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Abstract

We propose a decomposition to distinguish between Knightian uncertainty (ambiguity) and

risk, where the �rst measures the uncertainty about the probability distribution generating

the data, while the second measures uncertainty about the odds of the outcomes when the

probability distribution is known. We use the Survey of Professional Forecasters (SPF) density

forecasts to quantify overall uncertainty as well as the evolution of the di¤erent components of

uncertainty over time and investigate their importance for macroeconomic �uctuations. We also

study the behavior and evolution of the various components of our decomposition in a model

that features ambiguity and risk.
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1 Introduction

The recent �nancial crisis has renewed interest in measuring uncertainty and studying its macro-

economic e¤ects. Stock and Watson (2012) suggest that liquidity-risk and uncertainty shocks are

among the most important factors explaining the decline in U.S. GDP during the Great Reces-

sion, accounting for about two thirds of the GDP decline. Given that uncertainty is inherently

unobserved, this has sparked a wide research agenda on various measures of uncertainty. However,

as shown in Rossi and Sekhposyan (2015), the macroeconomic impact of the various uncertainty

measures can be very di¤erent from each other. This naturally leads to the question of what exactly

the uncertainty indices measure and how they di¤er from each other.

Typically the literature distinguishes between two types of uncertainty. The �rst type of un-

certainty is the one that rational agents face when making their decisions, as the realization of the

state of nature is not known in advance even if the agents can reasonably contemplate all possible

states of nature and their likelihood. This situation is commonly known as risk. That is, risk is

characterized by situations where one knows the odds of the unknown, that is, one knows the prob-

ability distribution of the stochastic events. Frank Knight (1921) suggested a di¤erent de�nition

of uncertainty, in which agents cannot reasonably contemplate all the possible states of nature or

characterize their probability distributions. Furthermore, even if they are able to characterize the

distributions, they might be unable to assign correct probabilities to future outcomes. For example,

disagreement on the probability distribution of future outcomes is a special case of Knightian un-

certainty, since disagreeing on probability distributions automatically implies that the probability

distributions are not correctly speci�ed.

The empirical literature has proposed several measures of uncertainty, but does not distinguish

between risk and Knightian uncertainty, nor explains how they relate to each other. In addition,

while researchers routinely report correlations among various uncertainty measures or compare

their macroeconomic e¤ects, it is unclear how exactly they are related to each other or whether the

di¤erence in their macroeconomic e¤ects depends on the type of uncertainty they measure.

This paper attempts to study uncertainty in a uni�ed framework. To do so, we introduce a new

measure of uncertainty that is based on forecast densities. Our new measure of uncertainty enables

us to make two main contributions to the literature:

(i) The �rst main contribution is that we use our new measure of uncertainty to distinguish
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in Empirical Macroeconomics, the 24th Annual Symposium of the Society for Nonlinear Dynamics and Econometrics,

the 9th ECB Workshop on Forecasting Techniques, the IAAE 2016 Annual Conference, the 2016 CEF Conference, the
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between Knightian uncertainty and risk, and their relationship. The use of forecast densities is

key to provide a comprehensive measure of Knightian uncertainty because it allows to quantify

uncertainty pertaining to situations where the odds and outcomes are known, yet either one or

both are characterized inaccurately, which is the de�nition of Knightian uncertainty we adhere to.2

(ii) The second main contribution is that we provide a decomposition of our uncertainty mea-

sure into several components that are related to the uncertainty measures used in the literature.

This analysis sheds light on why the various measures of uncertainty di¤er from each other, and

which one is more appropriate to use depending on the goals of the researcher. Again, the use of

forecast densities is key to provide a comprehensive decomposition of uncertainty into its sources.

In particular, we distinguish between disagreement and aggregate uncertainty. In this respect

our contribution is similar to that of Lahiri and Sheng (2010), who consider the relationship be-

tween aggregate uncertainty and disagreement over the business cycle, yet measure it in terms of

uncertainty and disagreement about the mean of the distribution, as opposed to the whole dis-

tribution. Our approach further enables us to distinguish between measures of realized volatility,

ex-ante uncertainty and bias. These various components have all been used in the literature as

measures of uncertainty. Our approach, on the other hand, enables us to distinguish among them

and understand their relationship to each other.

Several of the components mentioned above have been of interest on their own. For example,

Patton and Timmermann (2010) study disagreement among professional forecasters, but do not

relate disagreement to measures of uncertainty, while Lahiri and Sheng (2010) consider the relation-

ship of aggregate uncertainty and disagreement over the business cycle, yet they do not distinguish

between risk and uncertainty. Jurado, Ludvigson and Ng (2015) use the forecast error variance as

a measure of uncertainty, while D�Amico and Orphanides (2014) consider ex-ante measures of risk

for in�ation forecasting.

In addition to our main contributions, we also study how uncertainty and its sources resolve

over time as the agents get closer in time to the event. For example, Patton and Timmermann

(2010) study the resolution of disagreement over time; disagreement is only one of the components

of uncertainty: we investigate both how important disagreement is as a source of overall uncertainty

over time, as well as how the other components of uncertainty resolve over time. Furthermore, we

document the macroeconomic impact and transmission of the various sources of uncertainty that

we identify.

Lastly, we use a stylized macroeconomic model as a framework to discuss the interpretation of

2While we attempt to quantify Knightian uncertainty de�ned as the agents� inability to correctly characterize

probability distributions or their disagreement on them, clearly we cannot quantify uncertainty associated with the

agents inability to characterize all possible states of nature or situations where they have no opinions on the probability

distributions associated with known states of the nature. Thus, one can think of our Knightian uncertainty measure

as a lower bound on the actual Knightian uncertainty present in the economy.

3



the components of our decomposition in the presence of macroeconomic risk and ambiguity. We

show that the various components in our decompositions are indeed representative of sources of

uncertainty that the model implies.

It is important to note that the existing literature has focused mainly on quantifying and

understanding uncertainty associated with point forecasts, for example by mapping uncertainty to

forecasters�prediction errors. Though the individual point forecasts are on average consistent with

the weighted mean of their predictive probability distributions (see Lambros and Zarnowitz, 1987),

predictive distributions undoubtedly contain more information. Our goal is to take advantage

of the richer information content of probabilistic forecasts to quantify Knightian uncertainty and

distinguish among various sources of uncertainty. Thus, an important di¤erence between this paper

and the existing literature is that we use the probabilistic forecasts provided by the U.S. Survey of

Professional Forecasters (SPF) to measure and decompose uncertainty.3 We focus mainly on output

growth forecasts: since output growth is indicative of business cycle �uctuations, our analysis

provides an overall measure of macroeconomic uncertainty; in addition, we also discuss in�ation

uncertainty measures that might help understand why monetary policy a¤ects short and long term

interest rates di¤erently (Wright, 2011).

Furthermore, a large number of uncertainty measures considered in the literature are ex-post,

since they depend on realizations (such as the uncertainty measures recently proposed by Jurado,

Ludvigson and Ng, 2015; Rossi and Sekhposyan, 2015, 2016; and Scotti, 2016); such ex-post mea-

sures are arguably di¢ cult to square with the notion of economic agents�forward looking decision

making. In our framework, we are able to distinguish between ex-post measures of uncertainty (for

instance, realized risk or bias) and ex-ante risk. The advantage of our framework is that we are

able to propose an uncertainty measure that shares properties with a large body of uncertainty

measures proposed in the literature, while at the same time, enables us to disentangle components

that might be preferable from a decision-theoretic point of view.

The paper is structured as follows. The next two sections present our density-forecast-based

uncertainty measures and the decompositions we investigate in this paper. Section 4 discusses the

SPF data used for the empirical implementation, while Section 5 presents the empirical results. In

Section 6 we analyze the macroeconomic impact of the various sources of uncertainty. Section 7

interprets our decomposition through the lens of a macroeconomic model. In Section 8 we extend

our results to the analysis of in�ation uncertainty, while Section 9 concludes.

3Our analysis can be done with any predictive density. We choose to use predictive densities from the SPF since

they are produced by professional forecasters monitoring a wider range of indicators rather than a speci�c parametric

model. Furthermore, the SPF is known for its superior forecasting performance from a point forecasting point of

view, as shown in Giannone, Reichlin and Small (2008) and McCracken, Owyang and Sekhposyan (2015), among

others.
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2 An Uncertainty Index Based on Density Forecasts

The uncertainty index we propose in this paper measures the distance, on average across forecasters,

between the forecast distribution provided by an individual forecaster and the perfect forecast

corresponding to the realization, where both are represented by cumulative distribution functions

(CDFs). We denote the perfect forecast by xt+h, which formally is a random variable equal to one

when the actual realization yt+h is below some threshold r; and it is zero otherwise: xt+h (r) �
1 (yt+h < r).4 Note that xt+h (r) is de�ned over the support r; r 2 R; by varying r, we can focus
on di¤erent parts of the predictive distribution. Let ps;t+hjt(r) be the s� th forecaster�s probability
forecast of the event xt+h(r) equals one, i.e. ps;t+hjt(r) = P (xt+h(r) = 1j
s;t), where s = 1; :::; N
and 
s;t is the information set available to forecaster s at time t. We measure the s-th forecaster�s

uncertainty as the Mean Squared Forecast Error (MSFE) of his/her probabilistic forecast about a

particular outcome, i.e.:5

us;t+hjt (r) = E
h�
xt+h (r)� ps;t+hjt (r)

�2 j=tt�Ri ; (1)

where =tt�R is the information set between time t � R and time t.6 Note the di¤erence between

the two information sets 
s;t and =tt�R. 
s;t is the information set available to forecaster s when
making its probability forecasts. On the other hand, =tt�R is the information set that we use to
average squared errors over time.

Similarly to Jurado, Ludvigson and Ng�s (2015) measure, eq. (1) is a MSFE; however, it is a

MSFE applied to a forecast distribution for a given binary event. As such, it measures the unpre-

dictable component associated with each possible value in the domain of the predictive distribution.

In fact, us;t+hjt (r) compares the probability that forecaster s assigns to the di¤erent states of nature

with the realization, while error-based measures à la Jurado, Ludvigson and Ng (2015) compare

the point forecast with the realization.7

The overall measure of uncertainty is then de�ned as the average of the individual uncertainty

across forecasters:

ut+hjt (r) =
1

N

NX
s=1

us;t+hjt (r) =
1

N

NX
s=1

E
h�
xt+h (r)� ps;t+hjt (r)

�2 j=tt�Ri :
As mentioned above, by varying r we can explore measures of uncertainty in di¤erent parts of the

predictive density. We focus on an overall measure of uncertainty (which we label �Uncertainty�)

4This notation is consistent with Hersbach (2000).
5 In the forecasting literature, this MSFE is known as the Brier score.
6To simplify notation, we assume in this section that R and N are �xed over time, although in the empirical

application we let N vary.
7 In fact, if one associates the value r 2 R with the corresponding quantile of the distribution, our uncertainty

index measures an average squared error for that quantile.
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that integrates the squared probability forecast errors over the whole domain of the distribution,

that is:8

Ut+hjt =

Z +1

�1
ut+hjt (r) dr: (2)

A graphical interpretation is provided in Figure 1. In the �gure, the actual realization equals �2,
denoted by a vertical bar on the left panel; the predictive density is the Normal distribution. The

panel on the right shows the CDF of the Normal distribution, as well as that of the perfect forecast,

evaluated at the realization yt+h = �2. Thus, the ideal CDF equals zero for r < yt+h(= �2) and
one otherwise. At the realization, the distance between the CDFs of the perfect forecast and the

forecasted distribution, xt+h(r) � pt+hjt(r), is depicted by a hollow vertical bar. Our measure of
uncertainty in eq. (2) squares this measure and integrates it over the various values of r (and

averages it over time).

INSERT FIGURE 1

3 The Sources of Uncertainty

This section presents our main decompositions of uncertainty into its sources.

3.1 Aggregate Uncertainty and Disagreement

One of the goals of this paper is to link existing measures of uncertainty based on aggregate data

with uncertainty measures based on disagreement among forecasters. To do so, we de�ne an aggre-

gate probability density (
�
pt+hjt (r)

	
r2R), which is related to the individual ones (

�
ps;t+hjt (r)

	
r2R)

by:

pt+hjt (r) =
1

N

NX
s=1

ps;t+hjt (r) : (3)

The corresponding uncertainty measure for the aggregate predictive density is:

uAt+h (r) � E
h�
xt+h (r)� pt+hjt (r)

�2 j=tt�Ri :
8Our measure of uncertainty derives from the Continuous Rank Probability Score (CRPS), which is widely used

to assess the quality of forecast distributions in statistics. In fact, the CRPS is the integral of Brier scores (Hers-

bach, 2000, eq. 7). In this particular case it could be viewed as an average CRPS across the forecasters. Note

that eq. (2) is the negative of the CRPS, as de�ned in Gneiting and Raftery (2007). Moreover, it is a condi-

tional average. In other words, for an individual forecaster, Gneiting and Raftery (2007) would de�ne CRPSs;t =

�
R +1
�1

�
xt+h (r)� ps;t+hjt (r)

�2
dr; while our forecaster speci�c uncertainty measure would be

R +1
�1 E[(xt+h (r)

�ps;t+hjt (r))2j=tt�R]dr:
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Appendix A shows that we can decompose the overall uncertainty measure as follows:

ut+hjt (r) = E
h�
xt+h (r)� pt+hjt (r)

�2 j=tt�Ri+ E
"
1

N

NX
s=1

�
pt+hjt (r)� ps;t+hjt (r)

�2 j=tt�R
#

= uAt+hjt (r) + dt+hjt (r) ; (4)

where dt+hjt (r) � 1
N

NP
s=1

E
h�
pt+hjt (r)� ps;t+hjt (r)

�2 j=tt�Ri measures the disagreement between
individual forecast densities and the aggregate forecast density, and it is similar to the disagreement

de�ned in Patton and Timmermann (2010) for point forecasts. Lahiri and Sheng (2010, eq. 18)

discuss a similar decomposition for point forecasts.

Note that the decomposition in eq. (4) holds for a particular threshold r, thus it accounts for a

forecast error associated with the binary outcome 1 (yt+h < r). The overall measure of uncertainty

accounts for uncertainty at all possible values of r by considering the integral of the decomposition

in eq. (4) over r. Thus, we have �Uncertainty� decomposed into �Aggregate Uncertainty� and

�Disagreement�:9

Ut+hjt �
Z 1

�1
ut+hjt (r) dr =

Z 1

�1
uAt+hjt (r) dr +

Z 1

�1
dt+hjt (r) dr

� UAt+hjt| {z }
�Aggregate Uncertainty�

+ Dt+hjt| {z }
�Disagreement�

(5)

3.2 Knightian Uncertainty and Risk

As shown in Appendix A, we can further decompose the aggregate uncertainty, UAt+hjt (r) into com-

ponents that measure mean bias, dispersion of probability forecasts, realized risk and a covariance

term between the forecasted and the ideal distribution as follows:

uAt+h (r) =
��
E
�
pt+hjt (r) j=tt�R

�
� E

�
xt+h (r) j=tt�R

��2�
+ V (pt+hjt (r) j=tt�R) (6)

+ V
�
xt+h (r) j=tt�R

�
� 2Cov(xt+h (r) pt+hjt (r) j=tt�R);

where V (:) denotes variance. Since the covariance term turns out to be rather small empirically,

we summarize aggregate uncertainty with the following additive decomposition:

UAt+hjt� Bt+hjt| {z }
�Mean-Bias�

+ Vt+hjt| {z }
�Dispersion�

+ V olt+hjt| {z }
�(Realized) Risk�

(7)

where:
9A reason why the aggregate probability distribution, measured with a simple average of the individual probability

distributions, is a good measure of aggregate uncertainty is the fact that, as in the context of point forecasts,

combinations constructed by simple averages typically result in more accurately calibrated densities. Furthermore,

the average of probability distributions is a measure widely used in a variety of central banks and policy institutions.
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� Bt+hjt �
R1
�1

��
E
�
pt+hjt (r) j=tt�R

�
� E

�
xt+h (r) j=tt�R

��2�
dr is the mean squared bias of

the forecast distribution;

� Vt+hjt �
R1
�1 V (pt+hjt (r) j=

t
t�R)dr is the uncertainty about the ex-ante subjective probabili-

ties in the aggregate distributional forecast;

� V olt+hjt �
R1
�1 V

�
xt+h (r) j=tt�R

�
dr is the realized variance of the binary outcome, xt+h (r) �

1 (yt+h < r), and thus stands for the inherent risk in the data.

The three component decomposition in eq. (7) has an interesting interpretation. We view

the realized volatility component V olt+hjt as a measure of the underlying uncertainty in the data,

and thus a measure of realized risk. On the other end, we view the bias component Bt+hjt as a

measure of how distant the predictive density is from the perfect prediction on average, while the

dispersion, Vt+hjt; measures the variability in the predictive density. As we will show, Vt+hjt is

empirically small, so it can be ignored. Knightian uncertainty is measured, in our view, as the

sum of bias and disagreement. In fact, Knightian uncertainty measures how uncertain agents were

about events, either because they were unable to correctly assign probabilities to future outcomes

even though they agreed to them, or because they disagreed on those probabilities. The realized

variance or realized volatility, instead, is a measure of risk. To summarize, we have the following

�Knightian uncertainty/(Realized) Risk�decomposition:

Ut+hjt� V olt+hjt| {z }
�(Realized) Risk�

+ Bt+hjt +Dt+hjt| {z }
�Knightian Uncertainty�

:

3.3 Ex-ante Vs. Ex-post Uncertainty

It is important to note that our proposed measure of uncertainty, Ut+hjt, as well as aggregate

uncertainty UAt+hjt, are constructed using ex-post realizations of the data. Thus, it is interesting

to re�ne our measure by distinguishing between an ex-ante component (that does not include the

realizations) and an ex-post component (which does). Also, one might wonder how the expected

mean and the variance embedded in the forecast distribution a¤ect our measure of uncertainty.

Let the aggregate predictive distribution for the forecast of yt+h made at time t be Normal with

mean �t+hjt and variance �2t+hjt and the data be i.i.d.
10 We have the following �Ex-ante/Ex-post�

decomposition:

10Since the data are assumed to be i.i.d. in this sub-section, we could omit the time subscripts; however, we decided

to keep them to make the notation consistent with the rest of the paper.
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UAt+hjt = E

8>>><>>>:
�
2�t+hjt�

�
yt+h � �t+hjt

�t+hjt

�
+
�
yt+h � �t+hjt

��
2�

�
yt+h � �t+hjt

�t+hjt

�
� 1
��

| {z }
�Ex-post�

(8)

�
�t+hjtp
�| {z }

�Ex-ante�

�������� =
t
t�R

9>>=>>; (9)

where � (:) and � (:) denote the PDF and the CDF of the Normal distribution, respectively. The

proof is provided in Appendix A and follows Gneiting and Raftery (2007).11

The rightmost component, �t+hjt=
p
�, is the only component that is not a¤ected by the realiza-

tion, so we refer to it as the �ex-ante�measure of uncertainty. In fact, as the proof suggests, this is

the component that arises from the average distance of random draws from a given predictive dis-

tribution. Moreover, it is a function of the standard deviation of the forecaster�s density forecasts,

and a common measure used in the uncertainty literature as a measure of ex-ante uncertainty.

Note that the ex-ante measure of uncertainty is simply �t+hjt=
p
�, which, under Normality, is a

monotone function of the width of the predictive distribution. Thus, the ex-ante measure is linked

to the inter-quantile range measure proposed by Zarnowitz and Lambros (1987), among others.12

Our ex-ante component might be viewed as a measure of ex-ante risk. Note that, from eqs. (7) and

(8), we have that Ex-post � Bt+hjt+Vt+hjt+V olt+hjt+Ex-ante. Thus, the ex-post measure of ag-
gregate uncertainty combines components of Knightian uncertainty, Bt+hjt, realized risk (measured

by the volatility in the economy, V olt+hjt), ex-ante risk (measured by the variance of the predictive

densities of the forecasters, Ex-ante) and dispersion, Vt+hjt. Note the di¤erence between Vt+hjt
and Ex-ante: the �rst measures the variability of the probability distribution, while the second

measures the width of the distribution at a particular point in time. Thus, if the aggregate density

forecast does not changed over time, Vt+hjt would be zero. However, Ex-ante will not be zero as

long as the forecasters provide a distributional forecast.

We should note that there is a major di¤erence between the two decompositions in that the

�Ex-ante�/�Ex-post�decomposition is written in terms of the moments of the original predictive

distribution, while the �Knightian Uncertainty/(Realized) Risk�decomposition is in terms of binary

outcomes summarized by xt+h (r). As such, the latter decomposition could be applied to general

situations (general forms of distribution and non-i.i.d. data), while the former one relies heavily on

the assumption of Gaussianity and independence in the underlying predictive distribution. D�Amico

11Note that even if UAt+hjt is the di¤erence of two components, it is always positive; thus, the ex-post component

is always bigger than the ex-ante one.
12For a Gaussian distribution, the inter-quantile range is 1:34�.
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and Orphanides (2014) and Giordani and Soderlind (2003) provide empirical support in favor of

Gaussianity for the Survey of Professional Forecasters, and the i.i.d. assumption would be satis�ed

for correctly calibrated conditional density forecasts.

A general note that applies to all proposed decompositions is that the resulting components are

not orthogonal to each other. This is in line with the rest of the empirical literature which typically

�nds that a variety of uncertainty measures, constructed from di¤erent sources and measuring

di¤erent aspects of uncertainty, are correlated with each other.

4 The Data

We use density forecasts from the Survey of Professional Forecasters (SPF) to calculate our uncer-

tainty measures. The Federal Reserve Bank of Philadelphia provides the aggregate (mean proba-

bility distribution) forecasts, as well as the underlying disaggregate density forecasts of a panel of

professional forecasters.13 We use the real GNP/GDP growth density forecasts to extract measures

of macroeconomic uncertainty, as real GNP/GDP �uctuations are indicative of the state of the

business cycle, and therefore are representative of macroeconomic uncertainty (Stock and Watson,

1999).

In the SPF data set, forecasters are asked to assign a probability value (over pre-de�ned inter-

vals) to in�ation and output growth for the current and the following (one-year-ahead) calendar

years. The growth rate is de�ned as the rate of change in the average GDP from one year to

another. The forecasters update the assigned probabilities for the current-year and the one-year-

ahead forecasts on a quarterly basis. Thus, by construction, SPF forecasters provide four quarterly

forecasts of the same target variable each year; this type of forecasts are typically referred to in the

literature as ��xed-event�or �moving-horizon�forecasts. Being �xed-event forecasts, their horizon

changes over the quarter. We use the method proposed by Dovern et al. (2012) to transform

the SPF �xed-event forecasts into �xed-horizon forecasts by constructing a weighted average of

the current-year and next-year forecasts. In detail, for each quarter the survey contains a pair of

��xed-event� density forecasts for the current-year, which we label bfFEt+kjt, and for the next-year,
which we label bfFEt+k+4jt. The four-quarter-ahead (�xed-horizon) forecast at time t, which we labelbfFHt+4jt, is calculated as the average of the two �xed event forecasts using weights that are propor-
tional to their share of the overlap with the forecast horizon. Let k denote the number of quarters

from time t until the end of the year. In quarter one, k = 4, while in quarter four, k = 1. Thus, for

example, in the third quarter of the year, the four-step-ahead �xed-horizon forecast overlaps with

the current year forecasts and next year forecasts 50% of the time, respectively. Thus, it would be

the weighted average of the two-�xed event forecasts with weights equal to 2/4 and 2/4. Thus, in

13The composition of the forecasters can change over time.
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general, for k = 1; 2; 3; 4:14 bfFHt+4jt = k

4
bfFEt+kjt + 4� k4 bfFEt+k+4jt: (10)

INSERT FIGURE 2 HERE

Panels A and B in Figure 2 show the evolution of the current and next year densities over

time. The �gures plot the mean as well as several quantiles of the distribution, together with the

realization. Panel C, on the other hand shows the �xed horizon forecast, eq. (10). The �xed-horizon

forecast is by construction less smooth than the �xed-event forecasts. However, both share the same

feature that ex-ante uncertainty was higher earlier in the sample, in the sense that both density

forecasts have a wider distribution prior to the mid-1980s relative to the later part of the sample;

this suggest that forecasters noticed the Great Moderation starting mid-1980s. There appears to be

no dramatic shift in the forecasted densities after the Great Recession. Some descriptive statistics

on the SPF distributions is provided in Appendix B.

The analysis of SPF probability distributions is complicated since the SPF questionnaire has

changed over time in various dimensions: there have been changes in the de�nition of the variables,

the intervals over which probabilities have been assigned, as well as the time horizon for which

forecasts have been made. To mitigate the impact of these problematic issues, we truncate the

data set and consider only the period 1981:III-2014:II.15

As noted, our uncertainty measure depends on realizations. The realized values of output growth

are from the real-time data set for macroeconomists, also available from the Federal Reserve Bank

of Philadelphia. We use the four-quarter-ahead growth rates of output and prices calculated from

the �rst release of the realization. For instance, in order to get the 4-quarter-ahead realization at

the start of our sample, 1981:III, we calculate the growth rate between 1982:III and 1981:III using

the 1982:IV vintage of the data.

5 The Dynamics of Uncertainty over Time, and Its Sources

Figure 3, Panel A, shows the evolution of our estimated measure of uncertainty and its components,

aggregate uncertainty and disagreement, over time. The �gure highlights two interesting facts:

disagreement is, in magnitude, only a small portion of the overall measure of uncertainty;16 in
14The literature suggest alternatives to this weighting. For instance, Knueppel and Vladu (2016) propose weights

for aggregating the �xed-event point forecasts which minimize the mean squared forecast error loss of the �xed-horizon

forecast. This methodology requires a researcher to take a stand on the data generating process and is not directly

applicable to our case of density weighting.
15We focus on quarterly data. See instead Ferrara and Guérin (2015) for a high-frequency analysis of uncertainty

shocks.
16The magnitudes of Uh+hjt and U

A
h+hjt are reported on the y-axis on the left while that of disagreement is reported

on the y-axis on the right. The magnitude of disagreement is small. This is due to the fact that, unlike the existing
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addition, it is trending down until the �nancial crisis of 2007; this is in sharp contrast with the

overall measure of uncertainty, as well as aggregate uncertainty, which have clear spikes in the early

1980s, early 2000s and the �nancial crisis. Thus, using disagreement as a measure of uncertainty

may result in underestimating both the overall level of uncertainty in the economy as well as

its �uctuations over time, as currently the level of disagreement is similar to what it was in the

mid-1990s and lower than its value in the late 1980s. In addition, most would agree that the

early 2007-2008 were probably the most uncertain times in the latest decades; while disagreement

increases during that period, it peaks only much later, after the end of the recession, in 2009. Thus,

disagreement (i.e., the component of Knightian uncertainty due to disagreement among forecasters)

may not be a timely measure of uncertainty. Note that this result is not an artifact of constructing

disagreement measures based on density forecasts: Sill (2014, Figure 1) shows a similar delay.

In particular, Sill (2014) plots the dispersion of the mean one-year-ahead real GDP growth rate

forecasts measured by the inter-quantile range: the �rst peak in the disagreement does not appear

until the middle of the recession.

INSERT FIGURE 3 HERE

Panel B in Figure 3 depicts the decomposition of aggregate uncertainty into Knightian un-

certainty and realized risk. The �gure suggests that realized risk (measured by V olt+hjt) was an

important component of uncertainty throughout the last three decades, as was Knightian uncer-

tainty, measured by the mean bias component. Some di¤erences between the two are important to

note, however. The realized risk component was high during the latest �nancial crisis, and sharply

decreased as soon as the recession was over; Knightian uncertainty (measured by the mean bias

component, Bt+hjt) remained persistently high even after the end of the crisis. Thus, overall uncer-

tainty remained persistently high after the end of the latest recession mostly because of forecasters�

errors as opposed to risk being high. The role of dispersion in probability forecasts (Vt+hjt) as well

as the co-movement between prediction and realization (Covt+hjt) are negligible for the cyclical

dynamics of aggregate uncertainty.

Turning to the ex-ante and ex-post components, depicted in Panel C of Figure 3 together with

the aggregate uncertainty measure (UAt+hjt), it is interesting to note that ex-ante uncertainty is

quite constant in the 1980s and up to 2007. Thus, movements in uncertainty during that period

cannot be attributed to changes in ex-ante uncertainty. Ex-ante uncertainty does increase during

the latest recession, but only towards its end, and spikes much later than the peak of the recession.

This suggests that measures of volatility in the forecasters�predictive distributions are, themselves,

not timely measures of uncertainty.

measures of disagreement on point forecasts, we measure disagreement in probabilities, not in the mean forecast.
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Finally, it is also of interest to investigate how the various components of uncertainty evolve as

the forecasters get closer in time to the realization date, that is, as the forecast horizon becomes

shorter. We separately consider forecasts for h = 1; 2; :::; 7; 8 and compare them with the �xed-

event realization. Both uncertainty as well as aggregate uncertainty decrease as the forecast horizon

increases (Panel A in Figure 4, top left and right graphs). It may seem counter-intuitive that

uncertainty decreases at longer horizons; to understand why, we examine its components. Clearly,

disagreement decreases as forecasters get closer to the realization: in fact, disagreement decreases on

average as the horizon decreases (cfr. bottom graph in Figure 4, Panel A). This �nding is reassuring,

as it is reminiscent of what Patton and Timmermann (2010) discovered for point forecasts, and

our results show that similar results hold for disagreement calculated on density forecasts. The

mean bias also decreases as the horizon decreases (Panel B in Figure 4). On the other hand, the

dispersion of the density forecasts increases, thus increasing the aggregate uncertainty. The realized

variance and covariance are constant over the horizons, and the latter hovers around zero.

INSERT FIGURE 4 HERE

The most striking patterns are displayed by ex-ante and ex-post uncertainty, depicted in Figure

4, Panel C. Clearly, ex-ante uncertainty decreases monotonically as the forecast horizon decreases;

that is, forecasters�predictive densities become more spread out when the forecast horizon increases,

thus re�ecting more uncertainty in the economy when looking at events that are further in the

future. However, there is no clear pattern in ex-post uncertainty. This means that, even though the

forecasters�predictive densities become tighter as the realization gets closer in time, the uncertainty

in the actual realizations does not diminish, as the size of the forecast errors does not diminish

with the horizon.

Comparing the evolution of the ex-ante uncertainty in Panel C and the dispersion of the aggre-

gate predictive density, Vt+hjt in Panel B, we note that, although forecasters, on average, become

less con�dent about the future as the forecast horizon increases, their views about uncertainty

does not seem to be updated often for forecasts that are further in the future, thus resulting in

the low variability of the predictive distribution over time. Moreover, as the distribution becomes

more spread out with the forecast horizon, it has a higher chance of including the realization, thus

resulting in a decline in the aggregate and overall uncertainty.

6 Understanding the Measures of Uncertainty in the Literature

and Their Macroeconomic E¤ects

In this section, we use our decomposition to shed some light on why existing measures of uncertainty

di¤er from each other. Understanding why they di¤er provides important insights on which measure
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is the most appropriate for a particular analysis.

The top panel in Figure 5 plots Jurado, Ludvigson and Ng�s (2015) uncertainty measure together

with Baker, Bloom and Davis�(2016) index.17 Both indices are standardized for comparison. The

�gure shows that the former is overall smaller than the latter until 1995, then it becomes overall

bigger, and in particular spikes up earlier than the latter during the latest �nancial crisis of 2007-

2008. The lower panel plots the decomposition of our aggregate uncertainty index into ex-ante and

ex-post components. The ex-post component is lower than the ex-ante component up to mid-1992,

then it becomes systematically larger, and spikes up around 2007-2008, behaving similarly to how

the Jurado, Ludvigson and Ng�s (2015) behaves relative to Baker, Bloom and Davis (2016). Thus,

it seems that the Baker, Bloom and Davis (2016) uncertainty measure is driven more by ex-ante

uncertainty, while the Jurado, Ludvigson and Ng (2015) uncertainty measure is clearly a¤ected by

ex-post uncertainty, namely uncertainty due to misspeci�cation in the predictions.

INSERT FIGURE 5 HERE

To estimate the e¤ects of the uncertainty and its components on the economy, we estimate a

Vector Autoregression (VAR) that includes (the log of) real GDP, (the log of) employment, the

Federal Funds rate, (the log of) stock prices and the speci�c uncertainty indices one at a time.

Identi�cation is achieved via a Cholesky procedure, which follows the order in which the variables

are listed. The VAR speci�cation is the same as in Baker, Bloom and Davis (2016), although ours

is at the quarterly frequency, and accordingly we use GDP instead of real industrial production.

We order the variables as in Jurado et al.�s (2015) benchmark speci�cation, i.e. from slow to fast

moving. For completeness, we investigate the robustness of our results in a larger VAR in the

Not-for-Publication Appendix. To better interpret and compare the magnitude of the e¤ects of the

uncertainty indices, the uncertainty indices are standardized by their own means and variances.

Panel A in Figure 6 shows the e¤ects of our uncertainty index on the economy. Clearly, an

increase in uncertainty has recessionary e¤ects: both GDP and employment decrease, as well as

the interest rate and the S&P 500. Panels B and C describe the e¤ects of each of the components

in the decomposition. Panel B shows the e¤ects of a shock to aggregate uncertainty, which is in line

with that of uncertainty since aggregate uncertainty is the main determinant of the total. Panel

C focuses on disagreement; it also decreases employment although by a smaller magnitude; at the

same time, it has no signi�cant e¤ects on the remaining variables.

INSERT FIGURE 6 HERE

Figure 7 shows the e¤ects of uncertainty measured by mean bias, realized volatility and the

dispersion in the probability forecasts. The mean bias and realized volatility appear to have re-

cessionary e¤ects (Panels B and D); dispersion in the density forecasts (Panel C) drives down
17We are using Jurado, Ludvigson and Ng�s (2015) one-year-ahead uncertainty index.
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employment, while it increases stock prices and output. It is important to note that, in magnitude,

the mean bias and realized volatility have similar macroeconomic impact, though these e¤ects are

statistically signi�cant for the �rst but not for the second.

INSERT FIGURE 7 HERE

The e¤ects of ex-ante and ex-post uncertainty on other macroeconomic variables are depicted

in Figure 8. They both lead to decreases in employment, interest rates and stock prices of similar

magnitude; an increase in ex-ante uncertainty, however, has a small negative impact e¤ect on GDP,

while the medium run e¤ect is positive and small, and the longer run e¤ect is again negative; the

e¤ects of ex-post uncertainty on GDP are, instead, negative and large.

INSERT FIGURE 8 HERE

Figure 9 compares the results with those in the existing literature; the latter are also obtained

by estimating VARs that include (the log of) real GDP, (the log of) employment, the Federal

Funds rate, (the log of) stock prices, and the alternative uncertainty index, which is demeaned and

standardized as well. The alternative uncertainty indices that we explore (one-at-a-time) include:

Bloom (2009), labeled �VXO�; Baker et al.�s (2016) policy uncertainty index, labeled �BBD�;

Jurado, Ludvigson and Ng (2015), labeled �JLN�; and Scotti�s (2016) macroeconomic surprise-

based uncertainty index.

INSERT FIGURE 9 HERE

Panel A in Figure 9 shows that the VXO and BBD indices have similar e¤ects on the economy,

while an increase in uncertainty measured by the Jurado, Ludvigson and Ng�s (2015) index are

qualitatively similar but much larger in magnitude, and, thus, are similar to the e¤ects that we

uncover for our ex-post index. The e¤ects of Scotti�s index are again recessionary for GDP, em-

ployment and stock markets, and lead to an increase in the interest rate. The e¤ects of this index

are small and overall insigni�cant. The e¤ects of our realized volatility measure are more similar

to those of the VXO.

7 The Dynamics of the Sources of Uncertainty Through the Lens

of a Model

We consider a model of ambiguity which follows Ilut and Schneider (2014). The model is as

follows. We assume that GDP growth, Zt+1, evolves according to an autoregressive model with a

time varying mean, ��t :

Zt+1 = �zZt + �
�
t + ut+1; (11)
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where ut+1 is i.i.d. N(0; �2u) and �
�
t is deterministic such that its empirical sequence converges to

an i.i.d. stochastic process N(0; �2�), where �
2
� = �2z � �2u. Consequently, the observed values of

zt � Zt+1 � �zZt look like realizations from an i.i.d. process with mean zero and variance �2z . For

all practical purposes, we treat ��t as a realization from a stochastic process N(0; �
2
�). Moreover, �

�
t

and ut are assumed to be independent. Thus, GDP growth is driven by two sources of uncertainty

in the economy: the �rst source is the unpredictable shocks, ut+1; the second, ��t , is a proxy for

ambiguity, as we discuss below.

We assume that the agents in this model know that the data generating process for GDP growth

is autoregressive with persistence �z, and that there are two sources of uncertainty; however, they

do not observe ��t and ut+1, even though they know the probability distribution of ut+1: They

gather intangible information about ��t , which sometimes makes them relatively con�dent that the

correct forecast of future GDP growth is �zZt, and sometimes less con�dent, i.e. the signal is

sometimes less and sometimes more ambiguous. One could think of a situation where the agents

acquire poor quality information or con�icting news from newspapers or professional forecasters.

The ambiguity is modeled by letting agents form their beliefs about GDP growth dynamics based

on the following law of motion:

Zi;t+1 = �zZi;t + �i;t + ut+1; i = 1; 2; :::; N (12)

where ��it 2 [�ai;t;�ai;t + 2jai;tj], N is the total number of agents (equal to 100), and ut+1 is

i.i.d. N(0; �2u): The bounds on �
�
it formalize the idea that sometimes agents are more ambiguous

regarding the second source of disturbance to output growth: those situations are associated, in

the model, with a larger value of ai;t, which implies a larger set of beliefs and more ambiguity

perceived at time t by agent i. Thus, we refer to ai;t as the ambiguous component, or Knightian

uncertainty.18

Furthermore, agents receive signals about ��i;t from the process:

ai;t+1 � �ai = �a;i(ai;t � �ai) + �a;i�at+1; (13)

where �at+1 is i.i.d. N (0; 1). One can view �
a
t+1 as a signal that the agent gets about the ambiguity

component, whose volatility depends on �a;i. In some periods the signal results in a higher ai;t;

in such cases, there is more ambiguity and the set of beliefs is larger. In other periods, depending

on the received information, the set can be smaller, thus the agents are less ambiguous about

the stochastic disturbances in the data generating process. Furthermore, we impose parameter

restrictions to ensure that the average ambiguity is less than the total uncertainty about the process

of Zt+1: these restrictions are such that �ai = ni�z and �a;i = �n�z for n 2 (0; 1) for every agent
18This notion of Knightian uncertainty is similar to that of Ilut and Schneider (2014). We should note, however,

that they assume that the total factor productivity shocks are ambiguous, while we do the same for output growth.
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i, where ni and �n are parameters (one can think of �ai as the unconditional mean and �2a;i as the

unconditional variance of the shock to perceived ambiguity). In particular, ni � iidN
�
n; �2n;I

�
,

where �2n;I controls the cross sectional variability of N .
19

Finally, when faced with ambiguity, modeled with eq. (13), the agents choose:

���i;t = min([�ai;t;�ai;t + 2jai;tj]): (14)

Thus, the e¤ective perceived law of motion for agent i becomes:

Zi;t+1 = �zZi;t + �
��
i;t + ut+1: (15)

Note that when ai;t is bigger, ambiguity is higher, the set of beliefs is bigger, and the wider interval

implies a lower worst case mean that the agents choose.

Our model is a simpli�cation of Ilut and Schneider (2014): to be precise, they model ambiguity

and risk about the technology process. However, under the assumption of �xed inputs, this would

directly translate into a similar output growth dynamics. Thus, for simplicity, we directly model

the dynamics of output growth and calibrate the parameters of the output growth process, �z and

�z; based on an AR(1) model estimated on the quarterly growth rate for the U.S. GDP. On the

other hand, the ambiguity parameters, i.e. �a, n and �n; are borrowed from their posterior mode

estimates with the caveat that their estimates apply to the ambiguity in total factor productivity

rather than output growth. Table 1 summarizes our baseline parameter values. Since �t and ut+1

can not be identi�ed separately, the values for their respective variances are assigned arbitrarily.

We let �� = 0:5, while �u is assigned a value to match the total conditional volatility in the output

growth observed in the data, �z.

INSERT TABLE 1 HERE

We consider four scenarios. In the �rst three scenarios, there is no cross-sectional heterogene-

ity in ambiguity, i.e. �2n;I = 0 and ni = n for every agent; in the fourth scenario we consider

heterogeneity by letting ni 6= n.
Scenario 1: Ambiguity. We increase the level of ambiguity in the model, i.e. the level of n.

We consider shifting the value of n from 0:2 to 0:8. While the data is generated by equation (11),

the agents forecast output growth using the law of motion in equation (15). In this exercise we

are changing the set of possible values that �t can take: as n increases, both the conditional and

unconditional means of at+1 increase �see equation (11), and the signals the agents get about the

additional source of uncertainty, denoted by the set [�at;�at + 2jatj]); become noisier.
19Alternatively, one could model the level of ambiguity to be uniformly distributed across the forecasters. This

would attenuate ambiguity.
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Scenario 2: Risk and ambiguity. We increase the level of risk by increasing the value of �u

from 0:3 to 1. In this experiment the model is still described by eq. (11), the perceived law of

motion is described by eq. (15), while learning under ambiguity occurs under eq. (13). In this case,

increasing the level of uncertainty increases both the objective and perceived level of uncertainty.

However, given that ni = n; �a = n�z and �a = �n�z for n 2 (0; 1), where �2z = �2� + �2u , then both
the level of ambiguity (�a) and the uncertainty about ambiguity (�a) increase. Thus, an increase in

�u increases both risk and Knightian uncertainty in the model.

Scenario 3: Risk but no ambiguity. We increase the level of risk as in Scenario 2, yet change the

model such that the agents are forecasting based on the true model: ���t = ��t . Thus, there is no

ambiguity. In other words, the true model is still the one described by (11), while the model used

for forecasting is not determined by equation (15), but instead by equation (11) itself. The design

in this scenario intends to explore how the ex-post and overall uncertainty evolve when there is no

ambiguity.

Scenario 4: Disagreement. We increase the variance of ambiguity across agents in the model,

i.e. �n;I . We consider varying the value of �n;I from 0:5 to 1 and letting �a;i � N (�a; 0:01) be

heterogeneous across agents. This way, agents di¤er both because the volatility of the signal they

receive and its persistence. Note that, in this case, agents disagree on the level of ambiguity, al-

though the aggregate level of ambiguity in the data is unchanged; that is, on average, �a equals n�z,

which does not change as �n;I increases.

INSERT FIGURE 10 HERE

We simulate the model for 254 periods for each of these scenarios (using an additional 100

periods as a burn-in sample); we use the simulated data to construct the components of our proposed

decompositions and plot them over time.

Panel A in Figure 10 depicts the results for Scenario 1. The increase in ambiguity increases

the Mean-Bias and the Ex-Post components of uncertainty, as well as the overall uncertainty. On

the other hand, there is no change in either the perceived or the realized volatility, that is, the

Ex-ante and Realized Risk components, respectively. This follows from the fact that: (i) the data

generating process has not changed, and, thus, the realized variance (�2z) has remained the same;

and (ii) as eq. (15) suggests, the overall level of the ex-ante variance (�2u) does not depend on n.

Panel B shows the simulation results for the second scenario. Here the increase in �u increases

the measures of ex-ante (�2u itself) and ex-post risks. It is also important that there is feedback

from risk to ambiguity. As discussed in the description of Scenario 2, both the mean (a) and the

variance (�2a) of ambiguity are a¤ected by the increase in the overall risk. Consequently, the overall

measure of uncertainty increases due to both sources: increase in risk and increase in ambiguity.
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Panel C shows the dynamics of uncertainty and its components when there is an increase in risk

in a model with no ambiguity. In this setup it appears that both ex-ante and ex-post components

of uncertainty increase. However, this increase is proportional such that the average level of overall

uncertainty increases due to the upward shift in ex-ante uncertainty and its volatility mimics that

of ex-post uncertainty (in the right panel). Thus, comparing Panels B and C suggests that, in the

presence of ambiguity, uncertainty increases proportionally more than the increase of risk.

Finally, Panel D shows the dynamics when there is an increase in the cross-sectional dispersion of

ambiguity while the overall level of ambiguity remains unchanged. Note that the component that is

most largely a¤ected by the increase in the cross-sectional dispersion in ambiguity is disagreement,

as we would expect.

To summarize, our simulations show that the increase in ambiguity can increase the ex-post

component, as well as the mean-bias, thus resulting in an overall increase in uncertainty. The

increase in the true volatility of the DGP increases both the realized volatility as well as the

ex-ante volatility measures. However, the increase in the overall uncertainty a¤ects the ex-post

volatility and mean-bias as well. In the absence of ambiguity, the impact on the bias is negligible

(it is more similar to noise), thus the increase in the aggregate uncertainty re�ects the increase in

the ex-post volatility. On the other hand, the increase in the ex-post uncertainty is twice as much

the increase in the ex-ante uncertainty, such that the resulting measure of aggregate uncertainty

still re�ects the increase in the ex-ante uncertainty. Now, in the presence of ambiguity, on the

other hand, the bias goes up and the ex-post uncertainty goes up proportionally more, such that

the aggregate uncertainty re�ects the increase in all sources of uncertainty.

It appears that our simulation results could be reconciled with our empirical �ndings. The

proposed model has a potential to generate an ex-ante uncertainty measure that is smoother than

the realized variance. Moreover, the model has potential to generate relatively volatile measures of

bias, as well as ex-post uncertainty. Our simulation results also suggest the existence of ambiguity

in the empirical setup as the aggregate uncertainty does not move proportionally with the variance:

in fact, the predominant sources of aggregate uncertainty are the Knightian measures.20

8 In�ation Uncertainty

In this last section, we focus on in�ation uncertainty. Understanding in�ation uncertainty is impor-

tant for several reasons. High uncertainty about future in�ation, possibly spurred by high in�ation

itself, may have e¤ects on real variables (Ball, 1990). For example, Gurkaynak and Wright (2012)

and Wright (2011) have argued that in�ation uncertainty matters because it might help explain

20Note that it is possible that we underestimate the e¤ect of the Knightian uncertainty, since it is possible that

the data generating process, thus realized volatility, can also change in response to ambiguity.
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the behavior of bond risk premia, and therefore help economists understand why monetary policy

di¤erently a¤ects short term rates (the instrument of monetary policy) and the long term rate

(the rate that is of interest for investors and consumers). In fact, Wright (2011) has found a pos-

itive and strong relationship between long-term in�ation uncertainty and bond term premia in a

large cross-section of countries. The important policy implication of Wright�s (2011) �ndings is

the possibility that eliminating long-run in�ation uncertainty might facilitate the transmission of

monetary policy to the economy. Also, D�Amico and Orphanides (2014) consider ex-ante measures

of risk for in�ation forecasting and Caporale et al. (2012) have shown that in�ation uncertainty

has decreased in the Euro area, possibly due to the fact that in�ation decreased steadily since the

beginning of the Euro.

Figure 11 depicts our measure of uncertainty (Panel A) and the decompositions (Panels B,C).

In�ation uncertainty was high in the early 1980s, possibly due to oil price shocks, and decreased

substantially afterwards; typically, it tends to be high around recessions. The behavior over time

of uncertainty is very di¤erent from that of disagreement, which instead does not necessarily peaks

around recession times. While the volatility component is pretty constant over time, the major-

ity of the �uctuations in aggregate in�ation uncertainty are associated with the bias component

and the ex-post components; interestingly, ex-ante in�ation uncertainty seems to have decreased

monotonically since the early 1980s.

Our empirical results suggest that the most e¤ective policies to decrease in�ation uncertainty

are those that in�uence ex-post uncertainty. In other words, policies should aim at ensuring that

ex-post realizations of in�ation are in line with the average expected in�ation (for example, by

minimizing shocks to in�ation), not those that decrease the agents�ex-ante uncertainty (i.e. not

those that a¤ect the agents�expectation formation process), although the latter can also be e¤ective.

INSERT FIGURE 11 HERE

9 Conclusion

This paper proposes an alternative measure of uncertainty based on survey density forecasts. The

new measure has the advantage that it can be used to decompose uncertainty into components that

can help researchers understand what existing uncertainty indices measure. In particular, our mea-

sure of uncertainty can be decomposed into aggregate uncertainty and disagreement, and aggregate

uncertainty can itself be decomposed into Knightian uncertainty and realized risk. The latter inher-

ently measure di¤erent things, have speci�c business cycle dynamics and di¤erent macroeconomic

impact. Moreover, these sources of uncertainty resolve di¤erently across prediction horizons.

Given that our proposed uncertainty index is an ex-post measure of uncertainty, we also de-

compose it into a component that only re�ects ex-ante uncertainty, which we can relate to existing
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measures of uncertainty based on the inter-quantile spread of the forecast distribution, and a com-

ponent that measures ex-post uncertainty. Our analysis uncovers that some existing measures of

uncertainty capture ex-ante uncertainty (such as existing measures of uncertainty based on policy

uncertainty), while others capture ex-post uncertainty.

We also investigate the e¤ects of the sources of uncertainty on the macroeconomy. We �nd

that, while an increase in overall uncertainty has recessionary e¤ects, the e¤ects of the various

components of uncertainty di¤er. For example, disagreement is only a small portion of the overall

uncertainty, and may both underestimate and lag the actual degree of uncertainty in the economy;

thus it may not be a timely measure of uncertainty. In addition, both realized risk and Knightian

uncertainty were important components of uncertainty over the last three decades, although the

former sharply decreased as soon as the �nancial recession of 2007-2008 ended while the latter

remained high even after the end of the crisis. This suggests that the high overall uncertainty that

persisted after the end of the latest recession was mostly due to agents�being unable to assign the

correct probability to the economic outcomes and disagreeing on them, rather than because risk

was high. Simulation results from a stylized macroeconomic model suggest that the behavior of

uncertainty and its components is largely reconcilable with a macroeconomic model with ambiguity.

Ambiguity can be a source of its own in increasing the overall level of uncertainty; alternatively, it

can also act as an amplifying mechanism for the increase in the level of risk.
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10 Tables and Figures

Table 1: Baseline Parameter Values

�z 0.625 Estimated from an AR(1) model �tted to GDP growth

�a 0.887 Ilut and Schneider�s (2014) mode

n 0.995 Ilut and Schneider�s (2014) mode

�u 0.780 Estimated from an AR(1) model �tted to GDP growth (�z)

�� 0.500 Arbitrary, as the parameter is not separately identi�ed

�n 0.134 Ilut and Schneider (2014) mode

Note: The table reports the parameter values used in the benchmark simulations.

Figure 1: Brier Score Illustration
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Note: The �gure on the left shows the pdf of the predicted distribution together with the realization,

yt+h = �2. On the right we have the CDFs of the predicted and ideal distribution for the realization. The
area between them (denoted by the hollow vertical bar) highlights the distance between the two.
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Figure 2. The Survey of Professional Forecasters Data: GDP Growth

Panel A: Current Year Forecasts Panel B: Next Year Forecasts
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Panel C: Fixed-horizon Forecasts
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Note: The �gure shows the means and quantiles of the SPF�s current year and next year predictive

densities, as well as the constructed �xed horizon four-step-ahead predictive density. The four-step-ahead

density is constructed from the SPF current year and next year density forecasts based on eq. (10). Panel

C also shows the realized value of the GDP growth.
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Figure 3: Decomposing Uncertainty in GDP
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Figure 3: Decomposing Aggregate Uncertainty: GDP

Panel B: Knightian Uncertainty Vs. Risk Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A of Figure 3 depicts the evolution of uncertainty, aggregate uncertainty and disagreement

(eq. 5) over time. Panels B and C show the evolution of the components of aggregate uncertainty based on

eq. (7) and eq. (8), respectively.
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Figure 4: Decomposition of Uncertainty Across Horizons
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Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A shows uncertainty, aggregate uncertainty and disagreement over time. Panels B and C

show the components in decompositions in eqs. (7) and (8), respectively.
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Figure 5. Comparison of Uncertainty Measures
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Note: The �gure compares the Jurado, Ludvigson and Ng (2015) and Baker, Bloom and Davis (2016)

uncertainty indices (top panel) with the ex-ante and ex-post components of our uncertainty measure, eq.

(8), depicted in the bottom panel.
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Figure 6. The E¤ects of Uncertainty on the Economy
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Note: The �gure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

shocks. The components are calculated as in eq. (5) All uncertainty measures have been standardized.
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Figure 7. The E¤ects of Uncertainty on the Economy

Panel A: Aggregate Uncertainty Panel B: Mean Bias
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Panel C: Dispersion Panel D: Realized Volatility
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Note: The �gure shows the impulse responses of the aggregate uncertainty and its components (mean

bias, dispersion and realized risk measures) based on eq. (7). All uncertainty measures have been standard-

ized.
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Figure 8. The E¤ects of Uncertainty on the Economy

Panel A: Ex-Post Uncertainty Panel B: Ex-Ante Uncertainty
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Note: The �gure shows the impulse responses to a one standard deviation shock in ex-ante and ex-post

measures of uncertainty based on eq. (8). All uncertainty measures have been standardized.
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Figure 9. The E¤ects of Uncertainty on the Economy - Alternative Measures

Panel A: VXO Panel B: BBD
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Panel C: JLN Panel D: Scotti

0 5 10 15 20
4

2

0

2
rgdp

Horizon
0 5 10 15 20

3

2

1

0

1
emp

Horizon

0 5 10 15 20
1.5

1

0.5

0

0.5
rovnght

Horizon
0 5 10 15 20

30

20

10

0

10
stock

Horizon

0 5 10 15 20
1

0

1

2
JLN

Horizon

0 5 10 15 20
0.4

0.2

0

0.2

0.4
rgdp

Horizon
0 5 10 15 20

0.4

0.2

0

0.2

0.4
emp

Horizon

0 5 10 15 20
0.1

0

0.1

0.2

0.3
rovnght

Horizon
0 5 10 15 20

4

2

0

2

4
stock

Horizon

0 5 10 15 20
0.5

0

0.5

1

1.5
Scotti

Horizon

Note: The �gure shows the impulse responses for the following uncertainty measures: VXO, JLN, BBD

and Scotti. All uncertainty measures have been standardized.
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Figure 10: Simulation Results

Panel A: Scenario 1 - Changing the Level of Ambiguity
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Panel B: Scenario 2 - Changing the Level of Risk in the Model with Ambiguity
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Panel C: Scenario 3 - Changing the Level of Risk in the Model with no Ambiguity
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Panel D: Scenario 4 - Increasing Cross-Sectional Dispersion in Ambiguity

�n;I = 0:5 �n;I = 1
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Note: The �gure shows the simulation results described in more detail in Section 7; Panels A, B, C and

D corresponding respectively to Scenarios 1, 2, 3 and 4, respectively.
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Figure 11: Decomposing In�ation Uncertainty
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Figure 11: Decomposing Aggregate In�ation Uncertainty

Panel B: Knightian Uncertainty Vs. Risk Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A depicts the evolution of uncertainty, aggregate uncertainty, as well as disagreement (eq.

5) over time. Panels B and C show the evolution of the components of uncertainty based on eq. (7) and eq.

(8), respectively.
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Appendix A. Proofs
The appendix provides the proofs for the results in the paper. For simplicity, we write the proof

for the unconditional expectation.

Proof of Eq. (4).
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1

N

NX
s=1

�
pt+hjt (r)� ps;t+hjt (r)

�2#

= E
h�
xt+h (r)� pt+hjt (r)

�2i
+ 0 + E

"
1

N

NX
s=1

�
pt+hjt (r)� ps;t+hjt (r)

�2#
:

Proof of Eq. (6).

uAt+h (r) � E
h�
xt+h (r)� pt+hjt (r)

�2i
= E

h�
xt+h (r)� E (xt+h (r)) + E (xt+h (r))� pt+hjt (r)

�2i
= E

h
(xt+h (r)� E (xt+h (r)))2

i
+ E

h�
E (xt+h (r))� pt+hjt (r)

�2i
+ E

�
2
�
xt+h (r)� E (xt+h (r)) (E (xt+h (r))� pt+hjt (r)

��
= E

��
pt+hjt (r)� E (xt+h (r))

�2�
+ V (xt+h (r))� 2Cov(xt+h (r) pt+hjt (r));
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where the last line follows from the fact that

E
�
2
�
xt+h (r)� E (xt+h (r)) (E (xt+h (r))� pt+hjt (r)

��
= 2E

��
xt+h (r)� E (xt+h (r)) (E (xt+h (r))� pt+hjt (r)

��
= 2E

h
xt+h (r)E (xt+h (r))� xt+h (r) pt+hjt (r)� E (xt+h (r))2 + pt+hjt (r)Ext+h (r)

i
= 2E

�
pt+hjt (r)Ext+h (r)� xt+h (r) pt+hjt (r)

�
= 2

�
Ept+hjt (r)Ext+h (r)� E(xt+h (r) pt+hjt (r))

�
= �2Cov(xt+h (r) pt+hjt (r)):

Furthermore, note that E
��
pt+hjt (r)� E (xt+h (r))

�2�
=
��
E
�
pt+hjt (r)

�
� E (xt+h (r))

�2�
+V (pt+hjt (r)):

In more detail, E
��
pt+hjt (r)� E (xt+h (r))

�2�
= E

��
pt+hjt (r)� E(pt+hjt (r)) + E(pt+hjt (r))� E (xt+h (r))

�2�
= V ar(pt+hjt (r)) + E(E(pt+hjt (r))� E (xt+h (r)))2

+2E
��
pt+hjt (r)� E(pt+hjt (r))

� �
E(pt+hjt (r))� E (xt+h (r))

��
= V ar(pt+hjt (r)) + E(E(pt+hjt (r)):

Proof of Eq. (8). Our measure of uncertainty is the negative of the expectation of the CRPS

(Gneiting and Raftery, 2007). Note that CRPS(F; yt+h) = �
R1
�1(F (r) � 1fyt+h < rg)2dr =

�UAt+h, where F (r) is the aggregate predictive distribution. Let G(r) denote the ideal distribution,
i.e. G (r) = 1fyt+h < rg. The distributions are conditional distributions, but for notational

simplicity we omit the conditionality. Then by Lemma 2.2 of Baringhaus and Franz (2004), we have

U
A
t+h =

R1
�1(F (r)�1fyt+h < rg)

2dy = EjY1;t+h�y1;t+hj� 1
2EjY1;t+h�Y2;t+hj�

1
2Ejy1;t+h�y2;t+hj,

where Y1;t+h and Y2;t+h are i.i.d draws from F , while y1;t+h and y2;t+h are i.i.d. draws from G (r),

and both of these variables have �nite expectations. Given Lemma 2.1 of Baringhaus and Franz

(2004), Ejy1;t+h�Y1;t+hj =
R1
�1 F (r)(1�G(r))dr+

R1
�1G(r)(1�F (r))dr: Now, for y1;t+h and y2;t+h,

we have Ejy1;t+h � y2;t+hj = 2
R1
�1G(r)(1�G(r))dy = 2

R1
�1 1fyt+h < rg(1� 1fyt+h < rg)dy = 0,

where the last equality follows from the fact that, for a particular value of r, either 1fyt+h < rg or
1� 1fyt+h < rg will be zero, and, thus, the product will be zero. Therefore,

U
A
t+h =

Z 1

�1
(F (r)� 1fyt+h < rg)2dr = EjY1;t+h � y1;t+hj �

1

2
EjY1;t+h � Y2;t+hj: (16)

This means we can rewrite aggregate uncertainty as the sum of expected absolute distance measures

of random variables coming from the predictive distribution, and that coming from the predictive

distribution and the true distribution which generates the realization. If F (r) is the Gaussian

distribution, i.e. if Yt+h � iidN(�t+h; �
2
t+h), then by the property that the di¤erence of the i.i.d

normal random variables is distributed normally (in this case centered around zero with a variance

of 2�2t+h), and the fact that the absolute value of a mean zero random Normal variable has a

half-normal distribution with mean 2�t+hp
�
, we have

1

2
EjY1;t+h � Y2;t+hj =

�t+hp
�
: (17)
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To obtain EjYt+h�yt+hj, we use the properties of Dirac delta function. We denote the PDF of yt+h
by a Dirac delta function �(r � yt+h). From the properties of the Dirac function, E(yt+h) = yt+h

and V ar(yt+h) = 0. Then, Y1;t+h�y1;t+h � N(�t+h�yt+h; �2t+h): By property of the folded Normal
distribution, we have:

EjYt+h � yt+hj = �t+h2'
�
��t+h � yt+h

�t+h

�
+ (�t+h � y1;t+h)

�
1� 2�

�
��t+h � yt+h

�t+h

��
: (18)

Substituting (18) and (17) into (16), we get the result:

U
A
t+h =

�
2�t+h�

�
yt+h � �t+h

�t+h

�
+ (yt+h � �t+h)

�
2�

�
yt+h � �t+h

�t+h

�
� 1
��

| {z }
�Ex-post�

� �t+hp
�| {z }

�Ex-ante�

; (19)

and UAt+h = E
�
U
A
t+hj=tt�R

�
:

Appendix B. Data
As the main text indicates, the �xed-horizon forecasts are constructed as a weighted average

of the current and next year forecasts. Figure A1 shows the number of forecasters that provided

forecasts for both, current year and next year, as well as the number of forecasters that have

provided forecasts for either one of the years, but not both. As the �gure shows, the latter group is

not large. By limiting our attention to forecasters that provide forecasts for both years we loose 10%

of the total number of observations. The maximum per period loss amounts to 30% of forecaster

observations. In our sample we have 239 unique forecasters. Out of those, 108 have been providing

forecasts more than twelve times. The sample has 31 forecasters that have provided density forecast

for 8 or more but less than 12 times, while 37 of them provided forecasts for 4 times and more,

but less than 8 times. Thus, the majority of the forecasters in our sample are repeated forecasters,

which increases the con�dence that our results are not driven by outliers.

D�Amico and Orphanides (2014) highlight the role of approximations in individual predictive

distributions. The idea is that many forecasters tend to put a lot of weight on a few bins and zeros

on other bins. D�Amico and Orphanides (2014) argue that this could be forecasters�true perceived

uncertainty. However, as they suggest, it is also possible that forecasters just use approximations

and lump small probabilities into the adjacent bins. To shed some light on this issue, in Figure

A2, Panel 1, we show the percentage of forecasters that put probabilities into one bin, two bins

and three bins. In general, forecasters with all the probabilities on one bin and two bins are few.

However, a non-negligible proportion of forecasters puts all the probabilities on three bins. The

proportion of these forecasters is higher prior to 1992:I. This is explained by the structure of the

bins at that point. In our sample period, the bin structure for GDP/GNP growth has changed

three times. Between 1981:III and 1991:IV there were 6 bins covering [<-2 -2 to -0.1 0 to 1.9

2 to 3.9 4 to 5.9 6+], between 1992:I and 2009:I the bins were [<-2 -2 to -1.1 -1 to -0.1 0
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to 0.9 1 to 1.9 2 to 2.9 3 to 3.9 4 to 4.9 5 to 5.9 6+], while since 2009:II the bins have

been covering the following intervals [<-3 -3 to -2.1 -2 to -1.1 -1 to -0.1 0 to 0.9 1 to

1.9 2 to 2.9 3 to 3.9 4 to 4.9 5 to 5.9 6+]. Note that in the beginning of the sample the

bins have been fairly wide, not giving forecasters opportunities to di¤erentiate among bins. Given

that we use a Gaussian approximation, in order to strive for accuracy we adjusted the bins in the

period between 1981:III and 1991:IV. The modi�ed grid doubles the number of bins in that period,

splitting the original probabilities in each bin uniformly over the newly created ones. E¤ectively

the grid structure in that period becomes the same as in the period between 1992:I and 2009:I. The

summary of the number of forecasts with probabilities on one, two and three bins with the modi�ed

grid speci�cation is provided in Figure A2, Panel B. The �gure shows that, by construction, there

are not many forecasts with probabilities on less than or equal to three bins left in the period

prior to 1992:I. Moreover, we discarded densities that put all the probability mass on one bin in

the calculations. The second source of approximation error that arises when working with SPF

probability forecast histograms is the open ended nature of the �rst and last intervals. In practice,

we close these intervals. We assume that the open intervals have the same length as the rest of

the intervals in the respective grids. Panels C in Figure A2 shows the proportion of forecasters

assigning a probability value on the leftmost and rightmost bins in the survey. On the one hand,

these proportions are not negligible, and our choice of dealing with the leftmost and rightmost

intervals might have some impact on the overall results. On the other hand, Panel D suggests that

the probability value associated with these open intervals is small. Thus, closing the open intervals

should not induce a large approximation error. Lastly, since we approximate the histograms with a

Gaussian distribution, we use the mid-point approach: when �tting a Gaussian kernel we associate

all the probability mass with the midpoint of the interval.

Figure A1: Forecasters with Current Year and Next Year Forecasts
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Figure A2: Bin Statistics

Panel A: Forecasts without Grid Adjustment Panel B: Forecasts after Grid Adjustment
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Panel C: Forecasts with Open Intervals Panel D: Forecasts with >2.5% on Open Intervals
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Not-for-Publication Appendix
(For Online Publication Only)

A.1 Descriptive Analysis of In�ation Forecasts

Figure I. The Survey of Professional Forecasters Data: In�ation

Panel A: Current Year Forecasts Panel B: Next Year Forecasts
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Panel C: Fixed-horizon Forecasts
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Note: The �gure shows the quantiles of the SPF four-step-ahead predictive density, its mean, as well as

the realized value of in�ation. The four-step-ahead density is constructed from SPF�s current year and next

year density forecasts based on eq. (10)
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A.2 Reliability and Resolution Analysis
Note that an additional, interesting decomposition for uAt+hjt (r) can be obtained following Mur-

phy (1973):

uAt+hjt (r) ' RELt+hjt (r)�RESt+hjt (r) + V
�
xt+h (r) j=tt�R

�
(20)

where:

� RELt+hjt (r) � E
��
pt+hjt (r)� E

�
xt+h (r) jpt+hjt (r)

��2 j=tt�R�measures the reliability of the
forecast and scores the calibration of the forecast. A forecast is said �reliable�when the ob-

served frequency is consistent with the probabilistic forecast made for a given event. For

instance, forecasts that predict a probability of recession of 30 percent will be reliable if the

economy e¤ectively enters a recession 30 percent of the time every time such a forecast is

made. Hence, reliability measures the unconditional (un)biasedness of the probabilistic fore-

casts. Because the term is expressed as a squared error, the smaller the calibration error, the

better (i.e., the lower) the Brier score.

� RESt+hjt (r) � E
��
E
�
xt+h (r) jpt+hjt (r)

�
� E (xt+h (r))

�2 j=tt�R� is the resolution, i.e. the
average squared di¤erential of the conditional and unconditional means of the observed out-

comes. It captures the �decisiveness�of forecasts by comparing the forecast probability and

the long-term average of the underlying process. The larger the term, the lower the Brier

score.

As we show below, Eq. (20) holds up to an approximation error that involves within bin

variation.

The decomposition can be estimated as follows.

Reliability is estimated as follows. For each t, determine which of the forecast bins pt+hjt (r) falls

into. Let
n
p
(k)
t+hjt (r)

o
be the collection of probabilities in the k-th bin and let pEt+hjt (r) denote the

unconditional expected value over the bin. We estimate pEt+hjt (r) using a Uniform distribution over

the bin, so that pEt+hjt (r) is the midpoint of the bin.
21 In addition, let the number of probabilities

in each bin be nk. Let xk be the average of the realizations conditional on the forecaster having

made the probability forecast associated with the collection of probabilities in bin k;
n
p
(k)
t+hjt (r)

o
.

Reliability is the average square calibration error, that is,
21 In the 3-terms decomposition that we discuss here, we abstract from within bin variance and within bin covariance;

thus, the unconditional expected value over the bin is indeed the midpoint of the bin and all forecasts in the bin

are imposed to be equal to the midpoint (so their average is also the midpoint). We derive a 5-terms decomposition

which includes within bin variance and within bin covariance (Stephenson, Coelho and Joli¤e, 2008). In that case,

the reliability will be calculated using the average forecast in the bin without imposing that all forecasts in the bin

are equal. That is, p(k)t+hjt (r) (which is the average of the collection of probabilities in the k-th bin,
n
p
(k)

t+hjt (r)
o
),

replaces pEt+hjt (r) in eq. (21).
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REL(r) =
1

T

KX
k=1

nk

�
pEt+hjt (r)� xk (r)

�2
: (21)

Thus, reliability measures the squared deviation of the predicted probability from the observed

outcome conditional probability of the event. This e¤ectively tells the user how often (as a per-

centage) a forecast probability actually occurred. In theory, a perfect forecasting model will result

in forecasts with a probability of �% being consistent with the eventual outcome �% of the time.

Note that a forecast is reliable if the average square calibration error (REL) is small. Figure II

provides intuition to understand reliability. The x-axis reports the forecast probability,22 while

the y-axis reports the observed relative frequency. A reliable forecast would be the 45-degree line,

where the observed frequency of realizations equals the forecast probability; the data clearly show

departures from reliability in our sample.

Figure II. Reliability Diagram
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Notes. The �gure plots the reliability diagram for SPF forecasts of current year (CY) GDP growth.

Resolution is the squared average di¤erence between the conditional mean (given the forecast)

and the unconditional mean: RES(r) = 1
T

PK
k=1 nk (xk (r)� x (r))

2 : Note that good forecasts have

high resolution.

Figure III shows the evolution of the components of the alternative decomposition over time.23

22The forecast probability is the mid-point of the bin in the forecast distribution.
23Finally, note that the practical implementation of the Brier score involves �binning�. Binning smooths the data

and makes them less noisy, as larger bins limit the �sparseness�problem (Stephenson et al., 2008). Some information

is lost, however, by approximating continuous probability densities with a discrete number of bins.
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Figure III. Aggregate Uncertainty, Reliability, Resolution and (Realized) Risk
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Notes. The �gure displays Aggregate Uncertainty, Reliability, Resolution and Realized Risk.

Proof of eq. (20). In practice, the Murphy decomposition requires partitioning the range of

forecasts �essentially, the [0,1] line �into K sub-segments. Let r be a number along the real line;

let p(k) denote the average probability in segment k;24 and let nk denote the number of forecast

probabilities that fall in the k-th sub-segment, for k = 1; : : : ;K. Given all forecasts in the sample,

24Alternatively, one could consider p(k) as the midpoint of the k-th segment
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the Brier score can be broken down as follows:

1

T

TX
t=1

[xt+h(r)� pt+hjt(r)]2 =
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� p

(j)
t+hjt(r)

i2
=
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r) + x

(k)
t+h(r)� p

(k)
t+hjt(r) + p

(k)
t+hjt(r)� p

(j)
t+hjt(r)

i2
=
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i2
+
1

T

KX
k=1

nkX
j=1

h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i2
+
1

T

KX
k=1

nkX
j=1

h
p
(k)
t+hjt(r)� p

(j)
t+hjt(r)

i2
+
2

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i

+
2

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i h
p
(k)
t+h(r)� p

(j)
t+hjt(r)

i

+
2

T

KX
k=1

nkX
j=1

h
p
(j)
t+hjt(r)� p

(k)
t+hjt(r)

i h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i

=
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i2
+
1

T

KX
k=1

nkX
j=1

h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i2
+
1

T

KX
k=1

nkX
j=1

h
p
(k)
t+hjt(r)� p

(j)
t+hjt(r)

i2
+
2

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i h
p
(k)
t+h(r)� p

(j)
t+hjt(r)

i
:

We can already recognize the reliability (REL) in the second term of this decomposition:

REL(r) =
1

T

KX
k=1

nkX
j=1

h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i2
=
1

T

KX
k=1

nk

h
x
(k)
t+h(r)� p

(k)
t+hjt(r)

i2
: (22)
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The �rst term can be expressed as follows:

1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i2
=
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x(r) + x(r)� x

(k)
t+h(r)

i2
=
1

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x(r)

i2
+
1

T

KX
k=1

nkX
j=1

h
x(r)� x(k)t+h(r)

i2
+
2

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x(r)

i h
x(r)� x(k)t+h(r)

i

=
1

T

TX
t=1

[xt+h(r)� x(r)]2 �
1

T

KX
k=1

nk

h
x(r)� x(k)t+h(r)

i2
� V

�
xt+h (r) j=tt�R

�
�RES(r):

Note that because the outcome variable x is binary, the uncertainty term can be expressed asV
�
xt+h (r) j=tt�R

�
=

x(r)(1� x(r)). To summarize, we have decomposed the Brier score in the following way:

1

T

TX
t=1

[xt+h(r)� pt+hjt(r)]2 = V
�
xt+h (r) j=tt�R

�
+REL(r)�RES(r)

+
1

T

KX
k=1

nkX
j=1

h
p
(k)
t+hjt(r)� p

(j)
t+hjt(r)

i2
+
2

T

KX
k=1

nkX
j=1

h
x
(j)
t+h(r)� x

(k)
t+h(r)

i h
p
(k)
t+h(r)� p

(j)
t+hjt(r)

i
:

The last two terms measure the variance of forecasts within the sub-segments and the co-movement

between forecasts within a segment and their corresponding outcomes. The decomposition therefore

writes:

1

T

TX
t=1

[xt+h(r)� pt+hjt(r)]2 = V
�
xt+h (r) j=tt�R

�
+REL(r)�RES(r) +WSV (r) +WSC(r):

Remark that the last two terms equal zero when all forecasts within the same segment are assumed

identical. Because WSV (r) and WSC(r) are quantitatively very small in the data, we will work

under the simpler decomposition:

1

T

TX
t=1

[xt+h(r)� pt+hjt(r)]2 ' V
�
xt+h (r) j=tt�R

�
+REL(r)�RES(r);

as per the de�nitions that we have written.
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A.3 Results for the Large-Dimensional VAR
This section shows the robustness of our results to a mid-size 11 variable VAR as considered

in Jurado, Ludvigson and Ng (2015) speci�ed in the spirit of Christiano, Eichenbaum and Evans

(2005). The VAR (11) is in the following variables: log(real GDP), log(employment), log(real

consumption), log(PCE de�ator), log(real new order), log(real wage), hours, federal funds rate,

log(S&P 500 Index), growth rate of M2, and various uncertainty indices discussed in the paper.

The variables are downloaded from the 2015-11 version of the FRED-QD (Quarterly Database

for Macroeconomic Research) discussed in McCracken and Ng (2015). The labels on the impulse

responses carry the mnemonics of the variables in the database described in Table I.

Table I. Description of Variables Included in the VAR

Variable Mnemonics Description

real GDP GDPC96 Real Gross Domestic Product, 3 Decimal (Billions of Chained 2009 Dollars)

Employment PAYEMS All Employees: Total nonfarm (Thousands of Persons)

Real Consumption PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2009 Dollars)

PCE de�ator PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index 2009=100)

real new order AMDMNOx Real Manufacturers�New Orders: Durable Goods (Millions of 2009 Dollars),

de�ated by Core PCE

real wage AHETPIx Real Average Hourly Earnings of Production and Nonsupervisory Employees:

Total Private (2009 Dollars per Hour), de�ated by Core PCE

hours HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2009=100)

federal funds rate FEDFUNDS E¤ective Federal Funds Rate (Percent)

S&P 500 Index S&P 500 S&P�s Common Stock Price Index: Composite

M2 M2REALX Real M2 Money Stock (Billions of 1982-84 Dollars)

The impulse responses to shocks in the uncertainty indices are displayed in Figures IV-VII.

The �gures show that the �ndings are in general the same as those we report in the main text:

all uncertainty measures are recessionary in nature. The ex-post measures, as well as realized

volatility, have higher impact in magnitude than disagreement or ex-ante uncertainty. Also, even

in the large VAR, GDP increases after a shock to dispersion.
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Figure IV: Macroeconomic Impact of Uncertainty

Panel A: Uncertainty Panel B: Aggregate Uncertainty
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Panel C: Disagreement
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Note: The �gure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

based on eq. (5).
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Figure V: Macroeconomic E¤ect of Uncertainty

Panel A: Aggregate Uncertainty Panel B: Mean Bias
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Panel C: Dispersion Panel D: Realized Volatility
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Note: The �gure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (7). The uncertainty measures have been standardized.
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Figure VI: Macroeconomic Impact of Uncertainty

Panel B: Ex-Ante Uncertainty Panel C: Ex-Post Uncertainty
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Note: The �gure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (8). The uncertainty measures have been standardized.
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Figure VII: Macroeconomic E¤ect of Uncertainty - Alternative Measures

Panel A: VXO Panel B: BBD
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Panel C: JLN Panel D: Scotti

0 10 20
3

2

1

0

1
GDPC96

Horizon
0 10 20

2

1

0

1
PAYEMS

Horizon
0 10 20

3

2

1

0

1
PCECC96

Horizon
0 10 20

1

0.5

0

0.5

1
PCECTPI

Horizon

0 10 20
10

5

0

5
AMDMNOx

Horizon
0 10 20

1.5

1

0.5

0

0.5
AHETPIx

Horizon
0 10 20

4

2

0

2
HOANBS

Horizon
0 10 20

1

0.5

0

0.5

1
FEDFUNDS

Horizon

0 10 20
20

10

0

10
S&P 500

Horizon
0 10 20

1

0.5

0

0.5

1
M2REALx

Horizon
0 10 20

1

0

1

2
JLN

Horizon

0 10 20
0.4

0.2

0

0.2

0.4
GDPC96

Horizon
0 10 20

0.4

0.2

0

0.2

0.4
PAYEMS

Horizon
0 10 20

0.4

0.2

0

0.2

0.4
PCECC96

Horizon
0 10 20

0.2

0.1

0

0.1

0.2
PCECTPI

Horizon

0 10 20
2

1

0

1

2
AMDMNOx

Horizon
0 10 20

0.2

0.1

0

0.1

0.2
AHETPIx

Horizon
0 10 20

0.4

0.2

0

0.2

0.4
HOANBS

Horizon
0 10 20

0.2

0.1

0

0.1

0.2
FEDFUNDS

Horizon

0 10 20
4

2

0

2

4
S&P 500

Horizon
0 10 20

0.2

0

0.2

0.4

0.6
M2REALx

Horizon
0 10 20

0.5

0

0.5

1

1.5
Scotti

Horizon

Note: The �gure shows the impulse responses for the following uncertainty measures: VXO, JLN, BBD

and Scotti. The uncertainty measures have been standardized.
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A.4 Estimation
We propose to estimate the decomposition with its sample counterparts:

bUt+hjt = Z +1

�1
but+hjt (r) dr; t = R; :::; T

where R is the size of the rolling window,

but+hjt (r) = 1

R

tX
j=t�R+1

1

N

NX
s=1

us;j+hjj (r) =
1

R

tX
j=t�R+1

1

N

NX
s=1

�
xt+h (r)� ps;j+hjj (r)

�2
and

bUAt+hjt = Z +1

�1

�
pt+hjt (r)� xt+h (r)

�2
dr +

Z +1

�1
bV (pt+hjt (r))dr (23)

+

Z +1

�1
bV olt+hjt (r) dr � 2Z +1

�1
dCov(xt+h (r) ; pt+hjt (r))dr;

where the terms on the RHS of eq. (23) are as follows:

- pt+hjt (r) ; xt+h (r) are estimated by
1
R

tP
j=t�R+1

pj+hjj (r) ;
1
R

tP
j=t�R+1

xj+h (r) ;

- bV olt+h (xt+h (r)) is an estimate of the variance of xt+h (r), which is a binary variable, recur-
sively over time: bV olt+h (xt+h (r)) = xt+h (1� xt+h) ;

-bVt+h �pt+hjt (r)� is an estimate of the variance of pt+hjt (r) recursively over time:
bVt+h �pt+hjt (r)� = 1

R

tP
j=t�R+1

�
pj+hjj (r)� pt+hjt (r)

�2
- dCov(xt+h (r) pt+hjt (r)) is estimated as:

dCov(xt+h (r) ; pt+hjt (r)) = 1

R

tP
j=t�R+1

�
pj+hjj (r)� pt+hjt (r)

�
(xj+h (r)� xt+h (r))

While we do not need the Normality assumption to calculate the decomposition above, in prac-

tice we �t a Gaussian distribution to the predictive density. The main reason is to guarantee that

the �Knightian uncertainty/(Realized) Risk�decomposition is consistent with the�Ex-ante�/�Ex-

post�, since the latter is valid only under Normality. Furthermore, in the empirical implementation

we let R = 4, which amounts to calculating 4-quarter-moving average of the various components

of uncertainty, and we proxy the inde�nite integrals with de�nite ones by treating the extrema of

either the realization or the bins as integral bounds.
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