
 

 

 

 

 

 

 

Barcelona GSE Working Paper Series  

Working Paper nº 1114 

 

The Identification Problem for Linear 
Rational Expectations Models 

Majid M. Al-Sadoon 
Piotr Zwiernik  

 
September 2019 

 



The Identification Problem for Linear Rational Expectations

Models∗

Majid M. Al-Sadoon†

Durham University Business School

Piotr Zwiernik‡

Universitat Pompeu Fabra & BGSE

August 26, 2019

Abstract

We consider the problem of the identification of stationary solutions to linear rational

expectations models from the second moments of observable data. Observational equiva-

lence is characterized and necessary and sufficient conditions are provided for: (i) identifica-

tion under affine restrictions, (ii) generic identification under affine restrictions of analytically

parametrized models, and (iii) local identification under non-linear restrictions. The results

strongly resemble the classical theory for VARMA models although significant points of de-

parture are also documented.
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1 Introduction

The linear rational expectations model (LREM) is distinguished among dynamic linear sys-

tems in that the present state depends not only on events leading up to the present but also

on endogenously formulated expectations of the future. Such models are used today by re-

searchers, practitioners, and policy-makers for causal and counter-factual analysis as well as

forecasting. Yet the statistical properties of LREMs are poorly understood and identification

in particular has remained an open problem throughout what is now known as the rational

expectations revolution.

Establishing identifiability of this model class is important for several reasons. From

the parametrization point of view, the parameters of LREMs codify the decision making of

economic actors (e.g. households or firms) and it is important to know whether or not this

behaviour can be learned from the available data. From the estimation point of view, lack

of identifiability leads to ill-conditioned optimization procedures when employing extremum

estimators; Bayesian methods are not immune to identification failure either as the posterior

retains the shape of the prior along observationally equivalent directions in the parameter

space. Finally, inference is substantially more difficult in the absence of identification in both

the frequentist and Bayesian perspectives.

Partial results for identification of LREMs were derived by Muth (1981), Wallis (1980) and

Pesaran (1981). However, these results apply to very restricted LREMs and cannot be em-

ployed in the study of modern LREMs. Subsequent econometric work in the area completely

ignored identification until Canova & Sala (2009) called attention to serious identification

problems plaguing many LREMs used in practice, a point echoed by Pesaran & Smith (2011),

Romer (2016), and Blanchard (2018). This spurred a number of researchers to provide compu-

tational diagnostics for local and global identification (Iskrev, 2010; Komunjer & Ng, 2011; Qu

& Tkachenko, 2017; Kociecki & Kolasa, 2018). Unfortunately, this work has not attempted

an analytical examination of the mapping from parameters to observables of LREMs. Con-

sequently, it has failed to uncover the underlying reasons for identification failure and has

resorted instead to detecting the symptoms. A further consequence of this is that it has not

been possible to make strong connections to classical identification results (e.g. the work of

Hannan & Deistler (2012)).

The present work builds on recent results by Onatski (2006), Anderson et al. (2012),
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Anderson et al. (2016), and Al-Sadoon (2018) to explain why identification failure occurs

in LREMs, provide a characterization of observational equivalence, and provide analytical

diagnostic tests of identification that extend classical results for vector autoregressive moving

average (VARMA) models. The key idea is that the mapping from parameters to observables of

LREMs involves an initial Wiener-Hopf factorization but is otherwise identical to the mapping

for VARMA. Once this is recognized, the theory proceeds almost exactly analogously to the

classical theory.

LREMs are subject to identification failure for some of the same reasons that simultaneous

equations models and VARMA are. This is to be expected since the class of LREMs nests

the aforementioned classes of models. However, there is a new source of identification failure

that afflicts only LREMs and that has to do with the endogeneity of expectations. The fact

that expectations in LREMs are functions of other endogenous variables necessitates more

restrictions than might be called for in a classical model. Said differently, forward dependence

is not identified. This result has been known to many authors in the literature, although it

receives its most general treatment in this paper.

Our characterization of observational equivalence extends well-known results in the VARMA

literature. We find that every class of observationally equivalent models sits inside a particular

subspace of the parameter space, the dimension of which then gives the number of restrictions

necessary for identification. This number is determined for both specific and generic points in

the parameter space.

We then consider the identification problem under affine restrictions. These restrictions

include zero restrictions, normalization to one restrictions, and (more generally) restrictions

on linear combinations of parameters, possibly across equations. This leads to the geometric

picture in Figure 1. Every point in the parameter space can now be thought of as lying at

the intersection of two subspaces, the set of observationally equivalent parameters, E , and the

set of parameters satisfying the affine restrictions, R. When these two subspaces intersect at

a single point, that point is identified. Otherwise, they intersect along a subspace and local

identification fails. This observation allows us to obtain necessary and sufficient conditions for

identification under affine restrictions. It also immediately implies the equivalence of global

and local identification for LREMs identified by affine restrictions.

Most LREMs in practice consist of parameters that are themselves rational functions of
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Figure 1: The Geometry of Affine Restrictions.

E

R

more fundamental parameters, so-called “deep parameters.” In this case, it will be difficult

to provide necessary and sufficient conditions for identification under affine restrictions that

would be easily testable. However, we show that necessary and sufficient conditions for iden-

tification under affine restrictions are still possible for generic systems. When the restrictions

are non-linear, we provide necessary and sufficient conditions for local identification. The

geometry of Figure 1 continues to be helpful here even as R is no longer an affine space.

It is perhaps worth pointing out some distinctive features of our analysis at the outset.

Unlike previous approaches, ours does not requires any special assumptions on the number of

exogenous shocks relative to observables (i.e. regularity) or redundant dynamics (i.e. minimal-

ity). Our approach does, however, make a strong identifying assumption on the first impulse

response of the system. Nevertheless, we believe the new approach paves the way for much

further progress on identification of LREMs as we discuss later on.

The reader wishing to have the full picture of the theory is advised to begin with Appendix

A before starting Section 3. Section 2 sets the notation. Section 3 introduces the LREM and

its solution. Section 4 characterizes observational equivalence in LREMs. Section 5 uses these

results to provide conditions for identifiability of a parameter under affine constraints. Section

6 extends the set-up to non-linear parametrizations and constraints. Section 7 concludes.
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2 Notation

Denote by Z ⊂ R ⊂ C the sets of integers, real numbers, and complex numbers respectively.

We will need T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}, and D = {z ∈ C : |z| ≤ 1}, the unit

circle, the open unit disk, and the closed unit disk respectively. Complements of sets will be

denoted by a superscript c. Denote by R[z] ⊂ R[z, z−1] ⊂ R(z) the sets of real polynomials

in z, real Laurent polynomials in z, and real irreducible rational functions in z respectively.

Similarly, R[z−1] is the set of real polynomials in z−1. When forming arrays populated by

elements of a given set, we will use the superscript n ×m (e.g. R[z]n×m is the set of n ×m

polynomial matrices). When m = 1, we will simply use the superscript n (e.g. Rn is the set of

n-dimensional real vectors). For a non-zero B ∈ R[z, z−1]n×m, we denote by max deg(B) the

highest power of z that appears in B, while min deg(B) is the lowest power of z that appears

in B. Finally, we will denote by In and 0n×m the n×n identity matrix and the n×m matrix

of zeros respectively.

3 The Linear Rational Expectations Model

The linear rational expectations model (LREM) is characterized by the structural equations

p∑
i=−q

Bi Et(Yt−i) =
k∑
i=0

Aiεt−i, t ∈ Z.(1)

Here ε is a sequence of m-dimensional, exogenous, and unobserved i.i.d. variables of mean zero

and var(ε0) = Im, while Y a sequence of n-dimensional endogenous observed variables. The

variables in ε are understood as exogenous inputs to the system (e.g. shocks to productivity,

monetary policy, etc.), while the variables in Y are understood as the output of the system

(e.g. inflation, interest rates, etc.).

The coefficient matrices A0, . . . , Ak ∈ Rn×m codify the direct contemporaneous and lagged

effects of the shocks on the system. The coefficient matrices B−q, . . . , Bp ∈ Rn×n codify how

the expected, current, and lagged values of Y are directly related to each other. It will be

convenient to encode the parameters as

B(z) =

p∑
i=−q

Biz
i, A(z) =

k∑
i=0

Aiz
i.
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Later we will introduce restrictions to these parameters and allow them to depend in a possibly

non-linear way on another set of parameters. Following the usual convention we often omit

the argument in the notation writing simply B and A.

Example 3.1. The most common specification of the LREM takes the form

B =

 Φ 0l×(n−l)

Γ B

 , A =

 Θ 0l×(m−l)

0(n−l)×l A

 .
Here all submatrices except for B ∈ R[z, z−1](n−l)×(n−l) are polynomial matrices. Thus, the

first l variables of Y are considered exogenous in the last n − l equations, which model the

economic behaviour of primary interest. The first l variables of ε affect the dynamics of the

exogenous variable, while the rest enter into the system directly.

In the special case where B is a polynomial matrix, we have the most general formulation

of the classical VARMAX model with exogenous variables that have rational spectral den-

sity. Specializing further to the case where all matrices are constant, we obtain the classical

simultaneous equations model.

A solution to (1) will be understood to be an n-dimensional stochastic process Y sat-

isfying the causality condition that Yt be measurable with respect to the σ-algebra gener-

ated by εt, εt−1, . . . for all t ∈ Z, in addition to the structural equations (1) with Et( · ) =

E( · | εt, εt−1, . . . ) for all t ∈ Z.

The parameter space of the LREM, denoted by ΩLREM , is a set of pairs

(B,A) ∈ R[z, z−1]n×n × R[z]n×m

characterized by three restrictions, which we carefully introduce in this and the next section.

The first of these restrictions is

(EU-LREM)

B = B−B+, where

B− ∈ R[z−1]n×n, rank(B−(z)) = n for all z ∈ Dc and lim
z→∞

B−(z) = In,

B+ ∈ R[z]n×n, rank(B+(z)) = n for all z ∈ D.

Restriction (EU-LREM) is equivalent to the existence and uniqueness of a stationary solution

to (1) (see Proposition 1 of Onatski (2006) and Theorem 3.2 of Al-Sadoon (2018)). This

is because it is equivalent to the existence of a Wiener-Hopf factorization with zero partial

indices for B (Clancey & Gohberg, 1981, Theorems I.1.1, I.1.2, and I.2.1).
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To express the solution, we will need to recall the operators[ ∞∑
i=−∞

Diz
i

]
+

=

∞∑
i=0

Diz
i,

[ ∞∑
i=−∞

Diz
i

]
−

=

−1∑
i=−∞

Diz
i,

where
∑∞

i=−∞Diz
i converges in an annulus {z ∈ C : ρ < |z| < 1} for some ρ ∈ (0, 1) (Hansen

& Sargent, 1981, Appendix A). Under restriction (EU-LREM), Onatski (2006) obtains the

solution,

Yt = B−1+ (L)
[
B−1− A

]
+

(L)εt, t ∈ Z,(2)

where L is the lag operator, B−1+ (L) is the composition of L and the Taylor series expansion of

B−1+ (z) in a neighbourhood of z = 0, and [B−1− A]+(L) is the composition of L and the Taylor

series expansion of [B−1− A]+(z) in a neighbourhood of z = 0.

Now defining

A+ = B−[B−1− A]+,

we can rewrite the solution in the more familiar form

Yt = B−1(L)A+(L)εt, t ∈ Z,(3)

where B−1(L) is the composition of L and the Laurent series expansion of B−1(z) in a neigh-

bourhood of T and A+(L) is the composition of L and the Laurent series expansion of A+(z)

in a neighbourhood of T. This expression is similar to the solution of the classical VARMA

model save for the substitution of A for A+.

From (2) and (3) we see that there are two analytical expressions for the transfer function

of the solution, B−1+ [B−1− A]+ and B−1A+. Each of these expressions plays a crucial role in

the theory of identification of LREMs.

For future reference, we collect some of the algebraic consequences of (EU-LREM) in the

following lemma.

Lemma 3.1. Let (B,A) ∈ R[z, z−1]n×n × R[z]n×m and let B satisfy (EU-LREM). Then:

(i) min deg(B−) = min deg(B) and max deg(B+) = max deg(B).

(ii) [B−1− A]+ ∈ R[z]n×m and max deg([B−1− A]+) = max deg(A).

(iii) A+ ∈ R[z, z−1]n×m, min deg(A+) ≥ min deg(B), and max deg(A+) = max deg(A).
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(iv) [A+]+ = A.

Proof. (i) Let the terms of lowest and highest degree of B− and B+ be B−,µz
−µ and B+,νz

ν

respectively. Then the terms of lowest and highest degrees of B = B−B+ are B−,µB+,0z
−µ

and B−,0B+,νz
ν respectively as B+,0 = B+(0) and B−,0 = In are non-singular.

(ii) The highest degree term of the Laurent series expansion of B−1− in an annulus containing

T is In. Thus, the highest degree term of B−1− A is the highest degree term of A and the result

follows.

(iii) Follows directly from (i) and (ii).

(iv) Compute

[A+]+ = [B−[B−1− A]+]+ = [B−(B−1− A)]+ − [B−[B−1− A]−]+ = [A]+ − 0 = A.

The second equality follows from the fact that B−1− A = [B−1− A]+ + [B−1− A]−. The third

equality follows from the fact that the Laurent series expansion of B−[B−1− A]− in an annulus

containing T consists of only negative powers of z.

It follows from Lemma 3.1 (i) that the factors B±(z) are polynomial matrices in z±1 with

degrees determined by the minimum and maximum degrees of B. Thus, in the VARMA setting

where min deg(B) = 0, then B− = In and B+ = B so (EU-LREM) reduces to the condition

for existence and uniqueness of a causal stationary solution to the VARMA model (condition

(EU-VARMA) in Appendix A). Lemma 3.1 (ii) implies that the solution (2) can be viewed

equivalently as a solution to the VARMA model with autoregressive part B+ and moving

average part [B−A]+, a fact that will play a crucial role in our analysis. Lemma 3.1 (iii)

proves that A+ is a Laurent polynomial with degrees bounded by the minimum degree of

B and the maximum degree of A. It follows, again, that in the VARMA setting A+ = A.

Finally, Lemma 3.1 (iv) is the remarkable property of the solution that even though the

mapping (B,A) 7→ (B,A+) is highly non-linear, it is one-to-one and its left inverse is linear.

Example 3.2. Consider the LREM (1) with n = m = p = q = k = 1 under restriction

(EU-LREM). Then Lemma 3.1 (i) implies that we may write B = B−B+ with B−(z) =

1−b−z−1, B+(z) = b0(1−b+z), and |b±| < 1. Note that in this parameterization B−1 = −b−b0,

B0 = b0(1 + b−b+), and B1 = −b0b+. Writing A(z) = a0 + a1z, we have

B−1− (z)A(z) =
a1b

2
− + a0b−
z − b−

+ a1b− + a0 + a1z = (a1b
2
− + a0b−)

∞∑
i=1

bi−1− z−i + a1b− + a0 + a1z
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in an annulus containing T. This implies that

[
B−1− A

]
+

(z) = a1b− + a0 + a1z.

In consequence,

A+(z) =
−a1b2− − a0b−

z
+ a0 + a1z.

The solution finally is given by

Yt =

(
a1b− + a0 + a1L

b0(1− b+L)

)
εt,

which is the same as the solution of the ARMA model with autoregressive part B+(z) =

b0(1− b+z) and the moving average part [B−1− A]+(z) = a1b− + a0 + a1z.

4 Observational Equivalence

Before completing the characterization of the parameter space, it is helpful to consider obser-

vational equivalence as a means to motivate the second and third properties of the parameter

space.

The spectral density of the observed data,

fY Y (z) =
∞∑

j=−∞
cov(Yj , Y0)z

j ,

satisfies

fY Y (z) = B−1(z)A+(z)A+′(z−1)B−1′(z−1).

We say that two parameters (B,A) and (B̃, Ã) are observationally equivalent and denote

this by (B,A) ∼ (B̃, Ã) if both produce the same spectral density; that is, if and only if

B−1(z)A+(z)A+′(z−1)B−1′(z−1) = B̃−1(z)Ã+(z)Ã+′(z−1)B̃−1′(z−1).

Evidently observationally equivalent parameters are related in a very complicated way.

The traditional way forward in the VARMA literature has been to first impose restrictions

that identify the transfer function before considering how to identify the parameters from

the transfer function (Hannan & Deistler, 2012, Theorem 1.3.3). In particular, it is typically

imposed that for every parameter (B,A) the transfer function B−1(z)A+(z) is of full rank
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for all z ∈ D. This condition is known variably in the literature as the invertibility, funda-

mentalness, or minimum phase condition. The transfer function then corresponds to a Wold

representation of Y (Hannan & Deistler, 2012, p. 25). Imposing this additional restriction

allows us to conclude that (B,A) ∼ (B̃, Ã) if and only if there exists an orthogonal matrix

V ∈ Rm×m such that

B̃−1Ã+ = B−1A+V.

See e.g. Theorems 4.6.8 and 4.6.11 of Lindquist & Picci (2015). Thus, we have identified the

transfer function from the spectral density matrix up to an orthogonal transformation.

Restrictions that eliminate V are very well understood in the VARMA literature (Lütkepohl,

2005, Chapter 9). The simplest and most convenient choice for our purposes is to restrict the

first coefficient matrix of the transfer function to be canonical quasi-lower triangular as in

Anderson et al. (2012). Here, the first non-zero element of column j is positive and occurs

in row ij with 1 ≤ i1 < · · · < im ≤ n. In the special case n = m, this is just the Cholesky

identification scheme commonly attributed in the literature to Sims (1980). Thus, we arrive

at the second property of all (B,A) ∈ ΩLREM ,

(CF-LREM)
rank(B−1(z)A+(z)) = m for all z ∈ D and

B−1(z)A+(z)|z=0 is canonical quasi-lower triangular.

Note that under (EU-LREM), (CF-LREM) is equivalent to [B−1− A]+(z) having rank m for all

z ∈ D and B+(0)[B−1− A]+(0) being canonical quasi-lower triangular.

The invertbility part of (CF-LREM) is not restrictive for Gaussian ε, which is a typical

specification in the LREM literature (Herbst & Schorfheide, 2016). This is because the distri-

bution of a Gaussian stationary process is completely determined by its spectral density and

so it is not possible to distinguish invertible from non-invertible Gaussian models (Rosenblatt,

2000, p. 11). The second part of (CF-LREM) imposing canonical quasi-lower triangularity of

the first impulse response uniformly over the parameter space is, on the other hand, very re-

strictive and not likely to be satisfied for the typical multivariate LREM. However, it permits

us a great deal of mathematical traction and we hope that it will be possible to relax it in

future work. The reader who still finds (CF-LREM) objectionable may consider that we have

solved the identification problem for LREMs up to an orthogonal matrix transformation, as in

Anderson et al. (2016). We might add that this problem, which is mathematically equivalent
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to the global identification of the simplest static model (9) under general linear restrictions

remains an open problem in the literature (Rubio-Ramı́rez et al. (2010) and Bacchiocchi &

Kitagawa (2019) provide results in the special case of exact identification).

Even though we have not yet completed our characterization of ΩLREM , we can already

simplify observational equivalence based on conditions (EU-LREM) and (CF-LREM).

Theorem 4.1. Let (B,A) and (B̃, Ã) satisfy (EU-LREM) and (CF-LREM). Then (B,A) ∼

(B̃, Ã) if and only if

B̃−1+ [B̃−1− Ã]+ = B−1+ [B−1− A]+

or equivalently

B̃−1Ã+ = B−1A+.

Theorem 4.1 generalizes well known classical results. When B and A are polynomial

matrices, it reduces exactly to the result for the VARMA model (Theorem A.6) and when B

and A are constants, it reduces to the result for the classical linear simultaneous equations

model (Theorem A.2). Unfortunately Theorem 4.1 does not have the simple algebraic flavour

of the classical models, which leads naturally to the notion of coprimeness and other useful

and elegant algebraic ideas. However, we will see that with special care, these complications

are surmountable.

Theorem 4.1 makes clear what the identification problem is for LREMs. Two parameters

are observationally equivalent if and only if they generate the same transfer function. But the

mapping from parameters to transfer functions factorizes as

(B,A)
ϕ17−→ (B−, B+, A)

ϕ27−→ (B−, B+, [B
−1
− A]+)

ϕ37−→ (B+, [B
−1
− A]+)

ϕ47−→ B−1+ [B−1− A]+.(4)

Since the Wiener-Hopf factorization is a well defined function and B = B−B+, ϕ1 is one-to-

one and so no identification problems are possible at this stage. Similarly, by Lemma 3.1 (iv),

ϕ2 is one-to-one so no identification problems are possible at this stage either. If we consider

now ϕ4, this mapping is not one-to-one due to the identification problem for VARMA models

(see Section A for a review). This is to be expected because the set of VARMA is a subset of

the set of LREMs. The only new aspect to the identification problem for LREMs is ϕ3, where

B− is dropped. Since B− determines the forward dependence of the solution to (1), we arrive

at the following fundamental observation.
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The Fundamental Aspect of the Identification Problem for LREMs:

Forward dependence is not identified.

The claim here goes beyond the well known fact that the effect of endogenous variables

(e.g. expectations) in a classical structural equations model is not identified. What distin-

guishes LREMs is that expectations are endogenous variables which are determined by other

endogenous variables. Thus, they necessitate more restrictions than necessary to identify the

classical structural equation models. This point has already been made by several authors

including the father of rational expectations himself, Muth (1981), in a paper written in 1960.

Of course these earlier realizations of this point were in the context of much more restric-

tive LREMs relative to what we consider in this paper. By the end of this section we will

characterize exactly how many additional restrictions are necessary for the identification of

LREMs.

Before we can do that, however, we must introduce the final characterization of our param-

eter space. Notice that the set of elements in R[z, z−1]n×n × R[z]n×m satisfying (EU-LREM)

and (CF-LREM) is infinite dimensional. The sets of observationally equivalent parameters,

as described in Theorem 4.1, are also infinite dimensional. In practice, however, LREMs are

specified with a finite number of leads and lags. Thus, it is typically assumed that there exist

non-negative integers κ and λ such that for every parameter (B,A),

(L-LREM) min deg(B) ≥ −λ, max deg(B) ≤ κ, max deg(A) ≤ κ.

Thus, ΩLREM is the set of pairs (B,A) ∈ R[z, z−1]n×n × R[z]n×m satisfying (EU-LREM),

(CF-LREM), and (L-LREM). The condition (L-LREM) allows us think of ΩLREM as a

subset of Rn2(κ+λ+1)+nm(κ+1) with the Euclidean topology. The following result provides a

parametrization of ΩLREM analogous to the parametrization of VARMA models.

Proposition 4.2. ΩLREM is homeomorphic to a subset of Rn2(1+λ+κ)+nm(1+κ)− 1
2
m(m−1), the

interior of which consists of two connected components.
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Proof. Let

ΘLREM =

{
(Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) :

Fλ, . . . , F1, G0, . . . , Gκ ∈ Rn×n, C0, A1, . . . , Aκ ∈ Rn×m,

rank(F (z)) = n for all z ∈ Dc, where F (z) = In +

λ∑
i=1

Fiz
−i,

rank(G(z)) = n for all z ∈ D, where G(z) =

κ∑
i=0

Giz
i,

C0 is canonical quasi-lower triangular,

A(z) = G0C0 −A1F
1 − · · · −AκF κ +

κ∑
i=1

Aiz
i,

where F−1(z) =

∞∑
i=0

F iz−i, for all z ∈ Dc,

and rank
(
[F−1A]+(z)

)
= m for all z ∈ D

}
.

Then ΘLREM can be viewed as a subset of Rn2(1+λ+κ)+nm(1+κ)− 1
2
m(m−1). We claim that the

mapping φLREM : ΘLREM → ΩLREM , defined by

(Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) 7→((
In +

λ∑
i=1

Fiz
−i

)(
κ∑
i=0

Giz
i

)
, G0C0 −A1F

1 − · · · −AκF κ +
κ∑
i=1

Aiz
i

)
,

is a homeomorphism. Since
(
In +

∑λ
i=1 Fiz

−i
) (∑∞

i=0 F
iz−i

)
= In for all z ∈ Dc, we have

that F 0 = In and F i = −
∑min{λ,i}

j=1 FjF
i−j for i ≥ 1 and so the elements of F 1, . . . , F κ

are polynomials in the elements of F1, . . . , Fλ and are therefore continuous. It follows that

φLREM is continuous. Next consider φ−1LREM (B,A). By the uniqueness of the Wiener-Hopf

factorization, it must be that F (z) = B−(z) and G(z) = B+(z). The continuity of the

Wiener-Hopf factorization (Clancey & Gohberg, 1981, Proposition X.1.1) then ensures that

B is mapped continuously to (Fλ, . . . , F1, G0, . . . , Gκ). On the other hand, it must be the

case that C0 = G−10

(
A0 +A1F

1 + · · ·+AκF
κ
)

so that φ−1LREM is a function. Finally, C0 is a

rational function of the coefficient matrices of B−, B+, and A and therefore continuous over

(B,A) ∈ ΩLREM . Thus, φ−1LREM is continuous.
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Next, we claim that

Θ◦LREM =

{
(Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) ∈ ΘLREM :

rank
(
[F−1A]+(z)

)
= m for all z ∈ T

}
is the interior of ΘLREM . By the continuity of zeros of a polynomial with respect to its

coefficients (Horn & Johnson, 1985, Appendix D), Θ◦LREM is open. Now pick any point

(Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) ∈ ΘLREM\Θ◦LREM , then rank
(
[F−1A]+(z0)

)
< m for

some z0 ∈ T. Now define

In 0 · · · 0 0

F 1 In · · · 0 0

...
. . .

. . .
...

...

...
. . . In 0

F κ · · · · · · F 1 In





Aκ(ρ)

Aκ−1(ρ)

...

A2(ρ)

A1(ρ)


=



ρκ 0 · · · 0 0

0 ρκ−1 · · · 0 0

...
. . .

. . .
...

...

...
. . . ρ2 0

0 · · · · · · 0 ρ





In 0 · · · 0 0

F 1 In · · · 0 0

...
. . .

. . .
...

...

...
. . . In 0

F κ · · · · · · F 1 In





Aκ

Aκ−1
...

A2

A1


.

Then for any ρ > 1, (Fλ, . . . , F1, G0, . . . , Gκ, C0, A1(ρ), . . . , Aκ(ρ)) 6∈ ΘLREM because the

moving average part of its VARMA representation is [F−1A(ρ)](z) = [F−1A]+(ρz), which has

a zero in D. It follows that ΘLREM\Θ◦LREM are boundary points of ΘLREM .

Finally, let (Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) ∈ Θ◦LREM . Then, we may follow a

similar reasoning to show that

(Fλ, . . . , F1, G0, G1(1− t), . . . , Gκ(1− t), C0, A1(1− t), . . . , Aκ(1− t)) ∈ Θ◦LREM , t ∈ [0, 1],

where Gj(ρ) = ρjGj for j = 1, . . . , κ. Thus, (Fλ, . . . , F1, G0, . . . , Gκ, C0, A1, . . . , Aκ) ∈ Θ◦LREM

is in the same connected component as (Fλ, . . . , F1, G0, 0, . . . , 0, C0, 0, . . . , 0). And following

the same idea again, we may connect this point to (0, . . . , 0, G0, 0, . . . , 0, C0, 0, . . . , 0) by the

path (Fλ(1 − t), . . . , F1(1 − t), G0, 0, . . . , 0, C0, 0, . . . , 0) for t ∈ [0, 1], where Fj(ρ) = ρjFj for

j = 1, . . . , λ. The final claim then follows from Proposition A.1.
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In the course of proving Proposition 4.2, we find that ΩLREM is neither open nor closed.

The boundary points that are also elements of ΩLREM are exactly those parameters where the

transfer function has a zero on T. The point (0n×n, 0n×m) is a boundary point of ΩLREM that

is not an element of ΩLREM . The fact that ΩLREM consists of two connected components is

a property inherited from the classical simultaneous equations model (see Proposition A.1);

for example
(
In,
[
Im
0

])
and

([
−1 0
0 In−1

]
,
[
Im
0

])
cannot be connected by a path in ΩLREM .

Now that we have the full characterization of the parameter space we may consider sim-

plifying the conditions for observationally equivalence even further than what we have seen in

Theorem 4.1. Let (B,A) ∼ (B̃, Ã) and let

C = B−1A+.

Then Theorem 4.1 implies that

Ã+ = B̃C.

If B̃(z) =
∑κ

j=−λ B̃iz
i, Ã+(z) =

∑κ
i=−λ Ã

+
i z

i, and C(z) =
∑∞

j=0Ciz
i in an annulus containing

T, then equating term by term above we arrive to the following equivalent expression

[
Ã+
−λ · · · Ã+

κ 0 · · ·
]

=
[
B̃−λ · · · B̃κ 0 · · ·

]


C0 C1 C2 C3 · · ·

0 C0 C1 C2
. . .

0 0 C0 C1
. . .

. . .
. . .

. . .
. . .


.

Although this is an infinite dimensional system, (L-LREM) will allow us to restrict attention to

a finite dimensional subsystem, which will then allow us to provide a simpler characterization

of observational equivalence. The key idea is a familiar one from linear systems theory (see

e.g. Lemma A.4 of Dufour & Renault (1998)).

Lemma 4.3. Suppose f, g ∈ R[z], max deg(f) ≤ p and g(0) 6= 0. Then h = f/g is identically

zero if and only if the first p+1 terms in the Taylor series expansion of h(z) in a neighbourhood

of z = 0 are zero.

The essential point of Lemma 4.3 is that the coefficients of any Taylor series expansion of

a rational function are linearly recursive and therefore determined by the initial coefficients.

Before deriving the simplification of observational equivalence, we will also need the fol-

lowing lemma which develops some properties of a submatrix of the infinite matrix we have
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identified above. The reader may wish to review the concepts of coprimeness and the McMillan

degree, δ, of a rational matrix discussed in Section A.2 (c.f. (15)).

Lemma 4.4. Let (B,A) ∈ ΩLREM , let C = B−1A+ have a Taylor series expansion C(z) =∑∞
i=0Ciz

i in a neighbourhood of z = 0, and let

H =



Cκ+λ+1 Cκ+λ+2 · · · C(n+1)κ+λ

. . .
. . .

. . .
...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


.

Then:

(i) rank(H) = δ(C(z−1)− C(0)) ≤ nκ.

(ii) The set of parameters satisfying rank(H) = nκ is generic (i.e. contains an open and

dense subset of ΩLREM ).

Proof. (i) The conditions for (B,A) ∈ ΩLREM together with Lemma 3.1 (i) and (ii) imply that

(B+, [B
−1
− A]+) ∈ ΩV ARMA, the parameter space for VARMA models developed in Section A.

The result is obtained in the course of proving Lemma A.8 (i).

(ii) Lemma A.8 (ii) identifies a generic subset of ΩV ARMA where the result holds. We will

prove that its preimage under the mapping (B,A) 7→ (B+, [B
−1
− A]+) is generic in ΩLREM .

This will follow if we can show that ϕ3 ◦ ϕ2 ◦ ϕ1 in (4) is continuous and open (observe that

if X and Y are topological spaces, f : X → Y is continuous and open, and D is open and

dense in Y , then f−1(D) is open and dense in X ). First,

(B,A)
ϕ17−→ (B−, B+, A)

viewed as a mapping (Rn×n)1+λ+κ× (Rn×m)1+κ → (Rn×n)λ× (Rn×n)1+κ× (Rn×m)1+κ is con-

tinuous by Proposition X.1.1 of Clancey & Gohberg (1981). Since multiplication is continuous,

ϕ−11 is also continuous and ϕ1 is therefore a homeomorphism. Next,

(B−, B+, A)
ϕ27−→ (B−, B+, [B

−1
− A]+),

viewed as mapping (Rn×n)λ × (Rn×n)1+κ × (Rn×m)1+κ to itself, is a composition of inver-

sion, multiplication, and [ · ]+ all of which are continuous in the domain we consider. By
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Lemma 3.1 (iii), ϕ−12 is a composition of multiplication and [ · ]+, which are continuous.

Thus, ϕ2 is also a homeomorphism. Finally,

(B−, B+, [B
−1
− A]+)

ϕ37−→ (B+, [B
−1
− A]+)

is a projection and therefore continuous and open. The composition of the three mappings is

then continuous and open.

We are now in a position to simplify Theorem 4.1 and characterize the set

(B,A)/ ∼=
{

(B̃, Ã) ∈ ΩLREM : (B̃, Ã) ∼ (B,A)
}
, (B,A) ∈ ΩLREM .

Theorem 4.5. Let (B,A), (B̃, Ã) ∈ ΩLREM , let C = B−1A+ have a Taylor series expansion

C(z) =
∑∞

i=0Ciz
i in a neighbourhood of z = 0, and let

T =



C0 C1 · · · Cκ+λ

0 C0
. . .

...

...
. . .

. . . C1

0 · · · 0 C0


, H =



Cκ+λ+1 Cκ+λ+2 · · · C(n+1)κ+λ

. . .
. . .

. . .
...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


,

P =

 −T −H

Im(κ+λ+1) 0m(κ+λ+1)×nmκ

 .
Then:

(i) (B̃, Ã) ∼ (B,A) if and only if

vec
([

B̃−λ · · · B̃κ Ã+
−λ · · · Ã+

κ

])
∈ ker

(
P ′ ⊗ In

)
.

(ii) (B,A)/ ∼ is a relatively open subset of the subspace

mat
(
ker
(
P ′ ⊗ In

))
,

where

mat : vec
([

B−λ · · · Bκ A+
−λ · · · A+

κ

])
7→

(
κ∑

i=−λ
Biz

i,
κ∑
i=0

A+
i z

i

)
.

(iii) dim((B,A)/ ∼) = n2(κ+λ+1)−n δ
(
C(z−1)− C(0)

)
≥ n2(1+λ) and for generic points

in the parameter space dim((B,A)/ ∼) = n2(1 + λ).
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Proof. (i) If (B̃, Ã) ∼ (B,A), then Theorem 4.1 implies that

0 = −zλB̃(z)C(z) + zλÃ+(z)

= −zλB̃(z)B−1+ (z)[B−1− A]+(z) + zλÃ+(z)

=
−zλB̃(z)adj(B+(z))[B−1− A]+(z) + det(B+(z))zλÃ+(z)

det(B+(z))
.

By Lemma 3.1 and (EU-LREM), each element of the right hand side can be expressed as

a ratio of a polynomial (of degree at most max
{
λ + max deg(B̃) + max deg(adj(B+)) +

max deg([B−1− A]+), λ+ max deg(det(B+)) + max deg(Ã+)
}
≤ max{λ+ κ+ (n− 1)κ+ κ, λ+

nκ + κ} = (n + 1)κ + λ) and det(B+), which satisfies det(B+(0)) 6= 0. By Lemma 4.3, this

is equivalent to the first 1 + (n + 1)κ + λ Taylor series coefficients equating to zero. Thus,

observational equivalence is equivalent to

−
[
B̃−λ . . . B̃κ

] [
T H

]
+
[
Ã+
−λ . . . Ã+

κ 0n×m . . . 0n×m

]
= 0n×(1+(n+1)κ+λ)m

or equivalently

[
B̃−λ · · · B̃κ Ã+

−λ · · · Ã+
κ

]
P = 0n×(1+(n+1)κ+λ)m.

Vectorizing we obtain

(
P ′ ⊗ In

)
vec
([

B̃−λ · · · B̃κ Ã+
−λ · · · Ã+

κ

])
= 0nm(1+(n+1)κ+λ)×1.

(ii) If (B̆, Ă) ∈ mat(ker(P ′⊗In)) then it satisfies (L-LREM). We claim that if, additionally,

it satisfies (EU-LREM), then (CF-LREM) is also satisfied. To see this, note that the first

1 + (n+ 1)κ+λ Taylor series coefficients of Ă− [B̆C]+ equate to zero and, following the same

argument as used in (i), it can be shown that Ă = [B̆C]+. Therefore

Ă+ = B̆−[B̆−1− Ă]+

= B̆−[B̆−1− [B̆C]+]+

= B̆−[B̆−1− B̆C]+ − B̆−[B̆−1− [B̆C]−]+

= B̆−[B̆+C]+

= B̆−B̆+C

= B̆C,
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where we have used the property that [ · ]+ + [ · ]− is the identity mapping on R(z)n×m as

well as the fact that B̆+ and C are analytic in D. It follows that (CF-LREM) is satisfied as

claimed. Thus, (B,A)/ ∼ is the intersection of mat(ker(P ′ ⊗ In)) with{
(B̆, Ă) ∈ R[z, z−1]n×n × R[z]n×m : (EU-LREM) and (L-LREM) are satisfied

}
.

The latter set is open in Rn2(κ+λ+1)+nm(κ+1) due to the continuity of the Wiener-Hopf fac-

torization with respect to entries of the matrix function (Clancey & Gohberg, 1981, Proposi-

tion X.1.1). Therefore, (B,A)/ ∼ is relatively open in mat(ker(P ′ ⊗ In)).

(iii) dim(ker(P ′)) = dim(ker(H ′)) and so the result follows from Lemma 4.4 (i) and the

standard properties of Kronecker products (Horn & Johnson, 1991, Theorem 4.2.15). For

generic parameters the result follows from Lemma 4.4 (ii).

Theorem 4.5 (i) provides a significantly simpler criterion for observational equivalence than

Theorem 4.1; it substitutes a rational matrix equation for a simple linear algebraic criterion.

Theorem 4.5 (ii) characterizes a set of observationally equivalent parameters as a relatively

open subset of an affine subspace of ΩLREM determined by the first 1 + (n+ 1)κ+ λ impulse

responses. Finally, Theorem 4.5 (iii) gives the dimension of a set of observationally equivalent

parameters, which can be understood as the number of restrictions that must be imposed on

the parameter space in order to identify a parameter with a spectral density matrix. This

number can be understood as the difference between the effective number of free parameters

n2(κ+λ+ 1) (recall that Ã+ is determined from C whenever B̃ is known) and the complexity

of the transfer function nδ(C(z−1)− C(0)).

When λ = 0, Theorem 4.5 specializes to classical results for VARMA models as reviewed

in Appendix A. Notice that the dimension of observationally equivalent parameters is larger

by n2λ than in the VARMA setting (Theorem A.9 (iii)). This is exactly the number of free

parameters in B−(z) and another manifestation of the fundamental aspect of the identification

problem for LREMs.

Example 4.1. Consider the setting of Example 3.2. If (B̃, Ã) ∼ (B,A) then, by Theorem 4.1,

(B̃−1z
−1 + B̃0 + B̃1z)

(
a1b− + a0 + a1z

b0(1− b+z)

)
= Ã+

−1z
−1 + Ã+

0 + Ã+
1 z.

Multiplying through by b0(1 − b+z)z we obtain an equality of two polynomials of degree at

most three, which implies four linear equations in the six variables B̃−1, B̃0, B̃1, Ã
+
−1, Ã

+
0 ,
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and Ã+
1 . These are precisely the equations verified in Theorem 4.5 (i). We have,

P ′ ⊗ In =



−C0 0 0 1 0 0

−C1 −C0 0 0 1 0

−C2 −C1 −C0 0 0 1

−C3 −C2 −C1 0 0 0


.

Consider now the special case of the parameter (B,A) = (1, 1) so that C0 = 1 and C1 =

C2 = C3 = 0. Then
(
0, 1, 12 , 0, 1,

1
2

)′ ∈ ker(P ′ ⊗ In). This corresponds to
(
1 + 1

2z, 1 + 1
2z
)
∈

ΩLREM and it follows from Theorem 4.5 (i) that
(
1 + 1

2z, 1 + 1
2z
)
∼ (1, 1). This illustrates

the identification failure familiar for ARMA models due to non-coprimeness. A more in-

teresting example in our context is
(
1
3 , 1,

1
2 ,

1
3 , 1,

1
2

)′ ∈ ker(P ′ ⊗ In), which corresponds to(
1
3z
−1 + 1 + 1

2z, 1 + 1
2z
)
∈ ΩLREM and is therefore also observationally equivalent to (1, 1).

5 Identification by Affine Restrictions

In practice, LREMs are restricted in a variety of ways such as exclusion (setting a parameter

to zero), normalization (setting a parameter to 1), and, more generally, affine restrictions that

set linear combinations of the parameters (possibly across equations) to fixed values. Here we

consider the ability of such restrictions to identify a single parameter.

Let ΩR
LREM be a subset of ΩLREM endowed with the relative topology. We say that

(B,A) ∈ ΩR
LREM is identified in ΩR

LREM if every (B̃, Ã) ∼ (B,A) in ΩR
LREM is equal to (B,A).

We say that a parameter (B,A) is locally identified in ΩR
LREM if it has a neighbourhood N

in ΩR
LREM such that every (B̃, Ã) ∼ (B,A) in N is equal to (B,A). Clearly, a parameter is

locally identified in ΩR
LREM if it is identified in ΩR

LREM but the converse is not true in general.

Theorem 5.1. Let ΩR
LREM be the set of (B,A) ∈ ΩLREM satisfying

(5) R vec
([

B−λ · · · Bκ A0 · · · Aκ

])
= u,

where R ∈ Rr×n2(κ+λ+1)+nm(κ+1) and u ∈ Rr. Partition R as
[
RB RA

]
, where RA ∈

Rr×n2(κ+λ+1) and RB ∈ Rr×nm(κ+1), and set R =
[
RB 0r×nmλ RA

]
. If (B,A) ∈ ΩR

LREM

and P is defined as in Theorem 4.5, then (B,A) is identified in ΩR
LREM if and only if

M =

 P ′ ⊗ In

R


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is of full column rank n(n+m)(κ+ λ+ 1),

Proof. Let ζ = vec
([

B−λ · · · Bκ A+
−λ · · · A+

κ

])
. If M is of full column rank, then ζ

is the only point in ker(P ′⊗ In) that satisfies (5). Theorem 4.5 (i) then implies that (B,A) is

identified in ΩR
LREM . If M is not of full rank, then there exists 0 6= ξ ∈ ker(P ′ ⊗ In)∩ ker(R).

If c > 0 is sufficiently small, Theorem 4.5 (ii) implies that (B,A) ∼ mat(ζ + cξ) 6= (B,A) and

since mat(ζ + cξ) satisfies (5), (B,A) is not identified in ΩR
LREM .

Theorem 5.1 is a direct generalization of classical results for simultaneous equations models

(the case λ = κ = 0) and for VARMA (the case λ = 0) derived in Theorems A.4 and A.10

respectively. Theorem 5.1 also exhibits similar geometry to the classical results (Figure 1).

Any given parameter (B,A) ∈ ΩLREM lies in the intersection of two affine subspaces. The

first affine subspace, denoted by E , is mat (ker(P ′ ⊗ In)) and contains the set of parameters

observationally equivalent to (B,A) by Theorem 4.5 (i). The second affine subspace is the

space ΩR
LREM , denoted by R, which contains the set of parameters satisfying the restrictions

(5). When (B,A) is the only point of intersection then it is identified in ΩR
LREM . Otherwise,

the two affine subspaces intersect along an affine a subspace, which contains a line segment in

ΩR
LREM by Theorem 4.5 (ii) and so every neighbourhood of (B,A) contains infinitely many

observationally equivalent parameters that also satisfy the given restrictions. Thus, for the

LREM subject to affine restrictions, a parameter is identified if and only if it is locally iden-

tified.

Theorem 5.1 leaves unstated whether or not u in (5) is equal to the zero vector. In fact, it

is meaningless to allow u to be the zero vector. If u = 0, then Theorem 4.5 (i) and (ii) imply

that (cB, cA) ∈ ΩR
LREM ∩ (B,A)/ ∼ for all c in some neighbourhood of 1, thus (B,A) cannot

be identified. Stated differently, if u = 0 then M cannot be of full rank because this would

force (B,A) = (0n×n, 0n×m) 6∈ ΩLREM .

Example 5.1. Consider the setting of Example 3.2. By Theorem 4.5 and the discussion

following it, to obtain identifiability we need to impose at least n2(1 + λ) = 2 restrictions.
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Thus, we may consider fixing B−1 and A0. This implies that

M =



−C0 0 0 1 0 0

−C1 −C0 0 0 1 0

−C2 −C1 −C0 0 0 1

−C3 −C2 −C1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0


.

We have det(M) = C0C1 and so any point in the parameter space satisfying our two re-

strictions and such that its associated transfer function has a non-zero second impulse re-

sponse is identified. Note that the two restrictions are not sufficient to identify the parameter

(B,A) = (1, 1) that we considered in Example 4.1. Since there are more free parameters than

necessary in order to characterize this point, we will need two additional restrictions.

Suppose now that we are interested in identifying just the i-th equation of (1). Let ΩR
LREM

be as before and let (B,A) ∈ ΩR
LREM . We say that the i-th equation of (1) is identified at

(B,A) in ΩR
LREM if every (B̃, Ã) ∼ (B,A) in ΩR

LREM has the same i-th equation as (B,A).

We say that the i-th equation of (1) is locally identified at (B,A) in ΩR
LREM if (B,A) has a

neighbourhood N in ΩR
LREM such that every (B̃, Ã) ∼ (B,A) in N has the same i-th equation

as (B,A). Clearly, if all equations are (locally) identified at (B,A) in ΩR
LREM , then (B,A) is

(locally) identified in ΩR
LREM .

Theorem 5.2. Let ΩR
LREM be the set of (B,A) ∈ ΩLREM satisfying

Ri vec
(
e′i

[
B−λ · · · Bκ A0 · · · Aκ

])
= ui,(6)

where Ri ∈ Rr×n(κ+λ+1)+m(κ+1), ui ∈ Rr, and ei ∈ Rn is the i-th standard unit vector.

Partition Ri as
[
RiB RiA

]
, where RiA ∈ Rr×n(κ+λ+1) and RiB ∈ Rr×m(κ+1), and set

Ri =
[
RiB 0r×mλ RiA

]
. If (B,A) ∈ ΩR

LREM and P is defined as in Theorem 4.5, then

the i-th equation of (1) is identified at (B,A) in ΩR
LREM if and only if

Mi =

 P ′

Ri


has full column rank (n+m)(κ+ λ+ 1).
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Proof. Let ζ = vec
([

B−λ · · · Bκ A+
−λ · · · A+

κ

])
. If Mi is of full column rank,

then vec
(
e′i

[
B−λ · · · Bκ A+

−λ · · · A+
κ

])
= (I(n+m)(κ+λ+1) ⊗ e′i)ζ is the only point

in ker(P ′) that satisfies (6), since P ′(I(n+m)(κ+λ+1) ⊗ e′i) = (Im(1+(n+1)κ+λ) ⊗ e′i)(P
′ ⊗ In).

Theorem 4.5 (i) then implies that any parameter in ΩR
LREM that is observationally equivalent

to (B,A) must have the same i-th equation as (B,A). Thus the i-th equation is identified at

(B,A) in ΩR
LREM . If Mi is not of full rank, then there exists 0 6= ξi ∈ ker(P ′) ∩ ker(Ri). If

c > 0 is sufficiently small, Theorem 4.5 (ii) implies that (B,A) ∼ mat(ζ + cξi ⊗ ei) and since

mat(ζ + cξi ⊗ ei) satisfies (6) but has a different i-th equation than (B,A), the i-th equation

is not identified at (B,A) in ΩR
LREM .

Theorem 5.2 provides necessary and sufficient conditions for the identification of an equa-

tion of an LREM. It has exactly the same flavour, interpretation, and geometry as Theo-

rem 5.1. It also generalizes classical results for VARMA and simultaneous equations models

and retains the property of equivalence of identification and local identification. Finally, for

the same reason as before, ui = 0 cannot be allowed.

We remark that Theorems 5.1 and 5.2 can be formulated in terms of different matrices

than M and Mi respectively. In Corollary A.11 we show that, when attention is restricted to

VARMA models, our result is equivalent to that of Deistler & Schrader (1979), who formulate

identification in terms of the rank of a matrix populated not by impulse responses but by

the coefficient matrices of (B,A). The direct generalization of Deistler & Schrader (1979) to

the LREM setting would then involve a matrix populated by (B,A+). Since this formulation

would involve the negative terms of A+, which have no economic interpretation, it is clear

that our formulation in terms of impulse responses is the preferable one.

6 Generic and Local Identification

In practice it is usually the case that we are interested in the identification of all parameters,

not just a single one. Moreover, most LREMs in practice are not only restricted by affine

constraints but their free parameters are usually functions of more fundamental structural

parameters. Similarly, the restrictions considered will not always be affine. In this section, we

provide results for these scenarios. We begin with a motivating example.
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Example 6.1. Hansen & Sargent (1981) study an LREM for the level of employment of a

factor of production. Their model is of the form considered in Example 3.2, parametrized as

B(z) = θ1z
−1 − ((θ3/θ2) + 1 + θ1) + z, A(z) = θ−12 .

Here, θ1 is a time discount factor, θ2 is a cost of adjustment, and θ3 is a measure of returns

to scale. This model has κ = 1 and λ = 1 and is subject to two affine restrictions, B1 = 1 and

A1 = 0. The question then is whether every θ = (θ1, θ2, θ3) is identified.

We can attempt to answer the question posed in Example 6.1 as follows. Let the parameter

space of interest be a subset Θ ⊂ Rd that maps one-to-one to a subset of ΩLREM . Thus, fixing

a linear subspace as in the previous section, there is a one-to-one mapping φ : Θ → ΩR
LREM ,

where ΩR
LREM ⊂ ΩLREM is, as before, endowed with the relative topology. We refer to an

LREM parameterized as above as a φ-LREM. We say that a φ-LREM is generically identified

in ΩR
LREM if there is a relatively open and dense subset Ψ ⊂ Θ such that every parameter in

φ(Ψ) is identified in ΩR
LREM . Clearly if every point of φ(Θ) is identified in ΩR

LREM , then the

LREM is generically identified in ΩR
LREM .

In order to develop results for this new notion of identification, we will need the following

well known lemma for which we offer an elementary proof.

Lemma 6.1. Let X ⊂ Rd be non-empty, open, and connected. Let f : X → R be a non-zero

real analytic function. Then {x ∈X : f(x) 6= 0} is open and dense in X .

Proof. The continuity of f implies that the set is indeed open. It remains to prove denseness.

Let x, y ∈ X be such that f(x) = 0 and f(y) 6= 0. The connectedness and openness of

X imply that there exists a polygonal path in X with vertices x = z0, z1, . . . , zn−1, zn = y.

Suppose the first integer i such that f(zi) 6= 0 is greater than 1. Then f(tzi + (1 − t)zi−1)

is a non-zero real analytic function in t defined over an open interval containing [0, 1] with a

zero at t = 0. Since the zeros of a non-zero real analytic function over an open interval are

isolated (Krantz & Parks, 2002, Corollary 1.2.6), it follows that f(tzi + (1 − t)zi−1) 6= 0 for

any small enough t 6= 0. If we now perturb zi−1 along the direction of zi by a non-zero but

small enough amount to a point z′i−1, then the polygonal path with vertices z0, . . . , z
′
i−1, . . . , zn

remains in X and f(z′i−1) 6= 0. Thus, we may assume that f(z1) 6= 0. But then the previous

argument may be repeated to show that arbitrarily near x = z0 there are points at which f is

non-zero.
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Theorem 6.2. Under the assumptions and notation of Theorem 5.1, let Θ ⊂ Rd be non-

empty, open, and connected, and let φ : Θ→ ΩR
LREM be analytic and one-to-one.

(i) If M has full column rank n(n + m)(κ + λ + 1) for some point in Θ then the φ-LREM

is generically identified.

(ii) If there is a non-empty open subset of Θ on which M is rank deficient, then no point in

φ(Θ) is identified in ΩR
LREM .

Proof. (i) We claim that the elements of M are real analytic functions of θ ∈ Θ. Since θ

enters into M through the matrix P , it suffices to show that each coefficient matrix of C is an

analytic function of θ. Every element of every coefficient matrix of B and A is analytic in θ by

assumption. Using the fact that a composition of real analytic maps is real analytic (Krantz &

Parks, 2002, Proposition 2.2.8), it is enough to show that each of the maps in the factorization

(4) is real analytic. Clearly ϕ2, ϕ3, and ϕ4 define real analytic mappings because they are

compositions of real analytic mappings (multiplications, inversions, and projections). The

fact that ϕ1 is real analytic follows from a simple extension of Proposition X.1.2 of Clancey

& Gohberg (1981). Next, since there is a point in Θ at which M has full column rank, M

has a non-zero minor of order n(n+m)(κ+ λ+ 1). This minor is a real analytic function of

θ ∈ Θ and since it is not identically zero, it is generically non-zero by Lemma 6.1. Thus, M is

generically of full column rank. Finally, Theorem 5.1 and the injectivity of φ imply that the

φ-LREM is generically identified in ΩR
LREM .

(ii) If M is rank deficient on an open subset of Θ, all its minors of order n(n+m)(κ+λ+1)

are equal to zero on this subset. By the preceding analysis, each of these minors is a real

analytic mapping on Θ that vanishes on an open set. Thus, the set of points in Θ where these

minors do not vanish is not dense in Θ and therefore Lemma 6.1 implies that all of these

minors vanish identically over Θ. It follows that M is rank deficient at every point in Θ. By

Theorem 5.1, no point in φ(Θ) is identified in ΩR
LREM .

The advantage of Theorem 6.2 is that it provides very simple conditions for generic iden-

tification. One need only find a single point in Θ whose associated M matrix is of full rank

to conclude generic identification.

Example 6.2. Consider the setting of Example 6.1. We have

φ : (θ1, θ2, θ3) 7→ (θ1z
−1 − ((θ3/θ2) + 1 + θ1) + z, θ−12 )

25



and Θ = φ−1(ΩLREM ). Let ρ1(θ) and ρ2(θ) be the zeros of θ1z
−1−((θ3/θ2)+1+θ1)+z ordered

as |ρ1(θ)| < |ρ2(θ)| (condition (EU-LREM) is equivalent to |ρ1(θ)| < 1 < |ρ2(θ)| for all θ ∈ Θ).

Thus, the solution has the transfer function C(z) = 1
θ2(z−ρ2(θ)) . Condition (CF-LREM) then

requires that C(0) = − 1
θ2ρ2(θ)

> 0. Given the continuity of ρ1 and ρ2, it follows that

Θ =

{
θ ∈ R3 : |ρ1(θ)| < 1 < |ρ2(θ)|,

1

θ2ρ2(θ)
< 0

}
is an open subset of R3. Now consider the matrix associated with the given restrictions

M =



−C0 0 0 1 0 0

−C1 −C0 0 0 1 0

−C2 −C1 −C0 0 0 1

−C3 −C2 −C1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


.

Since det(M) = C2
2 − C1C3 and Cj = − 1

θ2ρ
j+1
2

, det(M) is identically zero so no point of φ(Θ)

is identified in ΩR
LREM .

Suppose we restrict θ1 to equal 1. We now have

φ : (θ2, θ3) 7→ (z−1 − ((θ3/θ2) + 2) + z, θ−12 )

and Θ = φ−1(ΩLREM ) = {θ2 > 0, 4θ2 + θ3 < 0} ∪ {θ2 < 0, θ3 < 0}. We also have

M =



−C0 0 0 1 0 0

−C1 −C0 0 0 1 0

−C2 −C1 −C0 0 0 1

−C3 −C2 −C1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0



.

It is easily seen that M is of full rank if and only if C2 = − 1
θ2ρ32

6= 0, which is the case

throughout the new Θ. However, we need not rely on this observation to conclude generic

identifiability. The new Θ is the union of two open connected sets and so we may check the

rank of M at any randomly chosen points in either component (e.g. (θ2, θ3) = (−2,−1) and

(1,−5)) to conclude by Theorem 6.2 that the φ-LREM is generically identified.
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The example above makes clear that the conditions for the applicability of Theorem 6.2

can be difficult to verify. In particular, we suspect that under the conditions of Theorem 5.1

and with φ taken as the identity mapping, the φ-LREM is generically identified whenever any

of its elements is identified. However, we have not succeeded in obtaining a parametrization of

ΩR
LREM that satisfies the conditions of Theorem 6.2 due to difficulties created by the canonical

quasi-lower triangular assumption on C(0) in (CF-LREM). Thus, this must be left for future

research.

Generic identification for the i-th equation can be defined analogously. We say that the

i-th equation of a φ-LREM is generically identified in ΩR
LREM if there is a relatively open and

dense subset Ψ ⊂ Θ such that for every parameter in φ(Ψ) the i-the equation is identified in

ΩR
LREM .

Theorem 6.3. Under the assumptions and notation of Theorem 5.2, let Θ ⊂ Rd be non-

empty, open, and connected, and let φ : Θ→ ΩR
LREM be analytic and one-to-one.

(i) If Mi has full column rank (n+m)(κ+λ+ 1) for some point in Θ then the i-th equation

of the φ-LREM is generically identified.

(ii) If there is a non-empty open subset of Θ on which Mi is rank deficient, then at no point

in φ(Θ) is the i-th equation identified in ΩR
LREM .

Proof. The proof is identical to that of Theorem 6.2 and is omitted.

If the parameter space is restricted by nonlinear constraints it is generally difficult to

obtain conditions for identification. However, it is possible to obtain necessary and sufficient

conditions for local identification.

Theorem 6.4. Let ΩR
LREM be the set of (B,A) ∈ ΩLREM satisfying

(7) R
(

vec
([

B−λ · · · Bκ A0 · · · Aκ

]))
= 0,

where R : Rn2(κ+λ+1)+nm(κ+1) 7→ Rr is continuously differentiable. Let

π : vec
([

B−λ · · · Bκ A+
−λ · · · A+

κ

])
7→ vec

([
B−λ · · · Bκ A+

0 · · · A+
κ

])
,

and let R = R ◦ π. If (B,A) ∈ ΩR
LREM and P is defined as in Theorem 4.5, then (B,A) is

locally identified in ΩR
LREM if

M =

 P ′ ⊗ In

∇R


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is of full column rank n(n+m)(κ+λ+1), where ∇R is the Jacobian of R evaluated at (B,A).

Conversely, if (B,A) ∈ ΩR
LREM , P is defined as in Theorem 4.5, and P ′ ⊗ In

∇R(B̃, Ã)


is of fixed rank lower than n(n + m)(κ + λ + 1) for all (B̃, Ã) in a neighbourhood of (B,A),

then (B,A) is not locally identified in ΩR
LREM .

Proof. If (B,A) is not locally identified, there exists a sequence (B̃j , Ãj) ∈ ΩLREM converging

to (B,A) such that for all j ≥ 1, (B̃j , Ãj) ∈ (B,A)/ ∼, (B̃j , Ãj) ∈ ΩR
LREM , and (B̃j , Ãj) 6=

(B,A). Now define

ζj = cj vec
([

B̃j,−λ −B−λ · · · B̃j,κ −Bκ Ã+
j,−λ −A

+
−λ · · · Ã+

j,κ −A+
κ

])
,

where cj ∈ R simply ensures that ‖ζj‖ = 1 for all j ≥ 1. Since (B̃j , Ãj) ∈ (B,A)/ ∼, Theorem

4.5 (i) implies that ζj ∈ ker(P ′⊗In) for all j ≥ 1. On the other hand, since (B̃j , Ãj) ∈ ΩR
LREM

for all j ≥ 1, ∇Rζj converges to zero. It follows that Mζj converges to zero. But this is

impossible because ‖Mζj‖ is bounded below by the smallest singular value of M , which is

non-zero because M is of full rank (Horn & Johnson, 1985, Theorems 7.3.5 and 7.3.10). Thus,

(B,A) is locally identified.

Conversely, for (B̃, Ã) ∈ R[z, z−1]n×n × R[z]n×m satisfying (L-LREM) define

Z(B̃, Ã) =

 (P ′ ⊗ In)vec
([

B̃−λ · · · B̃κ Ã+
−λ · · · Ã+

κ

])
R(B̃, Ã)


and notice that Z(B,A) = 0, ∇Z(B,A) = M , and the rank of ∇Z(B̃, Ã) is constant and equal

to the rank of M in a neighbourhood of (B,A). It follows from the Rank Theorem (Rudin,

1976, Theorem 9.32) that every neighbourhood of (B,A) contains points different from (B,A)

where Z vanishes. By Theorem 4.5 (ii), the zero set of Z coincides with ΩR
LREM ∩ (B,A)/ ∼

in a neighbourhood of (B,A) and as a results (B,A) is not locally identified in ΩR
LREM .

The reason why the converse in Theorem 6.4 requires more a stringent condition is well

understood in the identification literature (Hsiao, 1983, Section 5.1). The condition is known

as regularity. Without it, it is not possible to conclude local non-identifiability when M is

rank deficient. For example, let n = m = 1, κ = λ = 0, and R(B0, A0) = (A0 − 1)2. Clearly
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every point of ΩR
LREM , defined as in Theorem 6.4, is identified. On the other hand, M is equal

to
[−C0 1

0 0

]
at any given (B,A) ∈ ΩR

LREM . Note, however, that in this case, ∇Z is not of fixed

rank in any neighbourhood of any (B,A) ∈ ΩR
LREM .

Local identification results for the i-th equation are similar.

Theorem 6.5. Let ΩR
LREM be the set of (B,A) ∈ ΩLREM satisfying

(8) Ri

(
vec
(
e′i

[
B−λ · · · Bκ A0 · · · Aκ

]))
= 0,

where Ri : Rn(κ+λ+1)+m(κ+1) 7→ Rr is continuously differentiable and ei ∈ Rn is the i-th

standard unit vector. Let

πi : vec
(
e′i

[
B−λ · · · Bκ A+

−λ · · · A+
κ

])
7→ vec

(
e′i

[
B−λ · · · Bκ A+

0 · · · A+
κ

])
,

and let Ri = Ri ◦ πi. If (B,A) ∈ ΩR
LREM and P is defined as in Theorem 4.5, then the i-th

equation of (1) is locally identified at (B,A) in ΩR
LREM if

Mi =

 P ′

∇Ri


is of full column rank (n+m)(κ+λ+1), where ∇Ri is the Jacobian of Ri evaluated at (B,A).

Conversely, if (B,A) ∈ ΩR
LREM , P is defined as in Theorem 4.5, and P ′

∇Ri(B̃, Ã)


is of fixed rank lower than (n+m)(κ+λ+ 1) for all (B̃, Ã) in a neighbourhood of (B,A), then

the i-the equation of (1) is is not locally identified at (B,A) in ΩR
LREM .

Proof. If the i-th equation of (B,A) is not locally identified, there exists a sequence (B̃j , Ãj) ∈

ΩLREM converging to (B,A) such that for all j ≥ 1, (B̃j , Ãj) ∈ (B,A)/ ∼, (B̃j , Ãj) ∈ ΩR
LREM ,

and the i-th equations of (B̃j , Ãj) and (B,A) are different. Now define

ζj = cj vec
([

B̃j,−λ −B−λ · · · B̃j,κ −Bκ Ã+
j,−λ −A

+
−λ · · · Ã+

j,κ −A+
κ

])
,

where cj ∈ R simply ensures that ‖(I(n+m)(κ+λ+1) ⊗ e′i)ζj‖ = 1 for all j ≥ 1. Since (B̃j , Ãj) ∈

(B,A)/ ∼, Theorem 4.5 (i) implies that ζj ∈ ker(P ′ ⊗ In) for all j ≥ 1. This implies that

(I(n+m)(κ+λ+1)⊗e′i)ζj ∈ ker(P ′), since P ′(I(n+m)(κ+λ+1)⊗e′i) = (Im(1+(n+1)κ+λ)⊗e′i)(P ′⊗In).
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On the other hand, since (B̃j , Ãj) ∈ ΩR
LREM for all j ≥ 1, ∇R(I(n+m)(κ+λ+1)⊗ e′i)ζj converges

to zero. It follows that Mi(I(n+m)(κ+λ+1) ⊗ e′i)ζj converges to zero. But this is impossible

because ‖Mi(I(n+m)(κ+λ+1) ⊗ e′i)ζj‖ is bounded below by the smallest singular value of Mi,

which is non-zero because Mi is of full rank (Horn & Johnson, 1985, Theorems 7.3.5 and

7.3.10). Thus, the i-the equation is locally identified at (B,A) in ΩR
LREM .

Conversely, for (B̃, Ã) ∈ R[z, z−1]n×n × R[z]n×m satisfying (L-LREM) define

Zi(B̃, Ã) =

 P ′vec
(
e′i

[
B̃−λ · · · B̃κ Ã+

−λ · · · Ã+
κ

])
Ri(B̃, Ã)


and notice that Zi(B,A) = 0, ∇Zi(B,A) = Mi, and the rank of ∇Zi(B̃, Ã) is constant

and equal to the rank of Mi in a neighbourhood of (B,A). It follows from the Rank Theorem

(Rudin, 1976, Theorem 9.32) that every neighbourhood of the parameters of the i-the equation

of (B,A) contains points where Zi vanishes. Thus, in every neighbourhood of (B,A) we

can find a (B̃, Ã) that is identical to (B,A) except in the i-th equation and contained in

ΩR
LREM ∩ (B,A)/ ∼. Thus, the i-th equation of (B,A) is not locally identified in ΩR

LREM .

7 Conclusion

This paper’s title is an hommage to the seminal paper of the VARMA identification literature

(Hannan, 1971). Like Hannan’s paper, the present work characterizes observational equiva-

lence and provides conditions for identification in a variety of settings. More importantly, and

again much like Hannan’s paper, the present work has not succeeded in answering all of the

questions surrounding the identification of the model under study. We now turn to some of

the pending issues.

Recognizing the difficulty of the identification problem for VARMA models, the literature

proposed a variety of canonical parametrizations (Hannan & Deistler, 2012, p. 67). These

parametrizations allow the researcher to specify a model without having to worry about iden-

tification. It would be quite useful for empirical work to find similar parametrizations for

LREMs.

Our framework has excluded measurement errors, which are commonly used in the LREM

literature. This is not an insurmountable challenge as the literature on latent variables and

measurement error is very well developed (Bollen, 1989; Fuller, 1987). Treating this material
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in the present work would have made it prohibitively long and complicated, not to mention

distracting from the primary theoretical difficulties of the identification problem for LREMs.

Thus, this is also left for further work.

It is tempting to think of the condition number of M or Mi from Sections 5 and 6 as

measures of distance to non-identifiability. However, this remains to be proven. It would be

interesting to look more closely at this problem especially in light of the weak identification

of LREMs frequently encountered in empirical work.

Finally, the quasi-lower triangular assumption on the first impulse response in (CF-LREM)

has allowed us to solve a long standing open problem, the identification problem for LREMs,

up to another long standing open problem, the general identification problem for simultane-

ous equations models. This progress was made possible by recognizing that the appropriate

mathematical framework for LREMs is Wiener-Hopf factorization theory. Interestingly, Han-

nan (1971) had a similar trajectory. As Hannan describes how he came about resolving the

identification problem for VARMA,

“It was really quite simple once you recognize what the underlying mathematical

technique is. . . . That’s how it came about . . . it is important to have in command

the mathematics so you can solve the problem. Of course, the 64 dollar question is

which mathematics to learn, because you can’t learn all of it.” (Pagan & Hannan,

1985, p. 273)

The 64 dollar question now is which new mathematics will allow us to solve the general

identification problem for simultaneous equations models.

A A Review of Classical Identification Theory

This section reviews some of the basic theory of identification in linear systems, beginning

with the classical simultaneous equations model and proceeding to VARMA models. For

more detailed treatments, the reader may wish to consult Hsiao (1983) or Hannan & Deistler

(2012).
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A.1 The Classical Simultaneous Equation Model

The classical simultaneous equations model is the set of structural equations

BYt = Aεt, t ∈ Z.(9)

Here ε is an m-dimensional exogenous and unobserved i.i.d. sequences of mean zero and

var(ε0) = Im, while Y an n-dimensional endogenous observed sequence.

The parameter space of the classical simultaneous equations model, denoted by ΩSEM , is

a set of pairs

(B,A) ∈ Rn×n × Rn×m

characterized by two restrictions, the first of which is:

(EU-SEM) rank(B) = n.

Restriction (EU-SEM) is equivalent to the existence and uniqueness of the solution,

Yt = B−1Aεt, t ∈ Z.

The variance matrix of the observed data then satisfies

var(Y0) = B−1AA′B−1′.

Before introducing the second restriction, we must understand why it is needed. To that

end, we say that two parameters (B,A) and (B̃, Ã) are observationally equivalent and denote

this by (B,A) ∼ (B̃, Ã) if both produce the same var(Y0); that is, if and only if

B̃−1ÃÃ′B̃−1′ = B−1AA′B−1′.

In order to make progress on this problem it is necessary to impose further restrictions. One

such restriction requires B−1A to be of full column rank so that there are no redundant shocks

in the system. This then implies the existence of an orthogonal matrix V ∈ Rm×m such that

B̃−1Ã = B−1AV.

Now it is certainly possible to formulate the identification problem at this level of generality.

However, this makes the problem substantially more difficult. We will opt, as most of the
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literature has done, for imposing additional restrictions on the parameter space in order to

eliminate the dependence on V . In particular, the QR algorithm allows us to reduce B−1AV

to a canonical quasi-lower triangular form, where the first non-zero element of the j-th column

is positive and occurs on row ij , with 1 ≤ i1 < i2 < · · · < im ≤ n (Anderson et al., 2012,

Theorem 1). Note that when n = m, the canonical quasi-lower triangular form is the Cholesky

factor of var(Y0). We will need the following additional restriction on the parameter space.

(CF-SEM) B−1A is of rank m and canonical quasi-lower triangular.

Thus ΩSEM is the set of pairs (B,A) ∈ Rn×n×Rn×m satisfying (EU-SEM) and (CF-SEM).

We will endow it with the relative topology inherited from Rn×n×Rn×m. Some aspects of its

topology are given in the following result

Proposition A.1. ΩSEM is homeomorphic to an open subset of Rn(n+m)− 1
2
m(m−1) consisting

of two connected components.

Proof. Let

ΘSEM =
{

(B,C) : B ∈ Rn×n, C ∈ Rn×m,

rank(B) = n,

rank(C) = m,

and C is canonical quasi-lower triangular
}
.

Then ΘSEM can be viewed as a subset of Rn(n+m)− 1
2
m(m−1) and the mapping φSEM : ΘSEM →

ΩSEM defined by (B,C) 7→ (B,BC) is a homeomorphism. Since the smallest singular value

of a matrix is continuous with respect to the elements of the matrix (Horn & Johnson, 1991,

Theorem 3.3.16), ΘSEM is an open subset of Rn(n+m)− 1
2
m(m−1). The set of non-singular n×n

matrices consists of two components, one containing In and another containing
[
−1 0
0 In−1

]
(Hall, 2003, Proposition 1.12). In turn, the set of canonical quasi-lower triangular n × m

matrices of full rank has a single component as every such element is connected by a straight

line to
[

Im
0(n−m)×m

]
. Thus, ΘSEM consists of two connected components.

Proposition A.1 implies that ΩSEM can be parametrized by n(n + m) − 1
2m(m − 1) free

parameters.

We have already characterized observational equivalence as follows.
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Theorem A.2. Let (B,A), (B̃, Ã) ∈ ΩSEM . Then (B̃, Ã) ∼ (B,A) if and only if

B̃−1Ã = B−1A.(10)

We need a simpler characterization of spaces of observationally equivalent parameters

denoted by

(B,A)/ ∼=
{

(B̃, Ã) ∈ ΩSEM : (B̃, Ã) ∼ (B,A)
}
, (B,A) ∈ ΩSEM .

That is the purpose of the next result.

Theorem A.3. Let (B,A), (B̃, Ã) ∈ ΩSEM and let

C = B−1A, P =

 −C
Im

 .
Then:

(i) (B̃, Ã) ∼ (B,A) if and only if

vec
([

B̃ Ã

])
∈ ker

(
P ′ ⊗ In

)
.

(ii) (B,A)/ ∼ is a relatively open and dense subset of the subspace

mat
(
ker
(
P ′ ⊗ In

))
,

where

mat : vec
([

B A

])
7→ (B,A).

(iii) dim ((B,A)/ ∼) = n2.

Proof. (i) By Theorem A.2, (B̃, Ã) ∼ (B,A) if and only if

−B̃C + Ã = 0n×m.

Vectorizing both sides we obtain

[
−C ′ ⊗ In Inm

]
︸ ︷︷ ︸

P ′⊗In

vec
([

B̃ Ã

])
= 0nm×1.
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(ii) If (B̆, Ă) ∈ mat(ker(P ′ ⊗ In)) then the preceding implies (CF-SEM) is satisfied if

(EU-SEM) is satisfied. Therefore, (B,A)/ ∼ is the intersection of mat(ker(P ′ ⊗ In)) with{
(B̆, Ă) ∈ Rn×n × Rn×m : (EU-SEM) is satisfied

}
.

Since the latter set is open in Rn×n×Rn×m, (B,A)/ ∼ is relatively open in mat(ker(P ′⊗In)).

If (B̆, Ă) ∈ mat(ker(P ′ ⊗ In)) and det(B̆) = 0, then arbitrarily near B̆ we can find a non-

singular B̄ (Horn & Johnson, 1985, p. 312) and we can then define Ā = B̄C, which is then

also arbitrarily near Ă. It follows that (B,A)/ ∼ is dense in mat(ker(P ′ ⊗ In)).

(iii) dim(ker(P ′)) = n and so dim(ker(P ′ ⊗ In)) = n2 by the standard properties of Kro-

necker products (Horn & Johnson, 1991, Theorem 4.2.15).

Theorem A.3 characterizes the spaces of observationally equivalent parameters as relatively

open and dense subsets of subspaces of the parameter space. As the origin is not an element

of ΩSEM , these subsets are proper.

Theorem A.3 makes it clear that the parameter space needs to be further restricted in

order to be able to identify a single parameter with a given var(Y0). Let ΩR
SEM be a subset of

ΩSEM endowed with the relative topology. We say that (B,A) ∈ ΩR
SEM is identified in ΩR

SEM

if every (B̃, Ã) ∼ (B,A) in ΩR
SEM is equal to (B,A). We say that a parameter (B,A) is locally

identified in ΩR
SEM if it has a neighbourhood N in ΩR

SEM such that every (B̃, Ã) ∼ (B,A) in

N is equal to (B,A). Clearly, a parameter is locally identified in ΩR
SEM if it is identified in

ΩR
SEM but the converse is not true in general.

Theorem A.4. Let ΩR
SEM be the set of (B,A) ∈ ΩSEM satisfying

R vec
([

B A

])
= u,(11)

where R ∈ Rr×n(m+n) and u ∈ Rr. If (B,A) ∈ ΩR
SEM and P is defined as in Theorem A.3,

then (B,A) is identified in ΩR
SEM if and only if

M =

 P ′ ⊗ In

R


is of full column rank n(n+m).

Proof. Let ζ = vec
([

B A

])
. If M is of full column rank, then ζ is the only point in

ker(P ′ ⊗ In) that satisfies (11). Theorem A.3 (i) then implies that (B,A) is identified in
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ΩR
SEM . If M is not of full rank, then there exists 0 6= ξ ∈ ker(P ′ ⊗ In) ∩ ker(R). If c > 0

is sufficiently small, Theorem A.3 (ii) implies that (B,A) ∼ mat(ζ + cξ) 6= (B,A) and since

mat(ζ + cξ) satisfies (11), (B,A) is not identified in ΩR
SEM .

The geometry of Theorem A.4 is illustrated in Figure 1. Any given parameter (B,A) lies in

the intersection of two affine subspaces. The first affine subspace, denoted by E , contains the

set of parameters observationally equivalent to (B,A) by Theorem A.3 (i). The second affine

subspace is the space ΩR
SEM , denoted by R, which contains the set of parameters satisfying the

restrictions (11). When (B,A) is the only point of intersection then it is identified in ΩR
SEM .

Otherwise, the two affine subspaces intersect along an affine a subspace, which contains a

line segment in ΩR
SEM by Theorem A.3 (ii) and so every neighbourhood of (B,A) contains

infinitely many observationally equivalent parameters that also satisfy the given restrictions.

Thus, for the classical simultaneous equations model subject to affine restrictions, a parameter

is identified if and only if it is locally identified.

Suppose now that we are interested in identifying just the i-th equation of (9). Let ΩR
SEM

be as before and let (B,A) ∈ ΩR
SEM . We say that the i-th equation of (9) is identified at

(B,A) in ΩR
SEM if every (B̃, Ã) ∼ (B,A) in ΩR

SEM has the same i-th equation as (B,A).

We say that the i-th equation of (9) is locally identified at (B,A) in ΩR
SEM if (B,A) has a

neighbourhood N in ΩR
SEM such that every (B̃, Ã) ∼ (B,A) in N has the same i-th equation

as (B,A). Clearly, if all equations are (locally) identified at (B,A) in ΩR
SEM , then (B,A) is

(locally) identified in ΩR
SEM .

Theorem A.5. Let ΩR
SEM be the set of (B,A) ∈ ΩSEM satisfying

Ri vec
(
e′i

[
B A

])
= ui,(12)

where Ri ∈ Rr×(m+n), ui ∈ Rr, and ei ∈ Rn is the i-th standard unit vector. If (B,A) ∈ ΩR
SEM

and P is defined as in Theorem A.3, then the i-th equation of (9) is identified at (B,A) in

ΩR
SEM if and only if

Mi =

 P ′

Ri


is of full column rank n+m.
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Proof. Let ζ = vec
([

B A

])
. If Mi is of full column rank, then vec

(
e′i

[
B A

])
=

(In+m ⊗ e′i)ζ is the only point in ker(P ′) that satisfies (12), since P ′(In+m ⊗ e′i) = (Im ⊗

e′i)(P
′⊗In). Theorem A.3 (i) then implies that any parameter in ΩR

SEM that is observationally

equivalent to (B,A) must have the same i-th equation as (B,A). Thus the i-th equation is

identified at (B,A) in ΩR
SEM . If Mi is not of full rank, then there exists 0 6= ξi ∈ ker(P ′) ∩

ker(Ri). If c > 0 is sufficiently small, Theorem A.3 (ii) implies that (B,A) ∼ mat(ζ+ cξi⊗ ei)

and since mat(ζ+ cξi⊗ ei) satisfies (12) but has a different i-th equation than (B,A), the i-th

equation is not identified at (B,A) in ΩR
SEM .

The geometry of Theorem A.5 is exactly analogous to that of Theorem A.4, as is the

equivalence of identification and local identification.

A.2 The Classical VARMA Model

The classical VARMA model generalizes (9) by allowing for dependence across time (i.e.

dynamics).

p∑
i=0

BiYt−i =
k∑
i=0

Aiεt−i, t ∈ Z,(13)

Here ε is an m-dimensional exogenous and unobserved i.i.d. sequences of mean zero and

var(ε0) = Im, while Y an n-dimensional endogenous observed sequence.

It will be convenient to collect the parameters B0, . . . , Bp ∈ Rn×n and A0, . . . , Ak ∈ Rn×m

in the form of polynomial matrices B(z) =
∑p

i=0Biz
i and A(z) =

∑k
i=0Aiz

i. The parameter

space of the VARMA model, denoted by ΩV ARMA, is then a set of pairs

(B,A) ∈ R[z]n×n × R[z]n×m

characterized by three restrictions, the first of which is:

(EU-VARMA) rank(B(z)) = n for all z ∈ D.

Restriction (EU-VARMA) is equivalent to the existence and uniqueness of a stationary causal

solution,

Yt = B−1(L)A(L)εt, t ∈ Z,
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where L is the lag operator, B−1(L) is the composition of L and the Taylor series expansion

of B−1(z) in a neighbourhood of z = 0, and A(L) is the composition of L and A (Hannan &

Deistler, 2012, pp. 10-11). This implies that the spectral density of the observed data,

fY Y (z) =

∞∑
j=−∞

cov(Yj , Y0)z
j ,

satisfies

fY Y (z) = B−1(z)A(z)A′(z−1)B−1′(z−1).

We say that two parameters (B,A) and (B̃, Ã) are observationally equivalent and denote

this by (B̃, Ã) ∼ (B,A) if both produce the same spectral density; that is, if and only if

B−1(z)A(z)A′(z−1)B−1′(z−1) = B̃−1(z)Ã(z)Ã′(z−1)B̃−1′(z−1).

Just as in the classical simultaneous equations model, in order to make progress here it is

necessary to impose further restrictions. One such restriction requires the transfer function

B−1(z)A(z) to be of full rank for all z ∈ D so that every shock can be reconstructed from

the present and past values of Y . This condition is known variably in the literature as the

invertibility, fundamentalness, or minimum phase condition. Proceeding then, it is well known

in the literature that observational equivalence holds if and only if there exists an orthogonal

matrix V ∈ Rm×m such that

B̃−1Ã = B−1AV.

See e.g. Theorems 4.6.8 and 4.6.11 of Lindquist & Picci (2015). We may then eliminate V

just as we did in the classical simultaneous equations model. Thus, we arrive at the second

restriction on all (B,A) ∈ ΩV ARMA,

(CF-VARMA)

rank
(
B−1(z)A(z)

)
= m for all z ∈ D and B−1(0)A(0) is canonical quasi-lower triangular.

If (EU-VARMA) is maintained, then (CF-VARMA) is equivalent to the more familiar

restriction that A(z) have rank m for all z ∈ D and B−1(0)A(0) be canonical quasi-lower

triangular (Anderson et al., 2016). However, our formulation is more convenient for LREM

applications.
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Note also that when n = m, assumption (CF-VARMA) sets B−1(0)A(0) equal to the

Cholesky factor of the variance of the innovations of Y . Thus, it corresponds to the identifi-

cation strategy commonly attributed to Sims (1980).

Even though we have not yet completed our characterization of ΩV ARMA, we can already

simplify observational equivalence based on conditions (EU-VARMA) and (CF-VARMA).

Theorem A.6. Let (B,A), (B̃, Ã) ∈ ΩV ARMA. Then (B,A) ∼ (B̃, Ã) if and only if

B̃−1Ã = B−1A.(14)

The set of points in R[z]n×n × R[z]n×m satisfying (EU-VARMA) and (CF-VARMA) is

infinite dimensional. The sets of observationally equivalent parameters, as described in The-

orem A.6, are also infinite dimensional. Therefore, in practice one usually specifies a non-

negative integer κ such that for every (B,A) ∈ ΩV ARMA,

(L-VARMA) max deg(B) ≤ κ, max deg(A) ≤ κ.

Thus, ΩV ARMA is the set of pairs (B,A) ∈ R[z]n×n × R[z]n×m satisfying (EU-VARMA),

(CF-VARMA), and (L-VARMA). The condition (L-VARMA) allows us to think of ΩV ARMA

as a subset of Rn(n+m)(κ+1) with the topology induced by Euclidean topology.

Proposition A.7. ΩV ARMA is homeomorphic to a subset of Rn(n+m)(1+κ)− 1
2
m(m−1), the in-

terior of which consists of two connected components.

Proof. Let

ΘV ARMA =

{
(B0, . . . , Bκ, C0, A1, . . . , Aκ) : B0, . . . , Bκ ∈ Rn×n, C0, A1, . . . , Aκ ∈ Rn×m,

rank

(
κ∑
i=0

Biz
i

)
= n for all z ∈ D,

C0 is canonical quasi-lower triangular, and

rank

(
B0C0 +

κ∑
i=1

Aiz
i

)
= m for all z ∈ D

}
.

Then ΘV ARMA can be viewed as a subset of Rn(n+m)(1+κ)− 1
2
m(m−1) and the mapping φV ARMA :

ΘV ARMA → ΩV ARMA defined by

(B0, . . . , Bκ, C0, A1, . . . , Aκ) 7→

(
κ∑
i=0

Biz
i, B0C0 +

κ∑
i=1

Aiz
i

)
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is a homeomorphism. Now let

Θ◦V ARMA =

{
(B0, . . . , Bκ, C0, A1, . . . , Aκ) ∈ ΘV ARMA : rank

(
B0C0 +

κ∑
i=1

Aiz
i

)
= m for all z ∈ T

}
.

If we pick any point (B0, . . . , Bκ, C0, A1, . . . , Aκ) ∈ ΘV ARMA\Θ◦V ARMA, then for any ρ > 1,

the point (B0, . . . , Bκ, C0, ρA1, . . . , ρ
κAκ) 6∈ ΘV ARMA because rank

(
B0C0 +

∑κ
i=1Ai(ρz)

i
)

will fall below m for some point in D. Thus ΘV ARMA\Θ◦V ARMA are boundary points. In

contrast, the continuity of zeros of a polynomial with respect to its coefficients (Horn &

Johnson, 1985, Appendix D) ensures that Θ◦V ARMA is open. Thus Θ◦V ARMA is the interior of

ΘV ARMA. By similar reasoning, (B0, (1− t)B1, . . . , (1− t)κBκ, C0, (1− t)A1, . . . , (1− t)κAκ)

is in Θ◦V ARMA for any t ∈ [0, 1]. Thus, (B0, B1, . . . , Bκ, C0, A1, . . . , Aκ) ∈ Θ◦V ARMA is in the

same connected component as (B0, 0, . . . , 0, C0, 0, . . . , 0), which in turn falls into one of two

components by Proposition A.1.

The interior set referred to in Proposition A.7 is the set that parametrizes the strictly

invertible processes in ΩV ARMA. Thus, the parameter space may be thought to have a bound-

ary consisting of those elements of ΩV ARMA, which are invertible but not strictly invertible.

Proposition A.7 is the analogue to Theorem 2.5.3 (ii) of Hannan & Deistler (2012). Note,

however, that Hannan and Deistler’s parametrization is canonical (i.e. they parametrize the

equivalence classes of parameters) and ours is not.

The condition (L-VARMA) also simplifies observationally equivalence. For suppose (B,A) ∼

(B̃, Ã) and let

C = B−1A.

Then (14) can be rewritten as

Ã = B̃C.

If B̃(z) =
∑κ

j=0 B̃iz
i, Ã(z) =

∑κ
i=0 Ãiz

i, and C(z) =
∑∞

j=0Ciz
i for z ∈ D, then equating

Taylor series coefficients we arrive to the following equivalent expression

[
Ã0 · · · Ãκ 0 · · ·

]
=
[
B̃0 · · · B̃κ 0 · · ·

]


C0 C1 C2 C3 · · ·

0 C0 C1 C2
. . .

0 0 C0 C1
. . .

. . .
. . .

. . .
. . .


.
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Although there are infinitely many equations in this expression, (L-VARMA) will allow us to

restrict attention to only the first 1+(n+1)κ equations, which will then allow us to determine

the dimension of the sets of observationally equivalent models. This is achieved in the next

result. Before we state it formally, we review the concepts of coprimeness and McMillan

degree. If B ∈ R[z]n×n, A ∈ R[z]n×m, and det(B) is not identically zero, we say that the pair

(B,A) is coprime if rank
([

B(z) A(z)

])
= n for all z ∈ C. Every C ∈ R(z)n×m can be

represented as C = B−1A for some coprime pair (B,A) and

(15) δ(C) = max deg(det(B))

is an invariant of such representations of C known as the McMillan degree of C (Hannan &

Deistler, 2012, pp. 41 and 51).

Lemma A.8. Let (B,A) ∈ ΩV ARMA, let C = B−1A have a Taylor series expansion C(z) =∑∞
i=0Ciz

i in a neighbourhood of z = 0, and let

H =



Cκ+1 Cκ+2 · · · C(n+1)κ

. . .
. . .

. . .
...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


.

Then:

(i) rank(H) = δ(C(z−1)− C(0)) ≤ nκ.

(ii) The set of parameters satisfying rank(H) = nκ is generic (i.e. contains an open and

dense subset of ΩV ARMA).

Proof. (i) The rank of the infinite Hankel matrix

C1 C2 C3 . .
.

C2 C3 C4 . .
.

C3 C4 C5 . .
.

. .
.
. .
.
. .
.
. .
.


is equal to δ(C(z−1)− C(0)) (Hannan & Deistler, 2012, Theorem 2.4.1 (iii)). Now write

C(z−1)− C(0) = B−1(z−1)
(
A(z−1)−B(z−1)C(0)

)
=
(
zκB(z−1)

)−1 (
zκA(z−1)− zκB(z−1)C(0)

)
.
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Restriction (L-VARMA) implies that zκB(z−1) ∈ R[z]n×n and zκA(z−1) ∈ R[z]n×m. Since

B0 = B(0) is non-singular by restriction (EU-VARMA), max deg
(
det
(
zκB(z−1)

))
= nκ

(Hannan & Deistler, 2012, p. 42). It follows that δ(C(z−1)−C(0)) ≤ nκ (Hannan & Deistler,

2012, Lemma 2.2.1 (e)). By Theorem 2.4.1 (iii) of Hannan & Deistler (2012) again and

reordering the blocks, δ(C(z−1)− C(0)) is the rank of the matrix

Q =



Cnκ Cnκ+1 · · · C2nκ−1

. . .
. . .

. . .
...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


.

Since A = BC is a polynomial matrix of degree at most κ, the κ + 1, κ + 2, . . . , 2nκ − 1

coefficient matrices of BC are all zero. That is,

κ∑
i=0

BiCj−i = 0, κ+ 1 ≤ j ≤ 2nκ− 1.

Since B0 is non-singular,

Cj = −B−10

κ∑
i=1

BiCj−i, κ+ 1 ≤ j ≤ 2nκ− 1.

This implies that all of the top blocks of Q are linear dependent on the bottom κ blocks of Q.

This implies that

δ(C(z−1)− C(0)) = rank(Q) = rank(H) = rank(Ȟ),

where

Ȟ =



Cκ Cκ+1 · · · C(n+1)κ−1
. . .

. . .
. . .

...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


will be needed later.

(ii) The proof is in two steps.

STEP 1: The set of coprime (B,A) ∈ ΩV ARMA with non-singular Bκ is generic in ΩV ARMA.

Our technique for proving this follows the technique used to prove Theorem 3 of Anderson

et al. (2016) although our proof is substantially more explicit. We are not able to rely on
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that result directly because of our additional assumption that C(0) is quasi-lower triangular.

Recall that

ΩV ARMA =
{

(B,A) ∈ R[z]n×n × R[z]n×m : max deg(B),max deg(A) ≤ κ,

rank(B) = n for all z ∈ D, rank(A) = m for all z ∈ D,

and B−1(0)A(0) is canonical quasi-lower triangular
}
.

Recall also that the topology on this set is the topology inherited from Rn(n+m)(κ+1). We will

prove that the following subset is open and dense in ΩV ARMA,

Ω̌V ARMA =
{

(B,A) ∈ ΩV ARMA : det(B) has distinct zeros, det(Bκ) 6= 0,

rank(A) = m for all z ∈ T, and (B,A) is coprime
}
.

To see that Ω̌V ARMA is open, let (B,A) ∈ Ω̌V ARMA. We will construct a neighbourhood of

(B,A) in Ω̌V ARMA as N = N1∩N2∩N3∩N4, where Ni is a neighbourhood of (B,A) satisfying

the i-th additional condition in Ω̌V ARMA.

By the continuity of the zeros of a polynomial with respect to its coefficients (Horn &

Johnson, 1985, Appendix D), there is a neighbourhood N1 of (B,A) such that for every

(B̌, Ǎ) ∈ N1, det(B̌) has distinct zeros.

Since det(Bκ) 6= 0, the continuity of the determinant implies that there is a neighbourhood

N2 of (B,A) such that for every (B̌, Ǎ) ∈ N2, det(B̌κ) 6= 0.

Since rank(A) = m for all z ∈ D, it has a minor of order m that has no zeros in D. Using

the continuity of the zeros of a polynomial with respect to its coefficients again, there is a

neighbourhood N3 of (B,A) such that for every (B̌, Ǎ) ∈ N3, rank(Ǎ) = m for all z ∈ D.

Finally, since det(B) has distinct zeros and Bκ is non-singular, det(B) has nκ distinct

zeros z1, . . . , znκ ∈ C. The fact that (B,A) is coprime then implies that

ΠiA(zi) 6= 0, i = 1, . . . , nκ,

where Πi is the orthogonal projection matrix onto the left null space of B(zi). Since

rank(B(zi)) = n− 1, i = 1, . . . , nκ,

small perturbations to B(zi) that leave the rank fixed at n− 1 lead to small perturbations to

Πi (Gohberg et al., 2006, Theorem 13.5.1). Thus, there exists a neighbourhood N4 of (B,A)
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such that for every (B̌, Ǎ) ∈ N4,

Π̌iǍ(ži) 6= 0, i = 1, . . . , nκ,

where ž1, . . . , žnκ are the zeros of det(B̌) and Π̌i is the orthogonal projection matrix onto the

left null space of B̌(ži). In other words, every (B̌, Ǎ) ∈ N4 is coprime.

To see that Ω̌V ARMA is dense, let (B,A) ∈ ΩV ARMA\Ω̌V ARMA. We propose an infinites-

imal perturbation of B, followed by an infinitesimal perturbation A that leads to a point in

Ω̌V ARMA. Thus, any neighbourhood of (B,A) in ΩV ARMA will contain an element of Ω̌V ARMA.

If det(B) has a zero of multiplicity greater than 1, we claim that there exists an infinites-

imal perturbation of B into the set of polynomial matrices satisfying (EU-VARMA) and

(L-VARMA) and whose determinants have distinct zeros. In the course of proving their The-

orem 3, Anderson et al. (2016) prove that an infinitesimal perturbation exists indeed into the

set of polynomial matrices satisfying (L-VARMA) whose determinants have distinct zeros. The

claim then follows from the fact that the set of polynomial matrices satisfying (EU-VARMA)

and (L-VARMA) is an open subset of its ambient space Rn2(κ+1) by the continuity of zeros of

polynomials with respect to their coefficients.

Next, if Bκ is singular, we can infinitesimally perturb its singular values at zero to obtain

a non-singular matrix. By the continuity of zeros of polynomials with respect to their coeffi-

cients, this infinitesimal perturbation does not interfere with the det(B) having distinct zeros

or condition (EU-VARMA).

Next, if rank(A(z0)) < m for some z0 ∈ T then for ρ < 1 arbitrarily near 1, the polynomial

matrix A(ρz) is such that rank(A(ρz)) = m for all z ∈ D. This perturbation has no effect

on the rank of the transfer function in D and leaves the constant coefficient matrix invariant.

Thus, the perturbation leaves condition (CF-VARMA) invariant.

Finally, suppose that after the sequence of infinitesimal perturbations above we arrive at

a (B,A) ∈ ΩV ARMA that is not coprime. Enumerate the zeros of det(B) as z1, . . . , znκ and

choose non-zero vectors v1, . . . , vnκ ∈ Cn spanning the left null spaces of B(z1), . . . , B(znκ)

respectively. Since (B,A) is not coprime, there is an index i such that v′iA(zi) = 0. Choose ∆ ∈

Rn×m satisfying v′i∆ 6= 0 for all i such that v′iA(zi) = 0. Then an infinitesimal perturbation

of Aκ in the direction of ∆ is sufficient to produce a coprime element pair. This infinitesimal

perturbation has no effect on the condition that rank(A(z)) for all z ∈ D by the continuity
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of zeros of polynomials with respect to their coefficients and it leaves A(0) invariant. Thus

(CF-VARMA) remains invariant.

STEP 2: For all parameters in Ω̌V ARMA, rank(H) = nκ.

We have already established that the matrix Ȟ encountered in (i) is of rank δ(C(z−1) −

C(0)) ≤ nκ. If rank(Ȟ) < nκ, then there exist vectors xi ∈ Rn, i = 0, . . . , κ− 1, not all zero,

such that

(x′0, . . . , x
′
κ−1)Ȟ = 01×nmκ.

Setting

x(z) =
κ−1∑
i=0

xiz
i,

this implies that the terms of degree κ, κ + 1, . . . , (n + 1)κ − 1 of x′C vanish. To see that

indeed all higher degree terms vanish as well, notice that each element of the numerator of

y′ = x′C =
x′adj(B)A

det(B)

is expressible as a polynomial of degree bounded above by max deg(x) + max deg(adj(B)) +

max deg(A) ≤ (κ− 1) + (n− 1)κ+ κ = (n+ 1)κ− 1. Since det(B(0)) 6= 0 by (EU-VARMA),

it follows from Lemma 4.3 that y ∈ Rm[z] and max deg(y) ≤ κ− 1. Now setting

U =
[
x′B−1

S

]
with S ∈ R(n−1)×n chosen so that det(U) is not identically zero (e.g. choose z0 ∈ D such that

x(z0) 6= 0 and choose S as an orthogonal complement to x′(z0)B
−1(z0)). Then

Ḃ = UB =
[
x′
SB

]
∈ R[z]n×n, Ȧ = UA =

[
y′

SA

]
∈ R[z]n×m,

and Ḃ−1Ȧ = B−1A = C. But this violates the minimality of δ(C) = nκ among all matrix

fraction descriptions of C because max deg(Ḃ) < nκ (Hannan & Deistler, 2012, Lemma 2.2.1

(e)). Thus, rank(Ȟ) = nκ and therefore rank(H) = nκ.

We are now in a position to simplify Theorem A.6 and characterize the set

(B,A)/ ∼=
{

(B̃, Ã) ∈ ΩV ARMA : (B̃, Ã) ∼ (B,A)
}
, (B,A) ∈ ΩV ARMA.
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Theorem A.9. Let (B,A), (B̃, Ã) ∈ ΩV ARMA, let C = B−1A have a Taylor series expansion

C(z) =
∑∞

i=0Ciz
i in a neighbourhood of z = 0, and let

T =



C0 C1 · · · Cκ

0 C0
. . .

...

...
. . .

. . . C1

0 · · · 0 C0


, H =



Cκ+1 Cκ+2 · · · C(n+1)κ

. . .
. . .

. . .
...

C2
. . .

. . . Cnκ+1

C1 C2
. . . Cnκ


,

P =

 −T −H

Im(κ+1) 0m(κ+1)×nmκ

 .
Then:

(i) (B̃, Ã) ∼ (B,A) if and only if

vec
([

B̃0 · · · B̃κ Ã0 · · · Ãκ

])
∈ ker

(
P ′ ⊗ In

)
.

(ii) (B,A)/ ∼ is a relatively open subset of the subspace

mat
(
ker
(
P ′ ⊗ In

))
,

where

mat : vec
([

B0 · · · Bκ A0 · · · Aκ

])
7→

(
κ∑
i=0

Biz
i,

κ∑
i=0

Aiz
i

)
.

(iii) dim ((B,A)/ ∼) = n2(κ + 1) − n δ
(
C(z−1)− C(0)

)
≥ n2 and for generic points in the

parameter space dim ((B,A)/ ∼) = n2.

Proof. (i) If (B̃, Ã) ∼ (B,A), then Theorem A.6 implies that

0 = −B̃C + Ã =
−B̃adj(B)A+ det(B)Ã

det(B)
.

Each element of the right hand side can be expressed as a ratio of a polynomial (of degree at

most max
{

max deg(B̃) + max deg(adj(B)) + max deg(A),max deg(det(B)) + max deg(Ã)
}
≤

max{κ + (n − 1)κ + κ, nκ + κ} = (n + 1)κ) and det(B), which satisfies det(B(0)) 6= 0 by

(EU-VARMA). By Lemma 4.3, this is equivalent to the first 1 + (n + 1)κ Taylor series

coefficients equating to zero. Thus, observational equivalence is equivalent to

−
[
B̃0 . . . B̃κ

] [
T H

]
+
[
Ã0 . . . Ãκ 0n×m . . . 0n×m

]
= 0n×(1+(n+1)κ)m
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or equivalently, [
B̃0 · · · B̃κ Ã0 · · · Ãκ

]
P = 0n×(1+(n+1)κ)m.

Vectorizing we obtain

(
P ′ ⊗ In

)
vec
([

B̃0 · · · B̃κ Ã0 · · · Ãκ

])
= 0nm(1+(n+1)κ)×1.

(ii) If (B̆, Ă) ∈ mat(ker(P ′⊗ In)) then it satisfies (L-VARMA). If, additionally, it satisfies

(EU-VARMA), the preceding implies that Ă = B̆C and therefore (CF-VARMA) is satisfied.

Thus, (B,A)/ ∼ is the intersection of mat(ker(P ′ ⊗ In)) with

{
(B̆, Ă) ∈ R[z]n×n × R[z]n×m : (EU-VARMA) and (L-VARMA) are satisfied

}
.

The latter set is open in Rn(n+m)(κ+1) due to the continuity of zeros of polynomials with

respect to their coefficients (Horn & Johnson, 1985, Appendix D). Therefore, (B,A)/ ∼ is

relatively open in mat(ker(P ′ ⊗ In)).

(iii) dim(ker(P ′)) = dim(ker(H ′)) and so the result follows from Lemma A.8 (i) and the

standard properties of Kronecker products (Horn & Johnson, 1991, Theorem 4.2.15). For

generic parameters the result follows from Lemma A.8 (ii).

Theorem A.9 is a direct generalization of Theorem A.3 to the VARMA setting. The-

orem A.9 (i) characterizes the sets of observationally equivalent parameters as subsets of

particular subspaces of the parameter space determined by the first 1 + (n+ 1)κ impulse re-

sponses. This result is equivalent to Theorem 1 of Deistler & Schrader (1979) although Deistler

and Schrader use the more traditional formulation of observational equivalence, B̃ = UB and

Ã = UA for some U ∈ R(z)n×n. Theorem A.9 (ii) then shows that the sets of observationally

equivalent parameters constitute relatively open although not necessarily dense subsets of the

aforementioned subspaces (see Example A.1). Theorem A.9 (iii) finally characterizes the di-

mension of observationally equivalent parameters. Theorem A.9 (ii) and (iii) are analogues

to Theorem 2.5.3 (v) of Hannan & Deistler (2012) (see also their Remark 2 on page 67). As

noted earlier, however, Hannan and Deistler parametrize the VARMA model differently.
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Example A.1. Let n = m = κ = 1 and suppose (B,A) = (1, 1), then

P ′ ⊗ In =



−1 0 1 0

0 −1 0 1

0 0 0 0

0 0 0 0


.

Clearly (1,−2, 1,−2)′ ∈ ker(P ′ ⊗ In). Thus, (B̃, Ã) = (1 − 2z, 1 − 2z) ∈ mat(ker(P ′ ⊗

In)). However, this pair violates condition (EU-VARMA) and by the continuity of zeros of

polynomials with respect to their coefficients (Horn & Johnson, 1985, Appendix D), there is

a neighbourhood of (B̃, Ã) in R4 containing no parameters. Thus, (B,A)/ ∼ is is not dense

in ker(P ′ ⊗ In).

We are now in a position to consider affine restrictions. Let ΩR
V ARMA be a subset of

ΩV ARMA endowed with the relative topology. We say that (B,A) ∈ ΩR
V ARMA is identified in

ΩR
V ARMA if every (B̃, Ã) ∼ (B,A) in ΩR

V ARMA is equal to (B,A). We say that a parameter

(B,A) is locally identified in ΩR
V ARMA if it has a neighbourhood N in ΩR

V ARMA such that

every (B̃, Ã) ∼ (B,A) in N is equal to (B,A). Again, a parameter is locally identified in

ΩR
V ARMA if it is identified in ΩR

V ARMA but the converse is not true in general.

Theorem A.10. Let ΩR
V ARMA be the set of (B,A) ∈ ΩV ARMA satisfying

(16) R vec
([

B0 · · · Bκ A0 · · · Aκ

])
= u,

where R ∈ Rr×n(n+m)(κ+1) and u ∈ Rr. If (B,A) ∈ ΩR
V ARMA and P is defined as in Theorem

A.9, then (B,A) is identified in ΩR
V ARMA if and only if

M =

 P ′ ⊗ In

R


is of full column rank n(n+m)(κ+ 1).

Proof. Let ζ = vec
([

B0 · · · Bκ A0 · · · Aκ

])
. If M is of full column rank, then ζ is

the only point in ker(P ′ ⊗ In) that satisfies (16). Theorem A.9 (i) then implies that (B,A) is

identified in ΩR
V ARMA. If M is not of full rank, then there exists 0 6= ξ ∈ ker(P ′⊗In)∩ker(R).

If c > 0 is sufficiently small, Theorem A.9 (ii) implies that (B,A) ∼ mat(ζ+ cξ) 6= (B,A) and

since mat(ζ + cξ) satisfies (16), (B,A) is not identified in ΩR
V ARMA.
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Theorem A.10 is a direct generalization of Theorem A.4. The geometry of Theorem A.10 is

also exactly analogous to that of Theorem A.4. Thus, for the classical VARMA model subject

to affine restrictions, a parameter is identified if and only if it is locally identified.

Corollary A.11 (Deistler & Schrader (1979)). Let

E : vec
([

Y0 · · · Y1+(n+1)κ X0 · · · X1+(n+1)κ

])
7→ vec

([
Y0 · · · Yκ X0 · · · Xκ

])
,

where Y0, . . . , Y1+(n+1)κ ∈ Rn×n and X0, . . . , X1+(n+1)κ ∈ Rn×m, let E⊥ be an orthogonal

complement to E, let

RDS =

 RE

E⊥

 ,
and let

D =



B0 · · · Bκ 0 · · · 0 A0 · · · Aκ 0 · · · 0

0
. . .

. . .
... 0

. . .
. . .

...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

...
. . .

. . . Bκ
...

. . .
. . . Aκ

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · · · · 0 B0 0 · · · · · · · · · 0 A0





1 + (n+ 1)κ blocks.

Then (B,A) is identified in ΩR
V ARMA if and only if RDS(D′ ⊗ In) is of full column rank

n2(1 + (n+ 1)κ).

Proof. We claim that
[
P ′⊗In
R

]
is of full column rank if and only if RDS(D′ ⊗ In) is of full

column rank. Let

ζ = vec
([

Y0 · · · Yκ X0 · · · Xκ

])
.

Then (P ′ ⊗ In)ζ = 0 if and only if

[
Y0 · · · Yκ

] [
T H

]
=
[
X0 · · · Xκ 0n×m · · · 0n×m

]
︸ ︷︷ ︸

1+(n+1)κ blocks

.
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This is equivalent to

[
Y0 · · · Y(n+1)κ

]


C0 C1 · · · · · · Cn(κ+1)

0
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . C1

0 · · · · · · 0 C0


︸ ︷︷ ︸

TDS

=
[
X0 · · · X(n+1)κ

]

E⊥ vec
([

Y0 · · · Y(n+1)κ X0 · · · X(n+1)κ

])
︸ ︷︷ ︸

ζDS

= 0n2(n+m)κ×1.

Thus, the kernel of
[
P ′⊗In
R

]
is {0} if and only if the kernel of

[
P ′DS⊗In
RDS

]
is {0}, where

PDS =

 −TDS

Im(1+(n+1)κ)

 .
Since A = BC, D is an orthogonal complement to P ′DS . Thus, (P ′DS ⊗ In)ζDS = 0 if and only

if ζDS = (D′ ⊗ In)ξDS for some ξDS ∈ Rn2(1+(n+1)κ). It follows that
[
P ′DS⊗In
RDS

]
ζDS = 0 if and

only if ζDS = (D′⊗ In)ξDS and RDS(D′⊗ In)ξDS = 0. In other words, the kernel of
[
P ′DS⊗In
RDS

]
is {0} if and only if the kernel of RDS(S′ ⊗ In) is {0}.

Corollary A.11 due to Deistler & Schrader (1979) is evidently equivalent to Theorem

A.10. The main difference between the two formulations is that our determining matrix

is populated by impulse responses, whereas Deistler and Schrader’s matrix is populated by

structural parameters.

Suppose now that we are interested in identifying just the i-th equation of (13). Let

ΩR
V ARMA be as before and let (B,A) ∈ ΩR

V ARMA. We say that the i-th equation of (13)

is identified at (B,A) in ΩR
V ARMA if every (B̃, Ã) ∼ (B,A) in ΩR

V ARMA has the same i-th

equation as (B,A). We say that the i-th equation of (13) is locally identified at (B,A) in

ΩR
V ARMA if (B,A) has a neighbourhood N in ΩR

V ARMA such that every (B̃, Ã) ∼ (B,A) in N

has the same i-th equation as (B,A). Again, if all equations are (locally) identified at (B,A)

in ΩR
V ARMA, then (B,A) is (locally) identified in ΩR

V ARMA.

Theorem A.12. Let ΩR
V ARMA be the set of (B,A) ∈ ΩV ARMA satisfying

Ri vec
(
e′i

[
B0 · · · Bκ A0 · · · Aκ

])
= ui,(17)
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where Ri ∈ Rr×(n+m)(κ+1), ui ∈ Rr, and ei ∈ Rn is the i-th standard unit vector. If (B,A) ∈

ΩR
V ARMA and P is defined as in Theorem A.9, then the i-th equation of (13) is identified at

(B,A) in ΩR
V ARMA if and only if

Mi =

 P ′

Ri


is of full column rank (n+m)(κ+ 1).

Proof. Let ζ = vec
([

B0 · · · Bκ A0 · · · Aκ

])
. If Mi is of full column rank, then

vec
(
e′i

[
B0 · · · Bκ A0 · · · Aκ

])
= (I(n+m)(κ+1) ⊗ e′i)ζ is the only point in ker(P ′)

that satisfies (17), since P ′(I(n+m)(κ+1) ⊗ e′i) = (Im(1+(n+1)κ) ⊗ e′i)(P ′ ⊗ In). Theorem A.9

(i) then implies that any parameter in ΩR
V ARMA that is observationally equivalent to (B,A)

must have the same i-th equation as (B,A). Thus the i-th equation is identified at (B,A)

in ΩR
V ARMA. If Mi is not of full rank, then there exists 0 6= ξi ∈ ker(P ′) ∩ ker(Ri). If

c > 0 is sufficiently small, Theorem A.9 (ii) implies that (B,A) ∼ mat(ζ + cξi ⊗ ei) and since

mat(ζ + cξi⊗ ei) satisfies (17) but has a different i-th equation than (B,A), the i-th equation

is not identified at (B,A) in ΩR
V ARMA.
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