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Abstract

We introduce the value-free (v-f ) reductions, which are operators that map a

coalitional game played by a set of players to another “similar” game played by

a subset of those players. We propose properties that v-f reductions may satisfy,

we provide a theory of duality for them, and we characterize several v-f reduc-

tions (among which the value-free version of the reduced games propose by Hart

and Mas-Colell, 1989, and Oishi et al., 2016). Unlike reduced games, which were

introduced to characterize values in terms of consistency properties, v-f reduc-

tions are not defined in reference to values. However, a “path-independent” v-f

reduction induces a value. We characterize v-f reductions that induce the Shapley

value, the stand-alone value, and the Banzhaf value. Moreover, we can connect

our approach to the literature on consistency because any value induced by a

path-independent v-f reduction is consistent with that reduction.
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1 Introduction

We consider environments where a set of participants can collaborate to obtain and

share surplus, that is, we study coalitional games with transferable utility (TU games).

In such environments, we study the consequences of removing some players from the

game. In the new game faced by the remaining participants, the worth of each coalition

of players is a function of the strategic possibilities of all the players in the original game.

This problem is relevant in many economic contexts. For instance, when a group

of shareholders leave a company, the remaining shareholders reorganize the ownership

among themselves. The process through which the shares of the leaving shareholders

are acquired by the outstanding shareholders will determine the strategic environment

where they will interact from then on, that is, the worth of each possible coalition in

the new environment.

Thus, in this paper we look at TU games from a new perspective. We study “op-

erators” that map a TU game played by a set N of players to another, similar but

“reduced” game, played by a subset of N . We propose properties that such functions

may satisfy and we use these properties to characterize several operators.

Our research question is different but related to the search for consistency properties

of values for TU games.1 Before continuing with the contribution of our paper, it is

worthwhile discussing the relationship between this line of research and our approach.

To that aim, we first briefly describe the consistency requirement. Consider a value for

TU games, that is, a function that associates a payoff to every player in every game.

Starting from a TU game with a set of players N , we can define a reduced game among

the players of any N ′ ( N . The worth of a coalition in the reduced game takes into

account the payoffs that the players in the coalition give, according to the value, to the

players who are removed, that is, to the players in N \ N ′. Hence, the characteristic

function of the reduced game depends on the original characteristic function and the

solution in question.2 The value is consistent if a player in N ′ obtains the same payoff

in the initial and in the reduced game.

There are several possibilities to define a reduced game depending on the way in

which the removed players are compensated. In particular, Hart and Mas-Colell (1989)

1 In this respect, the closest papers to ours are Hart and Mas-Colell (1989) and Oishi et al. (2016).
2 See the survey on reduced games by Driessen (1991).
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(HM ) and Oishi et al. (2016) (ONHF ) define two different reduced games. They use

them to characterize the Shapley value as the only value that is consistent and standard

for two-person games (that is, it divides the surplus equally between the two players).

In contrast to the previous literature on consistency, we study operators that reduce

games without reference to any value. We refer to them as value-free reductions (v-f

reductions, for short). For any TU game with a set of players N and for any N ′ ⊆ N ,

a v-f reduction generates a game played by N ′. A simple example is the subgame v-f

reduction, which assigns to each coalition in the reduced game the same worth as in the

initial game.

Our interest lies in the analysis of the reduction processes, that is, in the v-f reduc-

tions. We propose properties that one may ask any such v-f reduction to satisfy. In

this paper, we study v-f reductions that satisfy four properties. First, we request that

a v-f reduction is “well defined,” in the sense that the way in which players in N \N ′

are removed to arrive at a game with a set of players N ′ should not matter. The game

played by the set N ′ should be the same if the players in N \ N ′ have been removed

one by one, all simultaneously, or in any other sequence. We call this property path

independence. The second property is the additivity of the v-f reduction. Reducing two

games through an additive v-f reduction and then summing the corresponding reduced

games and directly reducing the sum of the games, gives the same result.

The other two properties are related to the presence of null players in the initial

game. The contribution of a null player to any coalition is zero. Hence, it seems

reasonable that they play no role in a v-f reduction. We require that if a player is a

null player in the initial game, then he should still be a null player after a v-f reduction.

We call this property the permanent null player. Moreover, if a null player is removed

from the game, then the worth of the coalitions should not change, a property that we

call the null player out property.

Path independence, additivity, permanent null player, and null player out do not

suffice to identify a unique v-f reduction. But, by including alternative “invariance”

properties, we characterize several v-f reductions. Each invariance property states how

changes in the worth of coalitions of the same size affect the reduction of the game.

First, we characterize the subgame v-f reduction using an axiom that requires that an

increase in the worth of the grand coalition should not affect the reduction of a game,

a property that we call anti-efficiency.

3



Second, we consider the four previous properties plus the invariant axiom that states

that the reduced game is immune to changes in the strategic prospects of the players

derived from an identical increase or decrease in all the stand-alone coalitions. That is,

the axiom requires that if the strategic possibilities of the players change identically in

the initial game because each stand-alone coalition, say, increases by the same amount,

then this change should not affect how the game is reduced. Interestingly, these five

axioms characterize a unique v-f reduction that corresponds to the HM v-f reduction,

that is, the value-free version of the reduction method proposed by HM.

To continue our analysis of the properties of v-f reductions, we propose a duality

theory for them. We define the dual of a v-f reduction as the v-f reduction of the dual

of the game. We show that the ONHF v-f reduction (that is, the value-free version of

the ONHF reduction method) is dual to that of the HM v-f reduction. We also show

that our basic properties of path independence, additivity, permanent null player, and

null player out are all self-dual properties, in the sense that they are satisfied by a v-f

reduction if and only if they are satisfied by the dual of the v-f reduction. We use the

duality theory to characterize the ONHF v-f reduction by using the invariance axiom

that is dual of the one in the characterization of the HM v-f reduction. According to

this new axiom, the reduction of a game should be immune to an identical increase or

decrease in the maximum compensation that the rest of the players are willing to give

to any player.

It is worth noting that path independence is a particularly interesting property. If

a v-f reduction satisfies path independence, then any (initial) game can unambiguously

be reduced to a game played by just one player, say player i ∈ N . We can interpret

the worth of coalition {i} (the only non-empty coalition) in this reduced game as the

benefit or cost to be distributed to this player in the initial game. Repeating this process

for every player in N allows us to define a value for the initial game. Thus, a path-

independent v-f reduction “induces” a value. We show that the subgame v-f reduction

induces the stand-alone value and, as one may expect, the HM and the ONHF v-f

reductions induce the Shapley value. Moreover, we can connect our approach to the

previous literature on consistency because any value induced by a path-independent v-f

reduction is consistent with that reduction.

We use our approach to introduce and characterize other v-f reductions. First, we

connect our approach to the theory of implementation. Indeed, we use the players’ pay-
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offs obtained at the Pérez-Castrillo–Wettstein bidding mechanism (a mechanism that

implements the Shapley value, see Pérez-Castrillo and Wettstein, 2001) to propose a v-f

reduction which is characterized by an alternative invariance axiom and also induces

the Shapley value. Moreover, we can apply again our duality theory to characterize

the dual of that v-f reduction. Second, we use the basic four axioms as part of the

characterization of a v-f reduction which induces the Banzhaf value (Banzhaf, 1964).

Finally, we discuss the properties of anonymity and linearity. Anonymity of a v-f

reduction requires that the name of the players does not matter in the reduction of the

game. It has two implications: (a) the worth of the coalitions in the reduced game does

not depend on the names of the players in the initial game but only on their contribution

to coalitions, and (b) the v-f reduction itself depends not on the name of the removed

players but only on their contribution. The notion of anonymity is unrelated to the

other axioms. In fact, our basic properties do not imply anonymity. However, all the

v-f reductions that we study satisfy the anonymity of the process. They also satisfy

linearity, which is a more requiring property than additivity.

In addition to Hart and Mas-Colell (1989) and Oishi et al. (2016), several authors

have used the consistency property to characterize values in TU games.3 Among others,

Sobolev (1975) defines a reduced game and characterizes, together with other properties,

the prenucleolus. Peleg (1985) characterizes the core of cooperative games without

transferable utility by proposing another reduced game. Moulin (1985) also uses a

consistency property to characterize the “equal allocation of nonseparable costs.”4

The analysis of our paper may shed light on the discussion on the use of consistency

with respect to a reduced game when comparing different solutions for cooperative

games. On that matter, Maschler (1990) suggests that the choice between two solution

concepts that can be characterized by the same set of basic properties plus consistency

relative to a reduced game (reduced games that are different for the two concepts) boils

down to the examination of the reduced games. There are two strands of research

related to this suggestion. The first strand is pursued by Chang and Hu (2007), who

propose a criterion to “distinguish” two different solutions through two different re-

duced games. The second strand includes Driessen and Radzik (2003), Yanovskaya and

Driessen (2001), and Yanovskaya (2004) which characterize reduced games directly. Our

3 For an excellent introduction to the consistency principle in general, see Thomson (2011).
4 See also Chang and Hu (2007).
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approach is closer to the research in the second strand since we adopt a pure axiomatic

approach.

The remainder of the paper is organized as follows. In Section 2, we recall basic

concepts, including the definition of reduced games. In Section 3, we introduce our

central concept of a value-free reduction, together with a list of properties that a v-f

reduction may satisfy. In Section 4, we develop a duality theory for v-f reductions.

In Section 5, we provide an axiomatic characterization of several v-f reductions. We

also discuss the properties of anonymity and linearity. Logical independence of each

property in the characterization of the HM v-f reduction is established in Section 6. In

Section 7, we conclude the paper. All proofs are collected in the Appendix.

2 TU games, values, and reduced games

Let an infinite set U represent the universe of the players. We restrict attention to

games where the set of players constitutes a finite subset of U . We denote Pfin(U) the

set of all finite subsets of U .

For N ∈ Pfin(U), a coalitional game with transferable utility (abbreviated as

a TU game) with N as the set of players is a function v : 2N → R such that v(∅) = 0.

For S ⊆ N , v(S) represents the worth of the coalition S in the game v. The class of

all TU games with N as the set of players is denoted by GN . Thus, the set of all finite

TU games is
⋃
N∈Pfin(U) GN .

A subgame of v ∈ GN is a game v |2N′∈ GN
′

for some N ′ ⊆ N , where v|2N′ (S) =

v(S) for all S ⊆ N ′. Mathematically, a subgame is nothing more than a function

restricted to a subdomain.

One particular class of games that we will use is the class of unanimity games

uT ∈ GN , for T ∈ 2N \ {∅}. The worth of the coalition S ⊆ N in the unanimity game

uT is:

uT (S) =

1 if S ⊇ T ;

0 otherwise.

The class of unanimity games (uT )T∈2N\{∅} constitutes a basis for the set of all TU

games GN with the fixed set of players N . Among the unanimity games, uN ∈ GN

depicts a particularly simple situation: one unit of transferable utility is generated only

when the grand coalition forms.
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Cooperative game theory accords particular attention to the search of appealing so-

lution concepts and their characterization through desirable properties from the math-

ematics and/or economics points of view. Single-valued solutions for TU games are

called values. A value allocates a payoff to each player in a game, for every possible

game. Thus, a value ϕ prescribes, for each N ∈ Pfin(U), for each TU game v ∈ GN ,

and for each i ∈ N , a payoff ϕi(v) ∈ R.

The most prominent value is the Shapley value (Shapley, 1953), which is denoted

by Sh henceforth:5

Shi(v) =
∑

T⊆N\{i}

t!(n− t− 1)!

n!
Div(T ),

for any v ∈ GN and for any i ∈ N , where Div(T ) ≡ v(T ∪ {i}) − v(T ) denotes the

marginal contribution of player i to the coalition T ⊆ N \ {i}.
Another solution concept which will be discussed later is the Banzhaf value (see

Banzhaf, 1964, and Owen, 1975) which we henceforth denote by Ban:

Bani(v) =
∑

T⊆N\{i}

1

2n−1
Div(T ).

We notice that, in contrast to the Shapley value, the Banzhaf value is not efficient

in the sense that the sum of the outcome obtained by the players need not be v(N).

Two-player TU games constitute the most simple subclass of TU games. Unsurpris-

ingly, several solution concepts for TU games prescribe the same payoff when restricted

to this simple subclass. According to this prescription, in the game v ∈ G{i,j} each player

k ∈ {i, j} is assigned, on top of his stand-alone value, half of the synergy generated

from the collaboration:

ϕk(v) = v({k}) +
1

2
[v({i, j})− v({i})− v({j})]. (1)

This is, in particular, the prescription of the Shapley value and the Banzhaf value

for two-player games. Hence, it is commonly said that a value ϕ is standard for

two-player games if for each game v ∈ G{i,j}, ϕ satisfies equation (1).

For TU games with more than two players, solution concepts may be pinned down

by imposing consistency relative to some reduced games. In the literature, reduced

5 We follow the convention by using uppercase letters to denote sets of players and letting the

corresponding lowercase letters represent their cardinalities. For instance, the cardinality of N , N ′,

and T are n, n′, and t.
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games are always associated with a solution concept as follows. Given a value ϕ, a

reduction Ψϕ is a function that associates each TU game v ∈ GN with a reduced game

ΨϕNN ′(v) ∈ GN ′ for any two finite sets of players N,N ′ such that N ′ ( N .6 That is, a

reduction applied on a game with a set of players N specifies how to “reduce” the game

if it were to be played only by a subset N ′ of N . Notice that the value ϕ appears in

this function ΨϕNN ′ : GN → GN ′ as a parameter, so that different values lead to different

ways of “reducing” a game in GN to a game in GN ′ .
Now we can formulate the definition of consistency of a value relative to some

reduction:

Definition 1. The value ϕ is consistent relative to the reduction Ψϕ if for all N,N ′ ∈
Pfin(U) such that N ′ ( N , for all v ∈ GN , and for all i ∈ N ′,

ϕi
(
ΨϕNN ′(v)

)
= ϕi(v).

Consistency of ϕ means that any player i ∈ N ′ is indifferent between playing the

original game v and playing the reduced game ΨϕNN ′(v) according to the value ϕ.

We close this section with two examples of reductions: the HM reduction (see Hart

and Mas-Colell, 1989) and the ONHF reduction (see Oishi et al., 2016).

Definition 2. Given a value ϕ, the HM reduction ΨHM
ϕ

is defined by:

ΨHMNN ′
ϕ
(v)(S) ≡ v(S ∪ (N \N ′))−

∑
i∈N\N ′

ϕi(v|2S∪(N\N′)),

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and for all v ∈ GN .

The interpretation of the HM reduction is as follows. Given a value ϕ, consider a

game v ∈ GN that is reduced to be played by players in N ′ ( N . If a coalition S ⊆ N ′

is formed, then the players in S collaborate with all removed players in N \N ′, which

yields a worth v(S ∪ (N \ N ′)). However, each removed player i ∈ N \ N ′ is entitled

to ϕi(v|2S∪(N\N′)), his “fair” share of the worth of the coalition S ∪ (N \N ′). Then, the

coalition S has a claim to the residual, which defines the worth of coalition S in the

HM reduced game.

6We call the operator Ψϕ a reduction, even though the previous literature does not define such

an operator. They propose the consistency property using reduced games, which are the images of a

reduction.
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Hart and Mas-Colell (1989) characterize the Shapley value as the unique value that

is consistent relative to the HM reduction ΨHM
ϕ

and that is standard for two-player

games.

Oishi et al. (2016) obtain a different characterization of the Shapley value through

a reduction à la Hart and Mas-Colell by exploiting the self-duality of the Shapley value.

To define the ONHF reduction, we first introduce the following notation: given a TU

game v ∈ GN and S ( N , we denote by vS ∈ GN\S the game defined by:

vS(T ) = v(T ∪ S)− v(S), (2)

for all T ⊆ N \ S.

Definition 3. Given a value ϕ, the ONHF reduction ΨONHF
ϕ

is defined by:

ΨONHFNN ′
ϕ
(v)(S) ≡ v(S)−

∑
i∈N\N ′

ϕi(v) +
∑

i∈N\N ′
ϕi(v

S),

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and for all v ∈ GN .

In contrast to the HM reduction, the intuition of the ONHF reduced game (as

acknowledged by Oishi et al., 2016) is more involved. To determine the worth of a

coalition S ⊆ N ′ in an ONHF reduced game, we consider all the players in S together.

Forming the coalition S entitles the players in the coalition to offer their joint collabo-

ration to the rest of the players to play a new TU game vS ∈ GN\S. As defined above,

in this new game any coalition T ⊆ N \ S is formed with the collaboration of S and

T , which yields a worth v(T ∪ S). The coalition S is entitled to two payments. First,

it receives v(S) in forming this game. Second, it makes a swap agreement with the

removed players: the coalition S pays ϕi(v) to each player i ∈ N \N ′, which equals the

amount i deserves in the original game, and it collects the sum of what these players

receive in vS, which adds up to
∑

i∈N\N ′ ϕi(v
S). The net payoff for S after the two

payments corresponds to its worth in the ONHF reduced game.

Oishi et al. (2016) show that the Shapley value is the only value that is consistent

relative to the ONHF reduction ΨONHF
ϕ

and that is standard for two-player games.

3 Value-free reductions: Definition and axioms

The existing literature takes the values as the main object of study and considers the

reduced games associated with values to characterize particular values. By contrast,
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our approach takes the reductions as the primitive concept, analyzes properties of the

reductions, characterizes some of them through the properties, and eventually uses the

reductions to derive values.

To develop our approach, we first formally introduce the concept of a value-free

reduction, that is, a reduction that does not make any reference to a value.

Definition 4. A value-free reduction (v-f reduction for short) Ψ is a function

that associates to each finite set of players N , each TU game v ∈ GN , and each subset

N ′ ⊆ N , a TU game ΨNN ′(v) ∈ GN ′.7

Because of the defining feature of v-f reductions, we must forsake the superscript ϕ

from a generic v-f reduction.

To illustrate the concept, we provide a first example of a v-f reduction. Example 1

defines Ψ sub, which we call the subgame v-f reduction.8 According to this operator, the

value of any subset in the reduced game is the same as its value in the original game.

Example 1. We define the subgame v-f reduction Ψ sub by:

Ψ subNN ′(v)(S) ≡ v |2N′ (S) = v(S),

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN .

We now propose and explain some properties that v-f reductions may satisfy. We

see v-f reductions as a way to remove players from a game while keeping the remaining

players’ strategic prospect intact. Thus, we suggest properties that may be coherent

with this view.

We first introduce a minimum requirement of a well-behaved v-f reduction, the

path-independence property:

Axiom 1. A v-f reduction Ψ is path independent if for all N1, N2, N3 ∈ Pfin(U) such

that N3 ⊆ N2 ⊆ N1, then

ΨN2N3 ◦ ΨN1N2 = ΨN1N3 .
9

7 We allow for the possibility that N ′ = N for convenience.
8 We refer to all the examples of value-free reductions as “v-f reductions” even though the use of

“v-f” is not always necessary.
9 The symbol “◦” denotes the composition of two functions: for f : X → Y and g : Y → Z,

g ◦ f(x) = g
(
f(x)

)
∈ Z for all x ∈ X.
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Path independence means that, for any game v ∈ GN , the way players in N \N ′ are

removed to reach the v-f reduced game of v with N ′ as the remaining players should

be irrelevant. In particular, it should not matter whether a player’s removal precedes

another player’s or if they are removed simultaneously. The only relevant information

is the set of players who remain at the end.

One important merit of a path-independent v-f reduction is that it induces unam-

biguous one-player v-f reduced games. That is, a game v ∈ GN can be unambiguously

reduced to n games ΨN{i}(v), for i ∈ N . This procedure provides the possibility of

identifying the value of a player i in the game v as the worth of the coalition {i} in the

v-f reduced game consisting of this player only. Hence, we can propose the following

definition:

Definition 5. The value ϕΨ induced by a path-independent v-f reduction Ψ is, for

v ∈ GN ,

ϕΨ (v) ≡ (ΨN{i}(v)({i}))i∈N .

For instance, the value induced by the subgame v-f reduction (which is trivially

path-independent) is the stand-alone value:

ϕΨ
sub

(v) = (Ψ subN{i}(v)({i}))i∈N = v({i})i∈N ,

because the prescribed payoff of the value induced by the subgame v-f reduction for all

i ∈ N is v|2{i} ({i}) = v({i}).
Reduced games were introduced in the literature to study the consistency of val-

ues. Then, it is natural to ask about the consistency of the value induced by a path-

independent v-f reduction with respect to that reduction. Although Definition 1 refers

to consistency relative to a reduced game (and not to v-f reduced games), the definition

can be easily accommodated. Proposition 1 addresses the previous question.

Proposition 1. The value ϕΨ induced by a path-independent v-f reduction Ψ is consis-

tent with respect to Ψ .

Our second axiom on v-f reductions is additivity:

Axiom 2. A v-f reduction Ψ is additive if for all N,N ′ ∈ Pfin(U) such that N ′ ⊆ N ,

for all v1, v2 ∈ GN , then

ΨNN ′(v1 + v2) = ΨNN ′(v1) + ΨNN ′(v2).
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To put it in words, additivity means that if game v is the sum of two games v1 and v2,

then directly reducing v, and reducing v1 and v2 and then summing the corresponding

reduced games, give the same result.

We will use additivity in our characterizations. Since we use the concept of linear

v-f reductions later, we introduce the stronger concept of linearity here:

Axiom 3. A v-f reduction Ψ is linear if for all N,N ′ ∈ Pfin(U) such that N ′ ⊆ N ,

for all v1, v2 ∈ GN and for all α ∈ R, then

ΨNN ′(αv1 + v2) = αΨNN ′(v1) + ΨNN ′(v2).

Compared with additivity, linearity of a v-f reduction Ψ has one extra implication:

the scale in which we measure the worth of the coalitions in a TU game does not

influence how the game is reduced.

Our next two axioms concern the consequences of the presence of “null players” in

the game, that is, players who do not contribute to any coalition, on the reduced game.

Before introducing the axioms, we formally define null players.

Definition 6. A player i ∈ N is a null player in a TU game v ∈ GN if Div(S) = 0

for all S ⊆ N \ {i}.

Given that null players have no impact on the worth of any coalition, it may seem

reasonable that they also have no impact on the reduction of games. Thus, we propose

the following property:

Axiom 4. A v-f reduction Ψ satisfies the null player out property if for all N ∈
Pfin(U), for all i ∈ N , and for all v ∈ GN such that player i is a null player in v, then

ΨN(N\{i})(v) = v|2N\{i} .

The null player out property means that if a null player is removed from the game,

then his removal has no effect on the worth of coalitions in the game without him. The

axiom reflects the idea that given that a null player has no influence on the game, the

worth of any coalition should not change if the game is reduced because he is removed.

Moreover, a null player should gain no influence after a reduction:

Axiom 5. A v-f reduction Ψ satisfies the permanent null player property if for all

N,N ′ ∈ Pfin(U) such that N ′ ⊆ N , for all i ∈ N ′, and for all v ∈ GN such that player

i is a null player in v, then player i is also a null player in ΨNN ′(v).
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The interpretation of the permanent null player property is that if a player is a null

player in the original game, then he is still a null player after the removal of some other

arbitrary players.

In general, null player out and permanent null player properties reflect the rationale

perceiving null players as irrelevant or redundant. Still, they are distinct axioms, as we

will show in Section 6, where we analyze the logical independence of the axioms.

Our last set of axioms provides alternative views of how the reduction of a game is

affected by changes in the worth of coalitions of the same size. Indeed, it is conventional

to postulate the monotonocity principle that a player’s strategic perspective should be

monotonic with respect to the worth of the coalitions containing him (see, e.g., Young,

1985). In line with this principle, if we consider, for example, a symmetric game and

we increase the worth of all coalitions of the same size by the same amount, then the

enhancing strategic effects for the players may be entirely canceled out. This reasoning

is akin to the disagreement convexity in Peters and van Damme (1991) in the context

of the bargaining problem: if each player’s disagreement point is increased properly,

then the solution should not be changed.

Our version of addition invariance properties borrows from ideas developed by Béal

et al. (2015). In our formulation, we follow the terminology used in that paper, which

we introduce here:

Definition 7. Given the set of players N , for all k ∈ Z+ such that k ≤ n and α ∈ R,

the game w(k,α) ∈ GN is defined as follows: for all S ⊆ N ,

w(k,α)(S) =

α if |S| = k;

0 otherwise.

The game w(k,α) is a useful tool to express an identical increase or decrease in the

worth of all coalitions of size k in a TU game v as the addition of v and w(k,α).

Our first invariance axiom suggests that if the worth of every coalition of size one

in the unanimity game uN ∈ GN is increased or decreased by the same amount, then

the reduction of the game uN should not change. A rationale for this axiom is that the

reduction of the game should be the same because the relative strategic possibilities of

all the players remain intact after the modification. Indeed, uN({i}) can be interpreted

as an opportunity cost for player i to play the unanimity game uN . An increase in his

stand-alone worth, ceteris paribus, is supposed to improve his strategic prospect. But
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an identical increase for all players’ opportunity cost for this game should not change

any of their strategic positions.

Axiom 6. A v-f reduction Ψ satisfies 1-addition invariance if for all α ∈ R and for

all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN + w(1,α)) = ΨNN ′(uN).

Our second invariance axiom proposes an alternative property, in the same spirit

as the previous one. It prescribes what happens after an increase or decrease in the

worth of every coalition except the grand coalition, where the change in the worth is

proportional to the number of players in the coalition. The axiom requires that the

change does not affect the reduction of the unanimity game.

Axiom 7. A v-f reduction Ψ satisfies proportional addition invariance if for all

α ∈ R and for all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN +
n−1∑
k=1

w(k,kα)) = ΨNN ′(uN).

The previous two axioms share the view that the players are bargaining over the

worth of the grand coalition and that the worth of smaller coalitions are important only

because they set the players’ strategic possibilities, that is, their outside options. Our

third invariance axiom takes the opposite view. It postulates that the players will be

unable to coordinate and form the grand coalition; hence, an increase in the worth of

the grand coalition should not affect the reduction of the unanimity game.

Axiom 8. A v-f reduction Ψ satisfies anti-efficiency if for all α ∈ R and for all

N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN + w(n,α)) = ΨNN ′(uN).

Before we turn to the characterization of several v-f reductions in Section 5, we

first propose a duality theory for v-f reductions in Section 4. We adapt the approach

of Oishi et al. (2016). The main difference of our approach is that we take the v-f

reductions as primitive, while Oishi et al. (2016) stick to the conventional view that

takes the solution concepts as primitive and uses reduced games to characterize solutions

through consistency properties. We use our duality theory in two characterizations of

Section 5.
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4 Duality theory for value-free reductions

We first remember the definition of the dual of a game and the dual of a value. For a

TU game v ∈ GN , the dual of v is the game v∗ ∈ GN , defined by:

v∗(S) ≡ v(N)− v(N \ S), (3)

for all S ⊆ N . For a value ϕ, the dual ϕ∗ of ϕ is defined by the value:

ϕ∗(v) = ϕ(v∗), (4)

for all v ∈ GN and for all N ∈ Pfin(U).

A value is self-dual if ϕ = ϕ∗. Examples of self-dual values include the Shapley

value and the Banzhaf value.

We now define the dual of a v-f reduction:

Definition 8. The dual Ψ ∗ of a v-f reduction Ψ is defined as, for any N,N ′ ∈
Pfin(U) such that N ′ ⊆ N , and for any v ∈ GN ,

Ψ ∗NN ′(v) =
(
ΨNN ′(v

∗)
)∗
.

That is, consider a v-f reduction Ψ and a game v. The dual v-f reduction of v

consists in first, applying Ψ to the dual of v, and then taking the dual of the reduced

game.

We already know that the dual operator for TU games is reflexive because (v∗)∗ = v.

The dual operator for v-f reductions is also reflexive, that is, (Ψ ∗)∗ = Ψ .10

Both, the dual operator for TU games and the dual operator for v-f reductions are

reflexive because (v∗)∗ = v and (Ψ ∗)∗ = Ψ .

If the v-f reduction is path-independent, then we can relate the concepts of duality

for values and for v-f reductions. Indeed, by recognizing that a one-player TU game

coincides with its dual, we obtain the result that the concept of the dual of a value is

compatible with the concept of the dual of a v-f reduction:

Proposition 2. The value induced by a path-independent v-f reduction is dual to the

value induced by the dual v-f reduction:

(ϕΨ )
∗

= ϕ(Ψ∗). (5)
10This property holds because for any v ∈ GN and for any N ′ ⊆ N : (Ψ∗)∗NN ′(v) = (Ψ∗NN ′(v

∗))∗ =

((ΨNN ′((v
∗)∗))∗)∗ = ΨNN ′(v), where the last equality uses twice that the dual operator for TU games

is reflexive.
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An immediate corollary of Proposition 2 is the following:

Corollary 1. The value induced by a path-independent v-f reduction is self-dual if and

only if it is also induced by the dual of the v-f reduction.

We also define dual properties, or axioms, of v-f reductions.

Definition 9. Consider two properties P and P∗ regarding v-f reductions. We say that

property P is dual to property P∗ if for all v-f reduction Ψ ,

Ψ satisfies P ⇐⇒ Ψ ∗ satisfies P∗.

We say that a property is self-dual if it is satisfied by a v-f reduction if and only if

it is satisfied by the dual of the v-f reduction:

Definition 10. P is self-dual if P is dual to itself.

An important result, very helpful in the characterization of v-f reductions, is that

the basic axioms that we use are all self-dual, as Proposition 3 states.

Proposition 3. The axioms of additivity, null player out, permanent null player, and

path independence of v-f reductions are all self-dual properties.

5 Characterization of several value-free reductions

In this section, we use the axioms of additivity, null player out, permanent null player,

and path independence to characterize several v-f reductions. Each characterization of

a v-f reduction uses an additional invariance axiom.

Before presenting our characterizations, we state an intuitive property that is com-

mon to the v-f reductions that are path independence and satisfy the axiom of null

player out: a game will be unchanged after a reduction where no player is removed. We

state this property in Remark 1, which we will use in the proofs of the characterizations.

Remark 1. If a v-f reduction Ψ satisfies null player out and path independence, then

for all N ∈ Pfin(U) and for all v ∈ GN ,

ΨNN(v) = v.
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5.1 Characterization of the subgame value-free reduction

The subgame v-f reduction Ψ sub, defined in Example 1, satisfies our four basic axioms.

Moreover, it is characterized with the help of the axiom of anti-efficiency (Axiom 8),

which postulates that changes in the worth of the grand coalition should not influence

the way in which the unanimity game is reduced.

Theorem 1. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and anti-efficiency if and only if:

Ψ = Ψ sub.

Given that the axiom of anti-efficiency emphasizes how difficult coordination is for

players striving to achieve the worth of the grand coalition, it is reasonable that it leads

to the characterization of a v-f reduction where those outside the reduced set of players

have no role: the worth of any subgame coincides with that in the original game.

5.2 Characterization of the HM value-free reduction

Next, we study the consequences of including the axiom of 1-addition invariance. The

intuition of this axiom is that an identical increase or decrease in the worth of all the one-

player coalitions in a game should not affect the reduction of the game. Interestingly,

1-addition invariance together with our four basic axioms characterize the value-free

version of the most popular reduced game, the HM reduction (see Definition 2). We

call this v-f reduction the HM v-f reduction and we denote it ΨHM . We construct the

HM v-f reduction by substituting ϕ = Sh in ΨHM
ϕ
.

Example 2. We define the HM v-f reduction ΨHM by:11

ΨHMNN ′(v)(S) ≡v(S ∪ (N \N ′))−
∑

i∈N\N ′
Shi(v|2S∪(N\N′))

=
∑
i∈S

Shi(v|2S∪(N\N′)),

for all S,N,N ′ ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN .

Theorem 2 states the characterization. It also stresses that, as one could expect,

the HM v-f reduction induces the Shapley value.

11The second equality is implied by the efficiency of the Shapley value.
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Theorem 2. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and 1-addition invariance if and only if:

Ψ = ΨHM .

Moreover, ΨHM induces the Shapley value.

Theorem 2 provides a characterization of ΨHM that is particularly interesting be-

cause it is based on a property (the 1-addition invariance) which seems unrelated to the

definition of the reduction. On the one hand, the idea behind the reduction of a game

v ∈ GN to ΨHMNN ′(v) is that the worth of a coalition S ⊆ N ′ in ΨHMNN ′(v) is computed

taking into account that the players in S profit from the collaboration with all removed

players in N \N ′, who are entitled to a compensation of Shi(v|2S∪(N\N′)). On the other

hand, the notion of 1-addition invariance concerns the effect of identical changes in the

worth of the one-player coalitions.12 Therefore, Theorem 2 highlights that a character-

istic property of the HM v-f reduction is that it is immune to changes in the strategic

prospects of the players derived from the changes in their stand-alone worth, as long

as the changes are identical for every player.

5.3 Characterization of the ONHF value-free reduction

In the previous subsection, we define the value-free version of the HM reduction. We

can use the same method to define the value-free version of the ONHF reduction,

ΨONHF , which we will refer to as the ONHF v-f reduction:

Example 3. We define the ONHF v-f reduction ΨONHF by:13

ΨONHFNN ′ (v)(S) ≡v(S)−
∑

i∈N\N ′
Shi(v) +

∑
i∈N\N ′

Shi(v
S)

=
∑
i∈N ′

Shi(v)−
∑

i∈N ′\S

Shi(v
S), (6)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N , and for all v ∈ GN .

12 1-addition invariance together with additivity imply that ΨNN ′(v + w(1,α)) = ΨNN ′(v) for any

v ∈ GN .
13 The two expressions for ΨONHF are equivalent because

∑
i∈N\N ′ Shi(v) = v(N)−

∑
i∈N ′ Shi(v)],∑

i∈N\N ′ Shi(v
S) = vS(N \ S)−

∑
i∈N ′\S Shi(v

S)], and vS(N \ S) = v(N)− v(S).
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The ONHF reduced game is dual to the HM reduced game. Hence, it is no surprise

that ΨONHF is the dual v-f reduction of ΨHM . Indeed,14

(
ΨONHFNN ′ (v∗)

)∗
(S) =ΨONHFNN ′ (v∗)(N ′)− ΨONHFNN ′ (v∗)(N ′ \ S)

=
∑
i∈N ′

Shi(v
∗)−

∑
i∈N ′\N ′

Shi(v
∗N ′)−

∑
i∈N ′

Shi(v
∗) +

∑
i∈N ′\(N ′\S)

Shi(v
∗N ′\S)

=
∑
i∈S

Shi(v
∗N ′\S) =

∑
i∈S

Shi(v |2S∪(N\N′)
∗) =

∑
i∈S

Shi(v |2S∪(N\N′)).

As we proved in Section 4, additivity, null player out, permanent null player, and

path independence are all self-dual properties. Given that they are satisfied by ΨHM ,

ΨONHF also satisfies these axioms. On the other hand, the property of 1-addition

invariance, which is the additional axiom that characterizes ΨHM , is not self-dual.

Proposition 4 states that the dual property of the 1-addition invariance is the (n−1)-

addition invariance axiom, defined as follows:

Axiom 9. A v-f reduction Ψ satisfies (n-1)-addition invariance if for all α ∈ R,

for all N,N ′ ∈ Pfin(U) such that N ′ ( N , and for all v ∈ GN ,

ΨNN ′(uN + w(n−1,α)) = ΨNN ′(uN).

Proposition 4. The dual of the 1-addition invariance axiom is the (n − 1)-addition

invariance axiom.

In conjunction with the interpretation of 1-addition invariance property provided in

the previous section, there is a dual interpretation of the (n − 1)-addition invariance

property. For any player i ∈ N , the difference v(N) − v(N \ {i}) can be interpreted

as the maximum amount of compensation the rest of the players are willing to pay for

player i’s participation. Then, (n − 1)-addition invariance means that if each player’s

maximum compensation is changed by the same amount in uN , their strategic prospects

stay unchanged.

14 The first equality follows the definition of a dual game, the second one from the defining equation

(6) of ΨONHF , and the last equality from the self-duality of the Shapley value. To check the fourth

equality notice that, for all T ⊆ S∪(N\N ′), on the one hand, v∗N
′\S(T ) = v∗(T∪(N ′\S))−v∗(N ′\S) =

[v(N)− v(N \ (T ∪ (N ′ \ S)))]− [v(N)− v(N \ (N ′ \ S))] = v(N \ (N ′ \ S))− v(N \ (T ∪ (N ′ \ S))) =

v(S∪(N \N ′))−v((S∪(N \N ′))\T ); on the other hand, (v |2S∪(N\N′))∗(T ) = v |2S∪(N\N′) (S∪(N \N ′))−
v |2S∪(N\N′) ((S∪(N \N ′))\T ) = v(S∪(N \N ′))−v((S∪(N \N ′))\T ). Thus v∗N

′\S = (v |2S∪(N\N′))∗.
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Theorem 3 provides our characterization of ΨONHF . It can be thought of as a dual

theorem to Theorem 2 as it gives a characterization of the dual of ΨHM through the

dual properties of the axioms used in Theorem 2. The theorem also states that the

ΨONHF v-f reduction induces the Shapley value.

Theorem 3. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and (n− 1)-addition invariance if and only if

Ψ = ΨONHF .

Moreover, ΨONHF induces the Shapley value.

Theorems 2 and 3 together reveal a distinctive difference between ΨHM and its dual,

ΨONHF . Whereas the HM v-f reduction postulates that the strategic prospects of the

agents should not change after an identical modification in the worth of every stand-

alone coalition (the 1-addition invariance property), the ONHF v-f reduction considers

that the players’ strategic prospects should not change after an identical modification

in each player’s maximum compensation (the (n− 1)-addition invariance property).

5.4 Value-free reductions inspired by the bidding mechanism

In the previous subsections, we characterized v-f reductions that have some relation-

ship with existing reduced games. In the current subsection, we propose and charac-

terize two new v-f reductions. They link our approach to the theory of implementa-

tion. Indeed, the first v-f reduction is based on the out-of-equilibrium payoffs obtained

at the Pérez-Castrillo–Wettstein (PW ) bidding mechanism (see, Pérez-Castrillo and

Wettstein, 2001), which implements the Shapley value. The second v-f reduction is

the dual of the first. Thus, we start by explaining the bidding mechanism, and its

equilibrium.

In the PW bidding mechanism, each player j ∈ N in a game v ∈ GN makes a

bid bji ∈ R to each player i ∈ N \ {j}. The player with the highest total net bid (the

difference between a player’s total bid to the others minus the sum of the bids the others

make to him) is chosen as the proposer. He pays the bids to the rest of the players

and makes them an offer to join him. If the proposal is rejected, then the proposer is

removed from the game and the rest of the players keep the bids and play the same

game again.
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At the subgame perfect equilibrium of the bidding mechanism, any player j ∈ N

bids bji = Shi(v) − Shi(v |2N\{j}) to each player i ∈ N \ {j} and the proposer (let’s

denote him by α) makes an offer that is accepted. The offer submitted to the players in

N \ {α} makes them indifferent between accepting the offer and playing the new game

among them (because this is the continuation outcome of the mechanism in case of

rejection). That is, the offer to each player is the payoff that this player would obtain

in the “reduced game” where the set of players is N \ {α}. In this reduced game,

the assets of any coalition S ⊆ N \ {α} are composed by two elements: the worth

of the coalition and the sum of the bids that the players in S collect from α, that is,

v(S) +
∑

i∈S b
α
i = v(S) +

∑
i∈S(Shi(v)− Shi(v |2N\{α}).

If we continue deleting players, we obtain the extension of the previous formulae for

the reduced game played by any N ′ ( N (which corresponds to a situation where the

players in N \ N ′ were proposers in the bidding mechanism and their proposals were

rejected). This way, we define the following v-f reduction:

Example 4. We define the PW v-f reduction ΨPW by:

ΨPWNN ′(v)(S) ≡ v(S)−
∑
i∈S

Shi(v |2N′ ) +
∑
i∈S

Shi(v), (7)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN .

Theorem 4 shows that ΨPW is characterized in a similar way to theorems 1, 2, and

3. It uses the alternative property of proportional addition invariance, which we have

described in Section 3 (see Axiom 7).

Theorem 4. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and proportional addition invariance if and only if

Ψ = ΨPW .

Moreover, ΨPW induces the Shapley value.

Theorem 4 also identifies the value ϕΨ
PW

induced by the path-independent v-f re-

duction ΨPW . Given that the PW bidding mechanism implements the Shapley value,

it is unsurprising that the value induced by the reduction is also the Shapley value.

On the other hand, nothing in the bidding mechanism suggests that the equilibrium

bids are related to the size of the coalitions. Therefore, the characterization of the PW
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v-f reduction thanks to the axiom of proportional addition invariance provides a new

perspective on the out-of-equilibrium payoffs of the players in the bidding mechanism.

We now use the duality theory developed in the previous section to provide and

characterize another v-f reduction, the dual of ΨPW , which we denote ΨPW
∗
. To that

end, we first identify the dual of the proportional addition invariance (since the other

axioms used in the characterization of Theorem 4 are self-dual). The proportional

addition invariance prescribes that a change in the worth of every coalition (except for

the grand coalition) that is proportional to the size of the coalition, should not affect

the strategic possibilities of the players, hence it should also not affect the reduction

of the unanimity game. The reverse-proportional additional invariance axiom proposes

that the reduction should not be affected if the worth of every coalition is changed in

reverse proportion to their size.

Axiom 10. A v-f reduction Ψ satisfies reverse-proportional addition invariance

if for all α ∈ R and for all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN +
n−1∑
k=1

w(k,(n−k)α)) = ΨNN ′(uN).

Proposition 5. The dual of the proportional addition invariance axiom is the reverse-

proportional addition invariance axiom.

Theorem 5 provides the characterization of ΨPW
∗
, which we formally define in Ex-

ample 5:15

Example 5. We define the PW∗ v-f reduction ΨPW
∗

by:

ΨPW
∗

NN ′ (v)(S) ≡ v(S ∪ (N \N ′))− v(N \N ′)−
∑
i∈S

Shi(v
N\N ′) +

∑
i∈S

Shi(v), (8)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN .

Theorem 5. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and reverse-proportional addition invariance if and only if

Ψ = ΨPW
∗
.

Moreover, ΨPW
∗

induces the Shapley value.

15See the Appendix for the derivation of the expression for ΨPW
∗
.

22



Taken together, theorems 2 to 5 provide additional evidence that the Shapley value

is a solution concept with strong properties. Indeed, it is induced by v-f reductions

that are characterized by very diverse invariance properties. We can use an operator

that reduces a game so as to keep the same players’ strategic possibilities after an

identical change in the worth of all the one-player coalitions or of all maximum possible

compensations; or after a change that is proportional to the number of players in any

subcoalition, or that is reverse to the number of players in any subcoalition. The

Shapley value is attained after any of those different reductions.

5.5 A value-free reduction inducing the Banzhaf value

The objective of this subsection is to illustrate how to use our approach to characterize

v-f reductions that induce solution concepts different from the Shapley value, or the

stand-alone value. In particular, we propose a v-f reduction that induces the Banzhaf

value, which we introduced in Section 2.

Dragan (1996) proposes a reduced game which is implicitly defined by a functional

equation to axiomatize the Banzhaf value.16 In contrast, we propose a v-f reduction

that is based on the same basic axioms used in our previous characterizations, to which

we add a new axiom that we call the “maximum ignorance” property:

Axiom 11. A v-f reduction Ψ satisfies maximum ignorance if for all N ∈ Pfin(U)

such that |N | ≥ 2, for all i ∈ N , for all α ∈ R and for all S ⊆ N \ {i},

ΨN(N\{i})(αuN)(S) =
α

2
uN(S ∪ {i}).

The maximum ignorance property takes the view that when player i is removed

from the scene, he is still able to exert influence on the rest of the players, but his

influence is uncertain. The resulting reduced game is a game of the remaining players

contingent on the removed players’ behavior. However, unlike for instance the HM v-f

reduction, the model analyst is totally ignorant of the removed players’ behavior. So the

16The reduced game Ψϕ proposed by Dragan (1996) is implicitly defined as follows: for S,N,N ′ ∈
Pfin(U) such that S ⊆ N ′ ⊆ N ,∑

i∈S
Bani(Ψ

ϕ
NN ′(v)

∣∣∣
2S

) =
∑

i∈S∪(N\N ′)

Bani(v|2S∪(N\N′))−
∑

i∈N\N ′
ϕi(v|2S∪(N\N′)). (9)
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predicted distribution should be the one with the maximum entropy, which is, player i

independently chooses to join or leave with equal probability (for an introduction to the

principle of maximum entropy, see e.g., chapter 11 of Jaynes, 2003). Then ΨNN ′(uN)

can be interpreted as the resulting expected game.

The reduction that we propose is given in the next example. We call it the Banzhaf

v-f reduction.

Example 6. We define the Banzhaf v-f reduction ΨBan by:

ΨBanNN ′(v)(S) ≡
∑

T⊆N\N ′

1

2n−n′
[v(S ∪ T )− v(T )], (10)

for all N,N ′, S ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN .

We can interpret the Banzhaf v-f reduction as follows. Consider a game v ∈ GN

that is reduced to be played by players in N ′ ⊆ N . The players in the coalition S ⊆ N ′

can collaborate with any subset T of the set of removed players N \ N ′. Then, they

obtain a worth of v(S ∪ T ) but they have to compensate the players in T with the

worth of their coalition v(T ). Each of the possible coalitions T ⊆ N \N ′ has the same

probability of being available. Therefore, the worth of a coalition S ⊆ N ′ in ΨBanNN ′ is

the simple average of the marginal worth that S can add to the worth of the coalitions

T ⊆ N \N ′.
Theorem 6 provides an axiomatic characterization of ΨBan. It also postulates that

ϕΨ
Ban

= Ban.

Theorem 6. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and the maximum ignorance property if and only if

Ψ = ΨBan.

Moreover, ΨBan induces the Banzhaf value.

5.6 The axioms of anonymity and linearity

In this section, we discuss two additional properties that v-f reductions can satisfy:

anonymity and linearity.

One sensible property that many values satisfy is anonymity, which requires that the

players’ names are irrelevant for the value they obtain in the game. We can propose an
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axiom for v-f reductions in the same spirit. The axiom of anonymity for v-f reductions

requires that the name of the players does not matter in the reduction of the game.

To formally define the axiom, let σ : N → U be an injection. For v ∈ GN , we define

σv ∈ Gσ[N ] by σv(T ) ≡ v(σ−1(T )) for all T ⊆ σ[N ].

Axiom 12. A v-f reduction Ψ satisfies anonymity if for all S,N ′, N ∈ Pfin(U) such

that S ⊆ N ′ ⊆ N , for all v ∈ GN , and for all injections σ : N → U , then

Ψσ[N ]σ[N ′](σv)(σ[S]) = ΨNN ′(v)(S). (11)

Anonymity of a v-f reduction implies that the contribution of a player in the reduced

game depends not on his name but on his contributions in the initial game. It also

implies that if two players in the initial game are identical in terms of their contribution,

then the reduced game if one of them is removed should be the same if the other is

removed.

We notice that although anonymity refers to the way games are reduced according

to v-f reductions, it has implications for the prescribed payoff that equal players obtain

in the induced value. In fact, if we substitute both N ′ and S with {i} in Axiom 12, we

have ΨN{i}(v)({i}) = Ψσ[N ]{σ(i)}(σv)({σ(i)}), which is, ϕΨi (v) = ϕΨσ(i)(σv). Therefore,

anonymity of a v-f reduction Ψ implies anonymity of its induced value ϕΨ . We state

this result in Proposition 6.

Proposition 6. If a v-f reduction Ψ satisfies anonymity, then the induced value ϕΨ

satisfies anonymity as well.

None of the axioms used in the characterizations provided in theorems 1 to 6 is

related to the idea of anonymity. However, Proposition 7, whose proof is immediate,

shows that all of the v-f reductions characterized in our paper satisfy the axiom of

anonymity.

Proposition 7. The v-f reductions ΨSub, ΨHM , ΨONHF , ΨPW , ΨPW
∗
, and ΨBan satisfy

anonymity.

Given that all the characterizations use the axioms of additivity, null player out,

permanent null player, and path independence, one may think that these axioms imply

anonymity. Moreover, like the previous axioms, we can easily check that anonymity is

a self-dual property. However, Example 7 satisfies our four basic properties although it

is not anonymous.
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Example 7. Given X ⊆ U , the v-f reduction ΨX is defined by

ΨXNN ′(v)(S) =
∑
i∈S

Shi(v|2S∪((N\N′)∩X))−
∑
i∈S

Shi(v|2N′∪((N\N′)∩X)) +
∑
i∈S

Shi(v), (12)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N , for all v ∈ GN .

Proposition 8. The v-f reduction ΨX satisfies additivity, null player out, perma-

nent nullplayer, and path independence for any X ⊆ U . However, it does not satisfy

anonymity.

Finally, let us mention that all the v-f reductions that we have characterized also

satisfy the axiom of linearity (see Axiom 3), which is stronger than that of additivity

that we have used in the characterizations. Moreover, as anonymity, linearity is not

implied by our four basic axioms. The construction of an example requires the use of

the Hamel basis and we provide it in the Appendix.

6 Logical independence

In this section, we show that our characterization of the HM v-f reduction is minimal

in the sense that none of the characterizing properties can be deduced from the rest.

Each time we leave out one axiom, we can find examples of v-f reductions satisfying

the remaining four properties.

First, as we have already shown in theorems 1, 3 and 4, the subgame v-f reduction,

the ONHF v-f reduction and the PW v-f reduction satisfy all the axioms but 1-addition

property. Examples 8, 9, 10, and 11 show that the axioms of null player out, permanent

null player, additivity, and path independence are not redundant either.

Example 8 (No null player out). Let Ψ¬NPO be the v-f reduction defined by:

Ψ¬NPONN ′ (v)(S) = 0,

for all N,N ′, S ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN . The v-f reduction

Ψ¬NPO satisfies additivity, permanent null player, path independence and 1-addition

invariance, but it does not satisfy null player out.
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Example 9 (No permanent null player). Let Ψ¬PNP be the v-f reduction defined by:

Ψ¬PNPNN ′ (v)(S) =

0 S = ∅

v(S ∪ (N \N ′)) otherwise,

for all N,N ′, S ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN . The v-f reduction

Ψ¬PNP satisfies additivity, null player out, path independence and 1-addition invariance,

but it does not satisfy permanent null player.

Example 10 (No additivity). Let Ψ¬A be the v-f reduction defined by:

Ψ¬ANN ′(v) =

ΨHMNN ′(v) if Shi(v) = 0 for all i ∈ N \N ′

Ψ¬NPONN ′ (v) otherwise,

for all N,N ′ ∈ Pfin(U) such that N ′ ⊆ N and for all v ∈ GN . The v-f reduction

Ψ¬A satisfies null player out, permanent null player, path independence and 1-addition

invariance, but it does not satisfy additivity.

Example 11 (No path independence). Let Ψ¬PI be the v-f reduction defined by:

Ψ¬PINN ′(v)(S) =

2v(S) if n = n′ = 1

ΨHMNN ′(v)(S) otherwise,

for all N,N ′, S ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and for all v ∈ GN . The v-f reduc-

tion Ψ¬PI satisfies additivity, null player out, permanent null player, and 1-addition

invariance, but it does not satisfy path independence.

7 Conclusion

In this paper, we introduce the notion of the value-free reduction of a coalitional game

with transferable utility. A v-f reduction of a game describes the change in the worth of

the coalitions in a TU game when some players leave the game. Thus, this new concept

allows us to study TU games from a different perspective, focusing on the properties

that a v-f reduction may or may not satisfy. A particularly appealing property of the

v-f reductions that we analyze is path independence, because a path-independent v-f

reduction induces a value. One may say that the value somehow reflects the properties

of the v-f reductions that induce it.
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In addition to path independence, we consider v-f reductions that are additive and

satisfy properties that indicate that dummy players must still be treated as dummy

players when any such reduction is applied. These properties by themselves do not pin

down a unique v-f reduction. Moreover, they also do not identify a unique value induced

by the reductions. We define v-f reductions that satisfy all the previous properties and

induce either the Shapley value, or the Banzhaf value, or the stand-alone value.

To characterize each of the examples of v-f reductions that we have defined, we

use an additional axiom that ensures that the players remaining in the reduced game

keep the same strategic perspective as in the original game after a change in the worth

of some particular coalitions. These are invariance properties. The exercises suggest

that the Shapley value is a resilient value as it is induced by several v-f reductions, each

characterized by a different invariance axiom. A duality theory for v-f reductions, which

is also developed in this paper, helps in the proof of some of the characterizations.

Our approach finds its root in the literature that proposes the use of reduced games

to study the internal consistency of values (starting from Davis and Maschler, 1965, and

Sobolev, 1975). In particular, two of the v-f reductions that we characterize are value-

free versions of reduced games proposed by Hart and Mas-Colell (1989) and Oishi et

al. (2016). We think that further research on v-f reductions can also contribute to this

literature by characterizing values using consistency properties based on v-f reductions,

instead of reduced games.

Appendix

Proof of Proposition 1. We prove that the value ϕΨ induced by a path-independent v-f

reduction Ψ is consistent with respect to Ψ . For a given N we have ΨN ′{i}◦ΨNN ′ = ΨN{i}

for all N ′ ⊆ N and for all i ∈ N ′, by path independence. Therefore, for any v ∈ GN ,

given that ΨNN ′(v) ∈ GN ′ , we have ϕΨi
(
ΨNN ′(v)

)
= ΨN ′{i}

(
ΨNN ′(v)

)
({i}) = ΨN ′{i} ◦

ΨNN ′(v)({i}) = ΨN{i}(v)({i}) = ϕΨi (v). Hence, ϕΨ is consistent with respect to Ψ .

To prove Proposition 3, as well as propositions 4 and 5 later, some properties of the

mapping v 7→ v∗ are useful, which we state in Lemma 1:

Lemma 1. The mapping v 7→ v∗ is additive. Moreover, if i ∈ N is a null player in

v ∈ GN , then i ∈ N is a null player in v∗.
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Proof of Lemma 1. We check that v 7→ v∗ is additive: for all v, w ∈ GN and for all

S ⊆ N , then (v + w)∗(S) = (v + w)(N) − (v + w)(N \ S) = (v(N) + w(N)) − (v(N \
S) + w(N \ S)) = (v(N)− v(N \ S)) + (w(N)− w(N \ S)) = v∗(S) + w∗(S).

To see that if i is a null player in v, then i is also a null player in v∗ we have that for

all S ⊆ N \ {i}, v∗(S ∪{i})− v∗(S) = (v(N)− v(N \ (S ∪{i})))− (v(N)− v(N \S)) =

v(N \ S)− v(N \ (S ∪ {i})) = 0.

Proof of Proposition 3. To verify that additivity is self-dual, we show that the map-

ping v 7→ Ψ ∗NN ′(v)(S) is additive if the mapping v 7→ ΨNN ′(v)(S) is additive. In-

deed, Ψ ∗NN ′(v + w)(S) =
(
ΨNN ′((v + w)∗)

)∗
(S) =

(
ΨNN ′(v

∗ + w∗)
)∗

(S) =
(
ΨNN ′(v

∗) +

ΨNN ′(w
∗)
)∗

(S) =
(
ΨNN ′(v

∗)
)∗

(S)+
(
ΨNN ′(w

∗)
)∗

(S) = Ψ ∗NN ′(v)(S)+Ψ ∗NN ′(w)(S), where

the first equality follows from Definition 8, the second and fourth from the additivity of

v 7→ v∗ (Lemma 1 in the Appendix), and the third from the additivity of Ψ . Therefore,

additivity is self-dual.

We now check that null player out is self-dual. We show that if Ψ satisfies the null

player out axiom, then Ψ ∗N(N\{i})(v)(S) = v(S) for all S ⊆ N \ {i} if i ∈ N is a null

player in v. Indeed, we have Ψ ∗N(N\{i})(v)(S) =
(
ΨN(N\{i})(v

∗)
)∗

(S) = (v∗ |2N\{i})∗(S) =

v∗ |2N\{i} (N \ {i}) − v∗ |2N\{i} ((N \ {i}) \ S) = v∗(N \ {i}) − v∗(N \ (S ∪ {i})) =

v∗(N)−v∗(N \S) = v(S), where the first equality follows from Definition 8, the second

one holds because i is a null player in v∗ according to Lemma 1, the third from the

definition of the dual of a game, and the penultimate equality follows again from the

fact that i is a null player in v∗. Therefore, null player out is self-dual.

We verify that the permanent null player property is self-dual by proving that if Ψ

satisfies the permanent null player property and i ∈ N ′ is a null player in v, then i is a

null player in Ψ ∗NN ′(v) as well. Let i ∈ N ′ be a null player in v. Then, from Lemma 1,

i ∈ N ′ is a null player in v∗ and, by the permanent null player property of Ψ , he is also

a null player in ΨNN ′(v
∗). Using Lemma 1 again, i is a null player in

(
ΨNN ′(v

∗)
)∗

, that

is, in Ψ ∗NN ′(v). Therefore, the permanent null player property is self-dual.

Finally, we prove that path independence is self-dual by proving Ψ ∗N2N3
(Ψ ∗N1N2

(v)) =

Ψ ∗N1N3
(v) if Ψ is path-independent: Ψ ∗N2N3

(Ψ ∗N1N2
(v)) =

(
ΨN2N3(

((
ΨN1N2(v∗)

)∗)∗
)
)∗

=(
ΨN2N3(ΨN1N2(v∗))

)∗
=
(
ΨN1N3(v∗)

)∗
= Ψ ∗N1N3

(v), where the first and last equalities

follow from Definition 8, the second from v∗∗ = v, and the third from the assumption

of the path-independence of Ψ . Therefore, path independence is self-dual.
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Proof of Remark 1. Given N ∈ Pfin(U) and v ∈ GN , take any i ∈ U \ N . Define

w ∈ GN∪{i} by w(S) ≡ v(S \ {i}) for all S ⊆ N ∪ {i}. Notice that player i is a null

player in w and that the subgame of w restricted to N is v. Then for any v-f reduction

Ψ satisfying null player out and path independence, ΨNN(v) = ΨNN(Ψ(N∪{i})N(w)) =

Ψ(N∪{i})N(w) = v, where the first and the third equality follow from null player out and

the second from path independence. Therefore, ΨNN must be an identity function if Ψ

satisfies null player out and path independence.

Since every v-f reduction we will present satisfies null player out and path indepen-

dence, we will not repeat the property established in Remark 1 in the proof of their

corresponding theorems below.

Proof of Theorem 1. It is immediate that the subgame v-f reduction satisfies all the

stated properties.

We now prove that if the v-f reduction Ψ satisfies the five properties, then Ψ = ΨSub.

Notice first that, under path independence, it suffices to show the equality restricted to

one-player operators
(
ΨN(N\{i})

)
, for any N ∈ Pfin(U) and i ∈ N .

Second, by additivity, it suffices to establish the equality for each operator ΨN(N\{i})

restricted to the set of all scalar multiples of elements in a basis of GN . We choose the

set of all scalar multiples of all unanimity games
(
αuT

)
T∈2N\{∅},α∈R.

We show that ΨN(N\{i})(αuT ) = ΨSubN(N\{i})(αuT ) for all T ∈ 2N \ {∅}, for all α ∈ R
and for all i ∈ N by induction on n. We notice that since αuN = w(n,α), additivity

and anti-efficiency imply that ΨN(N\{i})(αuN) = 0 = αuN |2(N\{i})= ΨSubN(N\{i})(αuN),

where 0 ∈ GN\{i} is defined as 0(S) = 0 for all S ⊆ N \ {i}. Thus, we only need

to check the equality of the remaining scalar multiples of elements in the basis, i.e.,(
αuT

)
T∈2N\{∅,N},α∈R.

ConsiderN = {i, j}, that is, |N | = 2. (a) When T = {j}, then Ψ{i,j}{j}(αu{j})({j}) =

αu{j} |2{j} ({j}) by null player out, since i is a null player in αu{j}. (b) When

T = {i}, then Ψ{i,j}{j}(αu{i})({j}) = 0 = αu{i} |2{j} ({j}) by permanent null player,

since j is a null player in αu{i}. Therefore, ΨN(N\{i})(αuT )(S) = αuT |2N\{i} (S) =

ΨSubN(N\{i})(αuT )(S) for any S ⊆ N \ {i}, for any T with |T | = 1, for any α ∈ R, and for

any N with |N | = 2.

Now we proceed to consider any N , and suppose that the induction property holds

for any set with fewer than n players. (a) When i /∈ T then i is a null player
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in αuT , hence ΨN(N\{i})(αuT ) = αuT |2N\{i} by null player out. (b) We show that

ΨN(N\{i})(αuT )(S) = αuT |2N\{i} (S) for all S ⊆ N \ {i} when i ∈ T and T ( N . Take

any player j ∈ N \T . Then, j is a null player in αuT . Moreover, by the permanent null

player property, j is also a null player in ΨN(N\{i})(αuT ). We consider two possibilities.

(b1) First, if S ⊆ N \ {i, j}, then

ΨN(N\{i})(αuT )(S) = ΨN(N\{i})(αuT ) |2N\{i,j} (S) = Ψ(N\{i})(N\{i,j})
(
ΨN(N\{i})(αuT )

)
(S)

= Ψ(N\{j})(N\{i,j})
(
ΨN(N\{j})(αuT )

)
(S) = Ψ(N\{j})(N\{i,j})(αuT |2N\{j})(S),

(13)

where the first equality holds because S ⊆ N \{i, j}; the second by null player out, given

that j is a null player in ΨN(N\{i})(αuT ); the third by path independence; and the fourth

by null player out, given that j is a null player in αuT . We apply the induction argument

to state that the last expression (which involves a reduction from a set of n−1 players)

is equal to ΨSub(N\{j})(N\{i,j})(αuT |2N\{j})(S) = αuT |2N\{i,j} (S) = αuT (S), where the last

equality holds because S ⊆ N \ {i, j}. (b2) Second, if j ∈ S, then ΨN(N\{i})(αuT )(S) =

ΨN(N\{i})(αuT )(S \ {j}) because j is a null player in ΨN(N\{i})(αuT ). Now we apply

equation (13) to S \ {j} and, by the same argument as in (b1), ΨN(N\{i})(αuT )(S) =

αuT (S \ {j}), which is equal to αuT (S) since j is a null player in αuT .

Thus, if a v-f reduction satisfies the five properties, then it is equal to ΨSub.

Proof of Theorem 2. We verify the stated properties of ΨHM . First, ΨHM is the compo-

sition of three functions: the restriction operator, the Shapley value, and the summation

operator. It is easy to check that the three functions are additive. Therefore, ΨHM is

additive.

Second, to verify that ΨHM satisfies null player out, let i ∈ N be a null player in

v ∈ GN . Then, ΨHMN(N\{i})(v)(S) =
∑

j∈S Shj(v |2S∪(N\(N\{i}))) =
∑

j∈S Shj(v |2S∪{i}) =

v(S∪{i})−Shi(v|2S∪{i}) = v(S∪{i}) = v(S), where the third equality follows from the

efficiency of the Shapley value, the fourth from the null player property of the Shapley

value, and the fifth holds because i is a null player in v.

Third, we check that ΨHM satisfies permanent null player. Let i ∈ N ′ be a null

player in v ∈ GN . Then, for all S ⊆ N ′ \ {i}, Di(ΨHMNN ′(v))(S) = ΨHMNN ′(v)(S ∪ {i}) −
ΨHMNN ′(v)(S) = [

∑
j∈S∪{i} Shi(v|2(S∪{i})∪(N\N′))]−[

∑
j∈S Shi(v|2S∪(N\N′))] = [

∑
j∈S Shi(v |2(S∪{i})∪(N\N′)

)] − [
∑

j∈S Shi(v |2S∪(N\N′))] = [
∑

j∈S Shi(v |2S∪(N\N′))] − [
∑

j∈S Shi(v |2S∪(N\N′))] = 0,
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where the third equality follows from the null player property of the Shapley value, and

the fourth from null player out of the Shapley value (see Derks and Haller, 1999).

Fourth, we prove the path independence axiom. For any T ⊆ S, we can write

ΨHM(S∪(N\N ′))S(v |2S∪(N\N′))(T ) =
∑

i∈T Shi(v |2T∪(N\N′)) = ΨHMNN ′(v)(T ) = ΨHMNN ′(v) |2S (T ),

where the first equality holds because v |2S∪(N\N′)|2T∪(S∪(N\N′))\S)= v |2T∪((S∪(N\N′))\S)=

v |2T∪(N\N′) . Therefore:

ΨHMNN ′(v) |2S= ΨHM(S∪(N\N ′))S(v |2S∪(N\N′)) (14)

ΨHMNN ′(v)(S) = ΨHM(S∪(N\N ′))S(v |2S∪(N\N′))(S). (15)

We now claim that, given (14) and (15), the verification of path independence,

that is, ΨHMN2N3

(
ΨHMN1N2

(v)
)
(S) = ΨHMN1N3

(v)(S) for all N1, N2, N3, S ∈ Pfin(U) such that

S ⊆ N3 ⊆ N2 ⊆ N1, is equivalent to verifying the condition only for S = N3, i.e.,

ΨHMN2N3

(
ΨHMN1N2

(v)
)
(N3) = ΨHMN1N3

(v)(N3). (16)

To prove the equivalence, we use (15), where we substitute N,N ′ and v by N2, N3

and ΨHMN1N2
(v), to obtain

ΨHMN2N3

(
ΨHMN1N2

(v)
)
(S) = ΨHM(S∪(N2\N3))S

(
ΨHMN1N2

(v) |2S∪(N2\N3)

)
(S). (17)

Similarly, we substitute N,N ′ and S by N1, N2 and S ∪ (N2 \N3) in (14), to obtain

ΨHMN1N2
(v) |2S∪(N2\N3)= ΨHM(S∪(N2\N3)∪(N1\N2))(S∪(N2\N3))(v |2S∪(N2\N3)∪(N1\N2)), i.e.,

ΨHMN1N2
(v) |2S∪(N2\N3)= ΨHM(S∪(N1\N3))(S∪(N2\N3))(v |2S∪(N1\N3)). (18)

Using (18) in equation (17), we have

ΨHMN2N3

(
ΨHMN1N2

(v)
)
(S) = ΨHM(S∪(N2\N3))S

(
ΨHM(S∪(N1\N3))(S∪(N2\N3))(v |2S∪(N1\N3))

)
(S).

Then, the worth of coalition S ⊆ N3 in the game resulting from two sequential reduc-

tions of v (from N1 to N2, then from N2 to N3) is equal to the worth of the grand

coalition S in the game resulting from two reductions of v |S∪(N1\N3) (from S∪ (N1 \N3)

to S ∪ (N2 \N3), then from S ∪ (N2 \N3) to S). This property means that it suffices

to verify that the worth of the grand coalition satisfies path independence, that is, that

equation (16) holds for all possible games. To prove (16), we use the definition of ΨHM :

ΨHMN2N3

(
ΨHMN1N2

(v)
)
(N3) =

∑
i∈N3

Shi(Ψ
HM
N1N2

(v)) =
∑
i∈N3

Shi(v) = ΨHMN1N3
(v)(N3).
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Therefore, ΨHM is path-independent.

Finally, we verify the 1-invariance property of ΨHM . The axiom of additivity im-

plies that ΨHMNN ′(uN + w(1,α)) = ΨHMNN ′(uN) if and only if ΨHMNN ′(w(1,α)) = 0. We show

that ΨHMNN ′(w(1,α))(S) = 0 for all S ⊆ N ′. By definition of ΨHM , ΨHMNN ′(w(1,α))(S) =∑
i∈S Shi(w(1,α)|2S∪(N\N′)). Notice that w(1,α)|2S∪(N\N′)∈ GS∪(N\N ′) is a game where each

player is symmetric with each other. Then, the Shapley value prescribes an equal share

of the worth of the grand coalition S ∪ (N \ N ′). Thus,
∑

i∈S Shi(w(1,α) |2S∪(N\N′)) =∑
i∈S

1
|S∪(N\N ′)|w(1,α)(S ∪ (N \ N ′)) = 0. Therefore, the HM v-f reduction satisfies the

1-addition invariance property.

To show the reverse implication of the theorem, we first prove the following lemma:

Lemma 2. For all N ∈ Pfin(U) such that |N | > 2, the set {uT | T ( N, T 6=
∅} ∪ {w(1,1)} forms a basis of GN .

Proof of Lemma 2. Take any N ∈ Pfin(U). To prove Lemma 2, we start by showing

the following equality between games in GN :

(−1)nnuN = −w(1,1) +
∑

S∈2N\{∅,N}

(−1)s−1suS. (19)

We show that the two functions in equation (19) are equal when evaluated at any

T ⊆ N , by considering three different cases: (a) If T ( N and |T | = 1, then−w(1,1)(T )+∑
S∈2N\{∅,N}(−1)s−1suS(T ) = −1+uT (T ) = 0 = uN(T ) = (−1)nnuN(T ). For the other

two cases, we use the following formula:∑
S∈2T \{∅}

s(−1)s−1 = 0, (20)

for any T such that |T | > 1.17 Then, (b) for T ( N such that |T | > 1, we can

write: −w(1,1)(T ) +
∑

S∈2N\{∅,N}(−1)s−1suS(T ) =
∑

S∈2T \{∅} s(−1)s−1 = 0 = uN(T ) =

(−1)nnuN(T ). Finally, (c) for T = N , −w(1,1)(T ) +
∑

S∈2N\{∅,N}(−1)s−1suS(T ) =∑
S∈2N\{∅,N}(−1)s−1s = (−1)nn+

∑
S∈2N\{∅}(−1)s−1s = (−1)nn = (−1)nnuN(T ).

Given that equation (19) holds and the set {uT | T ⊆ N, T 6= ∅} forms a basis of

GN , then the set resulting from replacing uN with w(1,1) in this basis spans GN , which

proves Lemma 2.

17We check that (20) holds:
∑
S∈2T \{∅} s(−1)s−1 =

[∑
S∈2T \{∅} sx

s−1]
x=−1 =[∑

S∈2T \{∅}
dxs

dx

]
x=−1 =

[d(∑S∈2T \{∅} x
s)

dx

]
x=−1 =

[d(∑t
s=1 (t

s)x
s)

dx

]
x=−1 =

[d((1+x)t−1)
dx

]
x=−1 =[

t(1 + x)t−1
]
x=−1 = 0.
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We now continue with the reverse implication of Theorem 2. We prove that Ψ =

ΨHM if the v-f reduction Ψ satisfies the five properties, using the same procedure as in

the proof of Theorem 1. Thus, using path independence and additivity, it suffices to

show that ΨN(N\{i})(v) = ΨHMN(N\{i})(v) for all i ∈ N , and for all v ∈ {αuT | T ( N, T 6=
∅, α ∈ R} ∪ {w(1,α) | α ∈ R} (see Lemma 2).

First, if v = w(1,α), then additivity and 1-addition invariance imply ΨN(N\{i})(w(1,α)) =

0 = ΨHMN(N\{i})(w(1,α)) for all N ∈ Pfin(U) for all α ∈ R and for all i ∈ N .

Second, we show that ΨN(N\{i})(αuT ) = ΨHMN(N\{i})(αuT ) for all T ∈ 2N \ {∅, N} for

all α ∈ R and for all i ∈ N by induction on n.

For N with |N | = 2, the proof is identical to that of Theorem 1 since ΨHM and ΨSub

coincide for the proper subsets T of N and we did not use anti-efficiency in that part

of the proof.

Consider now any N and suppose that the induction property holds for any set

with fewer than n players. (a) When i /∈ T then i is a null player in αuT , hence

ΨN(N\{i})(αuT ) = αuT |2N\{i}= ΨHMN(N\{i})(αuT ) because both Ψ and ΨHM satisfy null

player out. (b) When i ∈ T and T ( N , take any j ∈ N \ T . Player j is a null player

in αuT and, under the permanent null player property, also in ΨN(N\{i})(αuT ). There-

fore, (b1) if S ⊆ N \ {i, j}, then equation (13) holds by the same arguments as in the

proof of Theorem 1. Using also the induction argument, we have ΨN(N\{i})(αuT )(S) =

Ψ(N\{j})(N\{i,j})(αuT |2N\{j})(S) = ΨHM(N\{j})(N\{i,j})(αuT |2N\{j})(S). Since j is a null

player in αuT and ΨHM satisfies null player out and path independence, we have

ΨHM(N\{j})(N\{i,j})(αuT |2N\{j})(S) = ΨHM(N\{j})(N\{i,j})
(
ΨHMN(N\{j})(αuT )

)
(S) = ΨHMN(N\{i})(αuT )(S).

(b2) If j ∈ S, then ΨN(N\{i})(αuT )(S) = ΨN(N\{i})(αuT )(S \ {j}) because j is a null

player in ΨN(N\{i})(αuT ). Now we can apply equation (13) to S \ {j} and, by the same

argument as in (b1), ΨN(N\{i})(αuT )(S) = ΨHMN(N\{i})(αuT )(S\{j}) = ΨHMN(N\{i})(αuT )(S),

where the last equality holds because j is a null player in uT .

Therefore, if a v-f reduction satisfies the five properties, then it is equal to ΨHM .

Finally, we notice that ΨHMN{i}(v)({i}) = Shi(v |2{i}∪(N\{i})) = Shi(v) for all v ∈ GN

and for all i ∈ N . Therefore, ΨHM induces the Shapley value.

Proof of Proposition 4. Let Ψ be a v-f reduction that satisfies 1-addition invariance

axiom. Our aim is to verify that Ψ ∗ satisfies (n− 1)-addition invariance axiom.

We first show that the dual of the game w(n−1,α) is w(1,−α). Indeed, w∗(n−1,α)(S) =

w(n−1,α)(N)− w(n−1,α)(N \ S) = −w(n−1,α)(N \ S) = w(1,−α)(S).
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Then, for any α ∈ R, we have Ψ ∗NN ′(v + w(n−1,α)) =
(
ΨNN ′((v + w(n−1,α))

∗)
)∗

=(
ΨNN ′(v

∗ + w∗(n−1,α))
)∗

=
(
ΨNN ′(v

∗ + w(1,−α))
)∗

=
(
ΨNN ′(v

∗)
)∗

= Ψ ∗NN ′(v), where the

first and last equalities follow from Definition 8, the second from the additivity of

v 7→ v∗ (see Lemma 1), the third equality follows from the fact that the dual of w(n−1,α)

is w(1,−α), and the fourth from 1-addition invariance of Ψ . Therefore, (n− 1)-addition

invariance is dual to 1-addition invariance.

Proof of Theorem 3. The ONHF v-f reduction is dual to the HM v-f reduction. Then,

by Proposition 3, ΨONHF satisfies additivity, null player out, permanent null player,

and path independence, because they are self-dual properties and ΨHM satisfies them.

Similarly, ΨONHF satisfies (n−1)-invariance, which is dual to 1-addition invariance (see

Proposition 4), because ΨHM satisfies 1-addition invariance.

For the other direction, consider a v-f reduction Ψ satisfying all the stated axioms.

Then, the dual Ψ ∗ of Ψ satisfies all the axioms stated in Theorem 2, which implies

Ψ ∗ = ΨHM . Hence, the dual v-f reductions of Ψ ∗ and ΨHM , i.e., Ψ and ΨONHF , must

coincide, as we wanted to prove.

Finally, Corollary 1 implies that ΨONHF induces the Shapley value since it is a

self-dual value.

Proof of Theorem 4. First, we verify that ΨPW satisfies all the stated properties. It is

linear and hence additive, because it is the composition of linear functions.

To show path independence, linearity ensures that it suffices to verify that unanimity

games satisfy the property. Consider any T ∈ 2N \ {∅}, then ΨPWNN ′(uT )(S) = uT (S)−∑
i∈S Shi(uT |2N′ )+

∑
i∈S Shi(uT ) = uT |2N′ (S)−

∑
i∈S Shi(uT |2N′ )+ |T∩S|

t
. Notice that

uT |2N′= 0 if T * N ′ and
∑

i∈S Shi(uT |2N′ ) = |T∩S|
t

if T ⊆ N ′. Thus we have, for all

S ⊆ N ′,

ΨPWNN ′(uT )(S) =

uT |2N′ (S) if T ⊆ N ′;

|T∩S|
t

if T * N ′.

The previous expression implies that ΨPWNN ′(uT ) is equal to ΨSubNN ′(uT ) if T ⊆ N ′.

Otherwise, each player in N ′ \ T is a null player and the rest of the players have a

constant marginal contribution 1
t

to any coalition in ΨPWNN ′(uT ) and its subgames.

Now we verify that ΨPW is path-independent. Take N3 ⊆ N2 ⊆ N1. First, if

T ⊆ N3, then ΨPWN2N3
(ΨPWN1N2

(uT )) = ΨPWN1N3
(uT ) = uT |2N3 by path independence of ΨSub.

Second, if T * N3, then ΨPWN1N3
(uT ) = |T∩S|

t
. There are two possibilities: (a) if T ⊆ N2,
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it is immediate that ΨPWN2N3
(ΨPWN1N2

(uT )) = |T∩S|
t

; (b) if T * N2, then for S ⊆ N3,

it happens that ΨPWN2N3
(ΨPWN1N2

(uT ))(S) = ΨPWN1N2
(uT )(S) −

∑
i∈S Shi(Ψ

PW
N1N2

(uT ) |2N3 ) +∑
i∈S Shi(Ψ

PW
N1N2

(uT )) = |T∩S|
t
− |T∩S|

t
+ |T∩S|

t
= |T∩S|

t
, where the first equality follows

from equation (7), and the terms in the second equality follow from (i) the expression

of the game ΨPWN1N2
(uT )(S) = |T∩S|

t
and its subgames, (ii) each player i ∈ T ∩ N2 has

a constant marginal contribution 1
t
, and (iii) the rest of the players are null players.

Therefore, the PW v-f reduction is path-independent.

We verify the null player out property, i.e., ΨPWN(N\{i})(v) = v|2N\{i} for all v ∈ GN such

that i ∈ N is a null player in v. We notice that for all S ⊆ N \ {i}, ΨPWN(N\{i})(v)(S) =

v(S) −
∑

j∈S Shj(v |2N\{i}) +
∑

j∈S Shj(v) = v(S), where the first equality follows (7)

and the second holds because Shj(v |2N\{i}) = Shj(v) if i is a null player in v. Therefore

ΨPW satisfies null player out.

As for permanent null player, let i ∈ N ′ be a null player in v. Then, for all

S ⊆ N ′ \ {i}, ΨPWNN ′(v)(S ∪ {i}) − ΨPWNN ′(v)(S) = v(S ∪ {i}) −
∑

j∈S∪{i} Shj(v |2N′ ) +∑
j∈S∪{i} Shj(v) −

(
v(S) −

∑
j∈S Shj(v |2N′ ) +

∑
j∈S Shj(v)

)
= (v(S ∪ {i}) − v(S)) −

Shi(v |2N′ ) + Shi(v) = 0, where the third equality holds because i is a null player in

v and its subgames and from the null player property of the Shapley value. Therefore

ΨPW satisfies permanent null player.

We check the proportional addition invariance property. By additivity, it suffices

to show that ΨPWNN ′(
∑n−1

k=1 w(k,kα))(S) = 0. Indeed, ΨPWNN ′(
∑n−1

k=1 w(k,kα))(S) = sα −∑
i∈S Shi(

∑n′

k=1 w(k,kα) |2N′ )+
∑

i∈S Shi(
∑n−1

k=1 w(k,kα)) = sα−
∑

i∈S
∑n′

k=1 Shi(w(k,kα) |2N′
) +
∑

i∈S
∑n−1

k=1 Shi(w(k,kα)) = sα−
∑

i∈S Shi(w(n′,n′α) |2N′ ) = sα−
∑

i∈S
n′α
n′

= 0, where

the first equality follows from (7), the second from additivity, and the third and fourth

equalities hold because the Shapley value of each player in a symmetric game is equal

to an equal share of the worth of the grand coalition.

To prove the reverse implication we need a previous lemma:

Lemma 3. For all N ∈ Pfin(U) such that |N | > 2, the set {uT | T ( N, T 6=
∅} ∪ {

∑n−1
k=1 w(k,k)} forms a basis of GN .

Proof of Lemma 3. Take any N ∈ Pfin(U). To prove Lemma 3, we first note that:

nuN =
(∑
i∈N

u{i}
)
−
( n−1∑
k=1

w(k,k)

)
, (21)

which is easily seen by recognizing that
∑

i∈N u{i}(S) = s for all S ∈ 2N \ {∅}.
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Given that equation (21) holds and {uT | T ⊆ N, T 6= ∅} forms a basis of GN ,

then the set resulting from replacing uN with
∑n−1

k=1 w(k,k) on this basis spans GN , which

proves Lemma 3.

The proof that Ψ = ΨPW if the v-f reduction Ψ satisfies the five properties is

very similar to the proof of Theorem 2. The only difference is in the proof that

ΨN(N\{i})(v) = ΨPWN(N\{i})(v) for all i ∈ N , when v =
∑n−1

k=1 w(k,kα). In this case, ad-

ditivity and proportional addition invariance imply that ΨN(N\{i})(
∑n−1

k=1 w(k,kα)) = 0 =

ΨPWN(N\{i})(
∑n−1

k=1 w(k,kα)) for all N ∈ Pfin(U), for all α ∈ R and for all i ∈ N .

Therefore, if a v-f reduction satisfies the five properties, then it is equal to ΨPW .

Finally, regarding the value induced by ΨPW , we notice that, for all v ∈ GN , for

i ∈ N , then ΨPWN{i}(v)({i}) = v({i}) − Shi(v|2{i}) + Shi(v) = Shi(v). Therefore, ΨPW

induces the Shapley value.

Proof of Proposition 5. We prove that if Ψ satisfies proportional addition invariance

then Ψ ∗ satisfies reverse-proportional addition invariance.

We first show that the dual of the game w(n−k,kα) is w(k,−kα), for k = 1, 2, . . . , n −
1. Indeed, w∗(n−k,kα)(S) = w(n−k,kα)(N) − w(n−k,kα)(N \ S) = −w(n−k,kα)(N \ S) =

w(k,−kα)(S).

Then, for any α ∈ R, Ψ ∗NN ′(v+
∑n−1

k=1 w(k,(n−k)α)) =
(
ΨNN ′((v+

∑n−1
k=1 w(k,(n−k)α))

∗)
)∗

=(
ΨNN ′(v

∗+
∑n−1

k=1 w
∗
(k,(n−k)α))

)∗
=
(
ΨNN ′(v

∗+
∑n−1

k=1 w(k,−kα))
)∗

=
(
ΨNN ′(v

∗)
)∗

= Ψ ∗NN ′(v),

where the first and last equalities follow from Definition 8, the second from the additiv-

ity of v 7→ v∗ in Lemma 1, the third follows from the property that the dual of w(n−k,kα)

is w(k,−kα), and the fourth from the proportional addition invariance of Ψ . Therefore,

reverse-proportional addition invariance is dual to proportional addition invariance.

Proof of the expression in Example 5. We prove that the expression for ΨPW
∗

corre-

sponds to that provided in Example 5:

ΨPW
∗

NN ′ (v)(S) =
(
ΨPWNN ′(v

∗)
)∗

(S) = ΨPWNN ′(v
∗)(N ′)− ΨPWNN ′(v∗)(N ′ \ S)

=[v∗(N ′)−
∑
i∈N ′

Shi(v
∗ |2N′ ) +

∑
i∈N ′

Shi(v
∗)]

− [v∗(N ′ \ S)−
∑

i∈N ′\S

Shi(v
∗ |2N′ ) +

∑
i∈N ′\S

Shi(v
∗)]

=v∗(N ′)− v∗(N ′ \ S)−
∑
i∈S

Shi(v
∗ |2N′ ) +

∑
i∈S

Shi(v
∗)
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=[v(N)− v(N \N ′)]− [v(N)− v(N \ (N ′ \ S))]−
∑
i∈S

Shi(v
∗ |2N′ ) +

∑
i∈S

Shi(v)

=v(S ∪ (N \N ′))− v(N \N ′)−
∑
i∈S

Shi
(
(v∗ |2N′ )∗

)
+
∑
i∈S

Shi(v),

where the first equality follows from Definition 8, the second from the defining equation

(3) of dual game, the third from (7), the fifth from (3) and the self-duality of the Shapley

value, which also leads to the sixth equality.

Finally, we show that (v∗ |2N′ )∗ = vN\N
′
. Consider T ⊆ N ′. By repeated application

of the definition of dual game, for each T ⊆ N ′, (v∗ |2N′ )∗(T ) = v∗ |2N′ (N ′) − v∗ |2N′
(N ′ \ T ) = v∗(N ′) − v∗(N ′ \ T ) = [v(N) − v(N \ N ′)] − [v(N) − v(N \ (N ′ \ T ))] =

v(T ∪ (N \N ′))− v(N \N ′) = vN\N
′
(T ).

Proof of Theorem 5. The proof of this theorem is identical to that of Theorem 3.

Proof of Theorem 6. First, we verify that ΨBan satisfies the properties. It satisfies

linearity and hence additivity because it is the composition of linear functions.

To verify the null player out property, let i ∈ N be a null player in v. Then, for all

S ⊆ N \ {i}, ΨBanN(N\{i})(v)(S) =
∑

T⊆{i}
1
2
[v(S ∪ T ) − v(T )] = 1

2
v(S) + 1

2
[v(S ∪ {i}) −

v({i})] = v(S), where the first equality follows from the defining equation (10) and the

second holds because i is a null player. Therefore ΨBan satisfies null player out.

To verify that ΨBan satisfies permanent null player, suppose that i ∈ N ′ is a null

player in v ∈ GN . Then, for all S ⊆ N ′ \ {i}, ΨBanNN ′(v)(S ∪{i}) =
∑

T⊆N\N ′
1

2n−n′
[v((S ∪

{i})∪ T )− v(T )] =
∑

T⊆N\N ′
1

2n−n′
[v(S ∪ T )− v(T )] = ΨBanNN ′(v)(S), where the first and

last equalities follows from (10) and the second from the property that i is a null player

in v. Therefore ΨBan satisfies permanent null player.

To verify maximum ignorance, we substitute N ′ = N \ {i} and W = N in equa-

tion (10), then ΨBanN(N\{i})(αuN)(S) =
∑

T⊆{i}
1
2
[αuN(S ∪ T ) − αuN(T )] = 1

2
[αuN(S) −

αuN(∅)] + 1
2
[αuN(S ∪ {i})− αuN({i})] = α

2
uN(S ∪ {i}). Therefore ΨBan satisfies max-

imum ignorance.

To verify path independence, we use the following claim:

Claim 1. For all N,N ′,W, S ∈ Pfin(U), such that N ′,W ∈ 2N \ {∅} and S ⊆ N ′,

ΨBanNN ′(uW )(S) =

2−|W\N
′|uW (S ∪ (W \N ′)) if S ∩W 6= ∅

0 otherwise
(22)
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To verify the claim, we have,

ΨBanNN ′(v)(uW )(S) =
∑

T⊆N\N ′

1

2n−n′
[uW (S ∪ T )− uW (T )]

=
∑

T⊆N\N ′:T⊇W\N ′

1

2n−n′
[uW (S ∪ T )− uW (T )]

=
∑

T ′⊆(N\N ′)\W

1

2n−n′
[uW (S ∪ (W \N ′) ∪ T ′)− uW (W \N ′)]

=
∑

T ′⊆(N\N ′)\(W\N ′)

1

2n−n′
[uW (S ∪ (W \N ′))− uW (W \N ′)]

=
∑

T ′⊆(N\N ′)\(W\N ′)

2n−n
′−|W\N ′|

2n−n′
[uW (S ∪ (W \N ′))− uW (W \N ′)]

=2−|W\N
′|[uW (S ∪ (W \N ′))− uW (W \N ′)]

=

2−|W\N
′|[uW (W \N ′)− uW (W \N ′)] = 0 if S ∩W = ∅

2−|W\N
′|uW (S ∪ (W \N ′)) if S ∩W 6= ∅

where the first equality follows from (10), the fourth from uW (S ∪ (W \ N ′) ∪ T ′) =

uW (S ∪ (W \ N ′)) if T ′ ∩ W = ∅ and the first case of the seventh from the same

reasoning, the second case of the seventh from uW (W \ N ′) = 0 if S ∩W 6= ∅, which

implies N ′ ∩W 6= ∅.

Then, to check path independence, first notice that equation (22) is equivalent to

ΨBanNN ′(uW ) =

2−|W\N
′|uW∩N ′|2N′ if W ∩N ′ 6= ∅

0 otherwise.
(23)

Let N1, N2, N3, T ∈ Pfin(N) such that N3 ⊆ N2 ⊆ N1 and T ⊆ N1. To compute

ΨBanN2N3
(ΨBanN1N2

(uT )), there are three different possibilities to consider: (i) If T ⊆ N3,

then ΨBanN2N3
(ΨBanN1N2

(uT )) = ΨBanN2N3
(2−|T\N2|uT∩N2 |2N2 ) = 2−|T\N2|ΨBanN2N3

(uT∩N2 |2N2 ) =

2−|T\N2| · 2−|(T∩N2)\N3|u(T∩N2)∩N3|2N2|2N3 = 2−|T\N3|uT∩N3|2N3 = ΨBanN1N3
(uT ), where the first,

the third and the last equalities follow from equation (23) and the second from linear-

ity. (ii) If T * N3 and T ⊆ N2, then T ∩ N2 * N3. We have ΨBanN2N3
(ΨBanN1N2

(uT )) =

ΨBanN2N3
(2−|T\N2|uT∩N2 |2N2 ) = 2−|T\N2|ΨBanN2N3

(uT∩N2 |2N2 ) = 2−|T\N2| · 0 = 0 = ΨBanN1N3
(uT ).

(iii) If T * N2, then ΨBanN2N3
(ΨBanN1N2

(uT )) = ΨBanN2N3
(0) = 0 = ΨBanN1N3

(uT ). Therefore, ΨBan

satisfies the path independence.
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We now prove the reverse implication of the theorem by showing that if the v-f

reduction Ψ satisfies the five properties, then Ψ = ΨBan. By path independence and

additivity, it suffices to show the equality restricted to one-player operators
(
ΨN(N\{i})

)
,

for any N ∈ Pfin(U) and i ∈ N , restricted to a set of of all scalar multiples of elements

in a basis of GN . We choose the set
(
αuT

)
T∈2N\{∅},α∈R.

We show that ΨN(N\{i})(αuT ) = ΨBanN(N\{i})(αuT ) for all T ∈ 2N \ {∅}, for all α ∈ R
and for all i ∈ N by induction on the number of players n. We notice that maximum

ignorance implies that ΨN(N\{i})(αuN) = α
2
uN\{i}. Thus, we only need to check the

remaining elements in the set, that is, the games
(
αuT

)
T∈2N\{∅,N},α∈R. The proof of

this part is identical to the corresponding part of the proof of Theorem 1.

Therefore, a v-f reduction that satisfies the five properties coincides with ΨBan.

Finally, we show that ΨBan induces the Banzhaf value: ϕΨ
Ban

i (v) = ΨN{i}(v)({i}) =∑
T⊆N\{i}

1
2n−1 [v(T ∪ {i}) − v(T )] = Bani(v), where the second and the third equality

follows from the defining equation (10). Therefore, Ψ induces Ban.

Proof of Proposition 8. It is easy to see that ΨX is additive as a result of the linearity

of the Shapley value. Moreover, ΨX = ΨPW if X = ∅ and ΨX = ΨHM if X = U .

Equivalently, ΨXNN ′ = ΨPWNN ′ if (N\N ′)∩X = ∅ and ΨXNN ′ = ΨHMNN ′ if (N\N ′)∩X = N\N ′.
Therefore, the reduction of a game from N to N \{j} is different depending on whether

the player j belongs to X or not. Hence, ΨX does not satisfy anonymity if X 6= ∅ and

X 6= U . Finally, ΨX satisfies null player out and permanent null player if ΨX satisfies

path independence, which we show next.

For ease of notation, for each T ⊆ N , let us define eT ∈ GN as eT (S) ≡ |T∩S|
t

for all

S ⊆ N . It is easy to see that

ΨXNN ′(eT )(S) = eT |2N′ . (24)

By linearity of ΨX , it suffices to verify the path independence of ΨX operating on a

basis
(
uT
)
T∈2N\{∅}. We need to consider three different cases of T : (i) If T ⊆ S ∪ ((N \

N ′)∩X), then ΨXNN ′(uT )(S) =
∑

i∈S Shi(uT |2S∪((N\N′)∩X))−
∑

i∈S Shi(uT |2N′∪((N\N′)∩X))+∑
i∈S Shi(uT ) =

∑
i∈S Shi(uT |2S∪((N\N′)∩X))−

∑
i∈S Shi(uT |2S∪((N\N′)∩X))+

∑
i∈S Shi(uT ) =

|T∩S|
t

. (ii) If T * S ∪ ((N \N ′)∩X) and T ⊆ N ′∪ ((N \N ′)∩X), then ΨXNN ′(uT )(S) =∑
i∈S Shi(uT |2S∪((N\N′)∩X))−

∑
i∈S Shi(uT |2N′∪((N\N′)∩X)) +

∑
i∈S Shi(uT ) =

−
∑

i∈S Shi(uT |2N′∪((N\N′)∩X)) +
∑

i∈S Shi(uT ) = −
∑

i∈S Shi(uT |2N′∪((N\N′)∩X)) +∑
i∈S Shi(uT |2N′∪((N\N′)∩X)) = 0. Finally, (iii) if T * N ′ ∪ ((N \ N ′) ∩ X), then
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ΨXNN ′(uT )(S) =
∑

i∈S Shi(uT |2S∪((N\N′)∩X))−
∑

i∈S Shi(uT |2N′∪((N\N′)∩X))+
∑

i∈S Shi(uT ) =∑
i∈S Shi(uT ) = |T∩S|

t
.

To sum up, if T ⊆ N ′ ∪ ((N \N ′) ∩X), for S ⊆ N ′,

ΨXNN ′(uT )(S) =

0 if T * S ∪ ((N \N ′) ∩X);

|T∩S|
t

if T ⊆ S ∪ ((N \N ′) ∩X).

The previous expression means that, if T ⊆ N ′ ∪ ((N \N ′) ∩X),

ΨXNN ′(uT ) =
|T ∩N ′|

t
uT∩N ′ |2N′ . (25)

whereas if T * N ′ ∪ ((N \N ′) ∩X),

ΨXNN ′(uT ) = eT |2N′ . (26)

Now we can verify that ΨN2N3(ΨN1N2(uT )) = ΨN1N3(uT ) for all N1, N2, N3, S ∈ Pfin(U)

such that S ⊆ N3 ⊆ N2 ⊆ N1, for all T ⊆ N1. We have three possibilities: (c1) T ⊆
N2∪((N1\N2)∩X) and T ∩N2 ⊆ N3∪((N2\N3)∩X); (c2) T ⊆ N2∪((N1\N2)∩X) and

T∩N2 * N3∪((N2\N3)∩X); (c3) T * N2∪((N1\N2)∩X) and T ⊆ N3∪((N2\N3)∩X).

For (c1), ΨXN2N3
(ΨXN1N2

(uT )) = ΨXN2N3
( |T∩N2|

t
uT∩N2 |2N2 ) = |T∩N2|

t
ΨXN2N3

(uT∩N2 |2N2 ) =
|T∩N2|

t
|T∩N2∩N3|
|T∩N2| uT∩N2∩N3 |2N2|2N3 = |T∩N3|

t
uT∩N3 |2N3 = ΨXN1N3

(uT ), where the first and the

third equality follow from equation (25), the second from linearity of ΨX , and the last

from the fact that (c1) implies that T ⊆ N3 ∪ ((N1 \N3) ∩X).

For (c2), ΨXN2N3
(ΨXN1N2

(uT )) = ΨXN2N3
( |T∩N2|

t
uT∩N2 |2N2 ) = |T∩N2|

t
ΨXN2N3

(uT∩N2 |2N2 ) =
|T∩N2|

t
eT∩N2 |2N3 = eT |2N3 = ΨXN1N3

(uT ), where the first equality follows from equation

(25), the second from linearity of ΨX , the third from equation (26), the fifth from the

fact that (c2) implies that T * N3 ∪ ((N1 \N3) ∩X).

For (c3), ΨXN2N3
(ΨXN1N2

(uT )) = ΨXN2N3
(eT |2N2 ) = eT |2N2|2N3 = eT |2N3 = ΨXN1N3

(uT ),

where the first and second equality follow from equation (26), the fourth from the fact

that (c3) implies that T * N3 ∪ ((N1 \N3) ∩X).

Therefore, ΨX is path-independent.

Example of a v-f reduction that does not satisfy linearity. We construct a v-f reduction

that satisfies additivity, null player out, permanent null player and path independence

but not linearity.

We can invoke path independence to define ΨNN ′ , for any N ′ ⊆ N once we will

determine the functions taking the form ΨN(N\{k}) such that k ∈ N . Moreover, it
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suffices to construct a non-linear function Ψ{i,j}{i} : G{i,j} → G{i} that satisfies null

player out, permanent null player and additivity. For concreteness, we let the rest of

functions, i.e., ΨN(N\{k}) such that k ∈ N and |N | > 2 coincide with the subgame

operator.

Let Q ⊆ R be the set of all rational numbers. To define a non-linear additive

function, we use the concept of R as a vector space over Q. A linear basis of this vector

space is called a Hamel basis. Let H be a Hamel basis. Then for each γ ∈ R, we can

find a unique finite set of elements {x1, . . . , xk} ⊆ H such that γ =
∑k

j=1 cjxj where

c1, . . . , ck ∈ Q \ {0}. Choose an arbitrary element y ∈ H. Then for each γ ∈ R, we

can determine its corresponding coefficient (which is possibly zero) in the expression

of γ, coefficient that we denote c(γ). Thus we have a function c : R → Q defined by

the projection γ 7→ c(γ). This function is additive but not linear and it satisfies that

c(0) = 0.

Before defining Ψ{i,j}{i}, recall that for each v ∈ G{i,j}, v can be expressed by αu{i}+

βu{j} + γu{i,j} for some α, β, γ ∈ R. Now we define Ψ{i,j}{i}(v) as follows:

Ψ{i,j}{i}(v)({i}) ≡ α + c(γ), (27)

where α, γ ∈ R are such that v = αu{i} + βu{j} + γu{i,j} for some β ∈ R.

Notice that if i is a null player in v then v must take the form of βu{j} and that if j

is a null player in v then v must take the form of αu{i}. Therefore, Ψ{i,j}{i} satisfies null

player out and permanent null player. Moreover, it is additive but not linear because

the function c is additive but not linear.
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