implied density of Σ−1 is

Wishart

p(Σ−1) =W (R, v) ,

where W denotes the Wishart density and R = S−1, and from the properties of the

Wishart density. See e.g. Zellner (1971), p.389. (D.13) and (D.14) follow from the

fact that the implied marginal density of B is Matricvariate Student

p(B) = T (M, (Q)−1, S, v), (D.15)
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where T denotes the Matricvariate Student density and from the properties of the

Matricvariate Student density. See Bauwens et al. (1999), Appendix A.2.7.

Using these results we compute J realizations of the four moments of interest,

Egz−1(Σ−1|Y j) = Rz,jvz,j ≡ Dz,j, (D.16)

vargz−1(Σ−1|Y j) = vz,j
(
(Rz,j)2 + diagRz,j diagRz,j′) ≡ Hz,j, (D.17)

Egz−1(vecB|Y j) = vecM z,j ≡ mz,j, (D.18)

covgz−1(vecB|Y j) =
1

vz,j −N − 1
Sz,j ⊗Qz,j ≡ V z,j. (D.19)

Above we have also defined short-hand notations for the moments.

Step 2b. We approximate by Monte Carlo the moments of interest of B,Σ

implied by F(gz−1(B,Σ)), denoted EF(gz−1)(Σ
−1), varF(gz−1)(Σ

−1), EF(gz−1)(B) and

covF(gz−1)(vecB).

Result 1 of the main paper justifies the following Monte Carlo approximations:

EF(gz−1)(Σ
−1) =

1

J

J∑
j=1

Dz,j, (D.20)

varF(gz−1)(Σ
−1) =

1

J

J∑
j=1

Hz,j +
1

J

J∑
j=1

(Dz,j)2 − EF(gz−1)(Σ
−1)2, (D.21)

EF(gz−1)(B) =
1

J

J∑
j=1

M z,j (D.22)

covF(gz−1)(vecB) =
1

J

J∑
j=1

V z,j +
1

J

J∑
j=1

mz,j(mz,j)′ − vecEF(gz−1)(B) vecEF(gz−1)(B)′.

(D.23)

The last two terms in the expressions for varF(gz−1)(Σ
−1) and covF(gz−1)(vecB) appear

because variance is a central moment. These two terms give the variance of the

posterior means of, respectively, Σ−1 and B, across draws. Hence, (D.21) and (D.23)

are cases of the familiar expression for the total variance, obtained as the average

conditional variance plus the variance of the conditional means.
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Step 3. We find parameters of gz(B,Σ), denoted M z, Qz, Sz, vz so as to match the

moments EF(gz−1)(Σ
−1), varF(gz−1)(Σ

−1), EF(gz−1)(B) and covF(gz−1)(vecB) as closely

as possible with a Normal-Inverted Wishart density.

Note that gz(B,Σ) is an approximation of F(gz−1(B,Σ)) and there are many

ways in which we could construct an approximation. After some experimenting we

found that the approach described here works well in practice and is computationally

convenient, but other approaches should be possible too. We proceed as follows.

First, we find vz and Sz that approximately match E(Σ−1) and var(Σ−1) implied by

F(gz−1(B,Σ)). Second, given vz and Sz, we find M z and Qz that approximately

match E(B) and cov(vecB) implied by F(gz−1(B,Σ)).

Step 3.1. We construct vz, Sz that approximately match the moments of Σ−1

given by (D.20) and (D.21). We match (D.20) exactly and we match (D.21) approxi-

mately. Note that the variances in (D.21) can only be matched approximately because

the Wishart density imposes a particular relation between the expectation and the

variances and this relation might not hold between EF(gz−1)(Σ
−1) and varF(gz−1)(Σ

−1).

We construct vz as

vz =
1

N2

N∑
r=1

N∑
c=1

(
H̃(r, c)

)
, (D.24)

i.e. as the average value of the entries of matrix H̃, where

H̃ =
(
(EF(gz−1)(Σ

−1))2 + diagEF(gz−1)(Σ
−1) diagEF(gz−1)(Σ

−1)′
)
� varF(gz−1)(Σ

−1)

and � denotes element-by-element division of two equally-sized matrices. To justify

(D.24) observe that when Σ−1 comes from a Wishart distribution W(R, v) then, by

the properties of the Wishart distribution,

(
(E(Σ−1))2 + diagE(Σ−1) diagE(Σ−1)′

)
� var(Σ−1) =

(
v2R2 + v2 diagR(diagR)′

)
� v(R2 + diagR(diagR)′) = vUN ,

where UN is an N ×N matrix with all entries equal to 1.
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We construct Rz as

Rz = EF(gz−1)(Σ
−1)/vz. (D.25)

The above equation follows from the fact that if Σ−1 comes from a Wishart distribu-

tion W(R, v) then E(Σ−1) = Rv. Given Rz, we compute

Sz = (Rz)−1. (D.26)

Step 3.2. We construct M z, Qz that approximately match the moments of B

given by (D.22) and (D.23). We match EF(gz−1)(B) exactly and we match covF(gz−1)(vecB)

approximately. Note that the variance can only be matched approximately because

the Matricvariate Student density with parameter Sz imposes on the covariance of B

the structure Sz ⊗C, where C is some positive definite matrix, and covF(gz−1)(vecB)

is not guaranteed to have such a structure.

We construct M z as

M z = EF(gz−1)(B). (D.27)

We construct Qz as

Qz =

(
N∑
n=1

Vnsn

)
/

N∑
n=1

(sn)2, (D.28)

where sn denotes the nth element on the diagonal of Sz and Vn is the nth diagonal

K×K block of covF(gz−1)(vecB)× (vz−N −1), or, in other words, Vn is the variance

of bn, the vector of the coefficients of the nth equation of the VAR, multiplied by

(vz −N − 1),

Vn ≡ covF(gz−1)(bn)(vz −N − 1).

The justification of (D.28) is the following. Note that we want to find Qz such that

covF(gz−1)(vecB) ≈ 1
vz−N−1

Sz⊗Qz, where the right-hand side is the variance of vecB

implied by the Normal-Inverted Wishart density with parameters Qz, Sz, vz. First, to

get rid of vz we multiply by (vz−N−1) and define V = covF(gz−1)(vecB)(vz−N−1),

8



so that V ≈ Sz⊗Qz. Next, we want our approximation to be the best for the diagonal

K ×K blocks of V . Therefore, we specify the objective function to be minimized

N∑
n=1

(snQ
z − Vn)2, (D.29)

i.e. the sum squared deviations between the N diagonal K ×K blocks of V , denoted

Vn for n = 1, ..., N and the N diagonal K × K blocks of Sz ⊗ Qz, given by snQ
z.

Note that the objective function is matrix-valued as there is a separate but analo-

gous minimization problem for each entry of Qz. The first order conditions of the

minimizations are

2
N∑
n=1

(snQ
z − Vn)sn = 0,

implying
N∑
n=1

sn
2Qz =

N∑
n=1

Vnsn.

Hence, (D.28) minimizes the objective function (D.29).

Summarizing, the parameters of gz(B,Σ), vz, Sz,M z, Qz are given respectively by

(D.24), (D.26), (D.27) and (D.28).

E A Monte Carlo experiment with the approxi-

mate conjugate algorithm

In this section we study by Monte Carlo the reliability of our approximate conjugate

algorithm. In the Monte Carlo we assume that the solution of the inverse problem (4)

is a known Normal-Inverted Wishart density. We ask two questions of concern for a

researcher who wants to implement our algorithm in practice: First, is it difficult to

find starting values for which the algorithm converges to the solution of the inverse

problem (4)? Second, how precise and how fast is the algorithm? The results of

the Monte Carlo experiment are promising. We generate 100 starting values, each

obtained in a natural way from a random draw of Y from pY . We find that for each
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of these 100 starting values our algorithm recovers the 667 true parameters of pθ with

great precision in under 5 minutes.

E.1 The design of the experiment

The design of the experiment is based on the empirical application in section 4.2 of

the main paper. We focus on this application because the dimension of the VAR is

highest there.

We assume that the ‘true’ marginal density of the parameters pθ is Normal-

Inverted Wishart, with parameters M∗, Q∗, S∗, v∗. The density of (B,Σ) implied

by M∗, Q∗, S∗, v∗, model (D.1) and an initial value of (y−P+1, ...y−1, y0) together

determine pY – the density of yt in t = 1, ..., T . We would like to use values of

(M∗, Q∗, S∗, v∗) and (y−P+1, ..., y0) that are representative for potential real-life sit-

uations. Therefore, in this experiment we use the values (yo−P+1, ..., y
o
0) taken from

the dataset of Christiano et al. (1999) (superscript o indicates ‘observed data’ as

in Geweke (2005)) and the values of M∗, Q∗, S∗, v∗ that we found estimating model

(D.1) on this dataset using the standard noninformative prior p(B,Σ) = |Σ|−(N+1)/2.

More specifically, define Y o to be the T o×N matrix collecting the observations on yt

from period 1 to T o and define Xo to be the T o ×K matrix with the corresponding

regressors: the lagged values of yt and a column of 1s reflecting the constant term.

Then we set M∗ = (Xo′Xo)−1Xo′Y o, Q∗ = (Xo′Xo)−1, S∗ = (Y o−XoM)′(Y o−XoM)

and v∗ = T o −K −N − 1.

There are N = 7 variables and P = 4 lags in this VAR. We set T , the number

of periods in p(Y ), to 33, consistently with our informal rule of thumb. Namely,

this choice of T equalizes the dimension of the density p(Y ) and the dimension of

p(θ) that we want to uncover. The dimension of Y is TN = 231, and the dimension

of (B,Σ) (without counting the repeated entries in the symmetric matrix Σ) is also

KN +N(N + 1)/2 = 231.
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E.2 Results on the convergence of the iterations

The algorithm converges towards pθ from each of the 100 starting points. To illustrate

this, Figure E.1 plots the evolution of gz along the iterations for each starting point g0.

The first four panels show respectively the first element of M , the log determinant of

Q, the log determinant of S and v. The values of these (functions of) gz parameters are

plotted against z with solid lines. The ‘true’ values of these (functions of) parameters

of pθ are indicated with dashed horizontal lines. We see that in all plots the 100 solid

lines concentrate in the vicinity of the dashed line as iterations progress. We conclude

that it is easy, in this application, to find good starting points for the algorithm based

on the knowledge of pY alone. We also experimented with other starting points. For

example, the algorithm also converges to pθ when we start at the standard Minnesota

prior or when we set M to a matrix of zeros. However, the algorithm runs into

numerical problems or appears to stabilize away from pθ when we change our good

starting points selectively in only some dimensions, e.g. set a very tight density for

the constant term c in the VAR, or scale Q and S in opposite directions by factors

of more than 100.

The precision of the algorithm is very good. In addition to the first four panels

of Figure E.1 we also report the precision in terms of the observables Y , because

discrepancies of parameters from the ‘true’ values are hard to interpret. To illustrate

the precision, the last panel shows the evolution of the Kullback-Leibler divergence

between p(Y ) and
∫

Θ
p(Y |θ) gz(θ)dθ estimated from a sample of 1000 draws from each

density. We use p(Y ) as the weighting function in Kullback-Leibler divergence, i.e.,

we estimate
∫
Y p(Y ) log

(
p(Y ) /

∫
Θ
p(Y |θ) gz(θ)dθ

)
dY . We use the nearest-neighbor

estimator the Kullback-Leibler divergence proposed by Wang et al. (2009) and im-

plemented in the TIM package for Matlab, Rutanen (2011). The plot suggests that

already after about 20 iterations the discrepancies of gzθ from pθ are negligible as far as

the implications for Y are concerned, according to our estimator of Kullback-Leibler

divergence. But what does this mean in practice? To illustrate the match of the
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Figure E.1 – Parameters of gz along the iterations. Last plot: the estimated Kullback-

Leibler divergence between p(Y ) and
∫

Θ p(Y |θ) g
z(θ)dθ along the iterations.
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∫
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line) plotted against time.

distributions of the observables implied by gzθ and pθ, Figure E.2 plots the quantiles

0.05 and 0.95 of yt against t for the 33 periods for which we specified pY . The solid

line shows the percentiles of yt generated from pY while the dashed lines show the

percentiles of yt generated from the distribution implied by g200,
∫

Θ
p(Y |θ) g200(θ)dθ,

in the run of the algorithm that achieved the largest Kullback-Leibler divergence

from the target, i.e., in the worst case. We used 10,000 draws of Y to reestimate the

Kullback-Leibler divergences at the 200th iteration, in order to identify this worst

case. We also used 10,000 draws of Y to estimate the plotted quantiles. We see

in Figure E.2 that even in the case when the Kullback-Leibler divergence was the

largest, the quantiles 0.05 and 0.95 of both distributions of Y basically coincide.

We conclude that the algorithm is extremely efficient compared to alternative

approaches to such inverse problems. In the current problem 200 iterations take

under 5 minutes with Matlab on a standard PC. Note that for a 7-variable VAR

with 4 lags the dimension of M,Q, S, v (without counting the repeated entries in the

symmetric matrices Q and S) is KN +K(K + 1)/2 +N(N + 1)/2 + 1 = 667. To our

knowledge, there are no other feasible approaches to finding these 667 parameters.
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For example, it would be impossible to numerically minimize an objective function

(such as the Kullback-Leibler divergence between the left-hand side and the right-

hand side of (4)) with gradient methods because the dimension of 667 is prohibitively

large for such methods.

F Additional results for the VAR of Christiano,

Eichenbaum and Evans (1999)

This section reports additional empirical results related to the application in section

4.2. Figure F.1 reports responses of all variables to a monetary policy shock. Table

F.1 reports growth rates of the variables in the main sample and in subsamples.

Discussion of the sensitivity analysis follows.

Figure F.2 reports the sensitivity of the posterior impulse responses of output to

different specifications of the prior about the initial growth rates. When we discuss

this figure below, our point of reference is the ‘baseline’ case, discussed in the main

paper, for which the prior about growth rates is calibrated on the estimation sample

1965-1995.

In panel a. we calibrate the prior about growth rates, as well as the parameter

S, based on the data from the years 1958-1964, i.e., preceding the estimation sample

1965-1995. As shown in panel a., when we use this prior, the response of output is

weaker and less persistent than in the baseline. This prior uses no information from

the estimation sample. This fact makes it more appealing on Bayesian grounds than

the baseline prior, which does use information from the estimation sample. However,

this prior turns out to be very different from the baseline prior: it is very tight and

centered around very different growth rates than those observed in the estimation

sample. The reason is that growth rates in 1958-1964 (reported the last column of

Table F.1) were quite different and much less volatile than in the estimation sample

1965-1995 (reported the first column of Table F.1). As shown in Table F.1, in 1958-
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Figure F.1 – Impulse responses of all variables to a monetary policy shock, quantiles

0.05, 0.5 and 0.95 of the posteriors obtained with alternative priors. Shaded area:

quantiles 0.05 to 0.95 of the posterior obtained with the noninformative prior.
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Table F.1 – Annualized growth rates of the variables: mean (standard deviation).

1965-1995 1965-1985 1985-1995 1958-1964

Output 2.7 2.8 2.6 4.3

(3.6) (4.2) (2.1) (3.3)

Prices 5.0 5.9 3.1 1.8

(2.5) (2.4) (1.1) (1.3)

Commodity prices 0.0 0.0 0.2 0.0

(2.1) (2.2) (1.8) (0.7)

Fed funds rate 0.1 0.2 -0.2 0.2

(4.8) (5.6) (2.1) (1.3)

Nonborrowed reserves 5.3 4.3 7.4 1.5

(9.1) (8.8) (9.3) (5.8)

Total reserves 5.2 4.3 7.2 1.4

(6.6) (4.7) (9.0) (4.2)

Money (M1) 6.5 6.3 6.9 2.7

(4.0) (3.1) (5.5) (2.3)

1964 the standard deviation of the growth rate is 1.3 for prices (as opposed to 2.5 in

the estimation sample), 0.7 for commodity prices (as opposed to 2.1), 1.3 for the fed

funds rate (as opposed to 4.8), 5.8 for nonborrowed reserves (as opposed to 9.1), 4.2

for total reserves (as opposed to 6.6) and 2.3 for money (as opposed to 4.0). Only

for output the difference is small (3.3 as opposed to 3.6). Some of the mean growth

rates are also very different: 4.3 percent per annum for output (as opposed to 2.7),

1.8 for prices (as opposed to 5.0), 1.5 for nonborrowed reserves (as opposed to 5.3)

etc. Results are very similar to those in panel a. (we do not report them for brevity)

also when we calibrate the prior using only the so-called ‘Great-Moderation’ period,

i.e., the post-1985 data. In the post-1985 data output, prices and Fed funds rate are

16



also less volatile than in the main sample, while nonborrowed reserves, total reserves

and money are more volatile than in the main sample (see the third column of Table

F.1).

In panel b. we calibrate the prior about growth rates based on the part of the

estimation sample before the ‘Great Moderation’, i.e., for the years 1965-1985. In

this case output response is somewhat more persistent than in the baseline case.

In the next two experiments we deviate from the rule that our prior carries as

much information as an initial condition in an autoregressive model. In panel c. we

specify the prior about the first two growth rates only, ∆y1 and ∆y2. Output response

is less persistent than in the baseline. In panel d. we specify the prior about the first

8 growth rates, ∆y1 up to ∆y8. Now output response is more persistent than in the

baseline.

In panels e, f, g, h we keep the means and standard deviations of growth rates

as in the baseline, while changing the shape of the prior. In panel e. the prior

density of the observables is gaussian. Output responses are less persistent than in

the baseline. In panel f. the prior density of the observables is Student-t with 10

degrees of freedom. Output responses are similar to the baseline. In panel g. we

use as the prior the empirical distribution of growth rates in the sample (we simply

draw observed growth rates with replacement). The maximum marginal likelihood

responses are similar to the baseline, while the maximum entropy responses convey

large uncertainty about medium and long run responses. Nevertheless, we do not

rule out long-run neutrality of money. In panel h. we use the empirical Bayes prior

with the the auxiliary model as in the baseline, except that shocks to growth rates

are modeled as correlated across variables. Also in this case the maximum entropy

responses convey much uncertainty about medium and long run, but do not rule out

money neutrality.

Overall, we find that a range of reasonable priors about initial growth rates sup-

ports the main conclusion: that the response of output to a monetary policy shock is

17
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Figure F.2 – Impulse response of output to a monetary shock: quantiles 0.05, 0.5 and

0.95 of the posteriors obtained with alternative priors about initial growth rates. Solid

lines: the fixed point with the highest marginal likelihood. Dashed lines: the fixed point

with the highest entropy. Shaded area: quantiles 0.05 to 0.95 of the posterior obtained

with the noninformative prior.
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consistent with long-run neutrality of money but larger and more persistent than in

CEE.

G pθ can not be found by a change of variable

This section discusses the approach to finding pθ consisting of two steps: i) writing

down the observables y as a function of model parameters θ and shocks, and ii) writing

the density of observables pY and finding the implied prior pθ using the change of

variable technique. We argue that this approach is not promising.

To apply the change of variable formula we would need to go from the joint density

of (Y, U) to the joint density of (θ, U). Note that there is no one-to-one mapping

between observables Y and parameters θ, because the shocks U affect the observables

too, so we need to include the densities of the shocks too. The problem is how to

formulate the joint density of (Y, U). This joint density would need to be consistent

with the prior about observables pY , with the assumed density of the shocks, and

with the independence of parameters and shocks. Unfortunately, it is not clear how

to formulate the joint density of (Y, U) satisfying these constraints and as a result

this approach does not seem to be promising.

To illustrate these difficulties, consider the AR(1) model and suppose the re-

searcher specifies a prior density of the observable in periods 1 and 2. In this case

θ = {α, ρ} and the mapping from (θ, U) to (Y, U) is as follows:

y1 = α + ρy0 + u1 (G.1)

y2 = α + αρ+ ρ2y0 + ρu1 + u2 (G.2)

u1 = u1 (G.3)

u2 = u2 (G.4)
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It is easy to verify that the Jacobian matrix of this transformation is:
1 y0 1 0

1 + ρ α + 2ρy0 + u1 ρ 1

0 0 1 0

0 0 0 1


The determinant of this matrix is α+(ρ−1)y0+u1, and the absolute value of this term

multiplies the distribution in the new parameter space (α, ρ, u1, u2). This term cannot

be factorized into terms involving only us and terms involving only the parameters.

Therefore, the obtained density will not, in general, be consistent with independence

of the model parameters and errors.
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