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Abstract

Recent research has shown the usefulness of nighttime light (NTL) data as a proxy for

growth and economic activity. This paper explores the potential of using luminosity at night,

recorded by satellite imagery, to construct measures of inequality. We develop a new methodol-

ogy to construct a Gini index for each country using the nighttime light per capita over millions

of small pixels. To assess the usefulness of our procedure, we check the correlation of our mea-

sure with the common factor extracted from the analysis of several Gini indices calculated

using traditional data sources. Finally, we show two specific applications of our methodology:

the calculation of within and between inequality across regions and ethnic groups.
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1 Introduction

The sources of increasing inequality in recent times have become one of the most debated issues in

economics. However, the measurement of inequality is a difficult topic even before moving into its

interpretation. There are basically two types of issues. One question is the choice of a particular

indicator to measure inequality from the basic source of income distribution. Popular measures

include the Gini index, the Theil index or interdecile ratios. The second issue is how to choose

the source of basic data. In addition to measurement errors in the scale factor, there may also be

measurement errors associated with the shape factor, or the distribution derived from the income

and consumption surveys. In particular, consumption estimates are sensitive to the length of the

recall period and miss part of the consumption like the flow of consumption services. Income

estimates are subject to nonrandom missingness, or no response, and under-representation of high-

income earners. There are also many sources for income inequality depending on the data used

and the specific measure that is being constructed. These issues are not only a difficult question

for the measurement of inequality but also for the estimation of many other economic measures.

For instance, different revisions of the Penn World Tables produce standard deviations of average

growth rates that are almost as large as the average growth rates. It is also well known that, in the

measurement of poverty, there are large differences between the results using the average income

calculated using household income and expenditure surveys or using national account estimates.1

Recently, in addition to National Accounts and income/consumption surveys, academic research

has increasingly used satellite imagery to estimate economic activity. This approach has some

advantages over the traditional indicators. The approach can be used at high levels of resolution

(small areas) where it is difficult to find estimations of GDP, or enough individuals in national

surveys to produce a reliable estimation. It is also a good approach to deal with the estimation

of economic activity in war areas or places where there is a high level of social tension that make

other approaches unfeasible. Finally, night light is measured in the same way around the world

and, therefore, it simplifies the comparisons.

To measure income per capita in each cell, we need information on a measure of economic

development and population. At high levels of resolution, it is difficult to find estimations of

GDP and certainly, many areas of the world do not have information on geocoded high-resolution

measures of economic development. It has, however, become increasingly common to use satellite

nighttime light (NTL) density as a proxy for local economic activity when working with small

geographical areas.
1For instance Deaton (2005).
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Satellite night-light density data are available from the National Oceanic and Atmospheric

Administration. Previous research has shown that light density at night is a useful proxy for

different measures. Sutton et al. (1997) found that the spatial analysis of saturated pixels predicted

population with a R2 of 0.63. Henderson et al. (2012b) finding an R2 of 0.77 for the panel regression

of growth in real GDP on the change in luminosity using year dummies. Chen and Nordhaus (2011)

find that luminosity has informational value for countries, regions, and areas with poor quality or

missing data. Using a traditional measurement error model, they argue that night light has a large

estimated optimal weight in the estimation of growth rates in countries with low quality statistical

systems, following the A to D classification of the Penn World Tables (PWT). In particular, Chen

and Nordhaus (2011) show that the weight is, in these cases, larger than in the estimation of the

level of GDP per capita. The importance of night light, as measured by its weight, in the estimation

of growth is always higher in low-GDP density countries than in those of high-GDP density, for

any level of quality of the statistical system.2 More recently, Pinkovskiy and Sala-I-Martin (2016)

have used nighttime lights to show that National Accounts are a good proxy for actual income,

while income measured using survey means have very little, if any, informative content to estimate

true income. They showed that growth rates of GDP per capita are very highly correlated with the

growth of night light per capita while the growth rate of survey means is very weakly correlated

with the growth of night light per capita. Jean et al. (2016) used satellite images and machine-

learning techniques to predict poverty on small scales. In their application, they use daytime

satellite photos to capture details of the landscape (metal roof, water, etc.) that they correlate,

using neural networks, with satellite night lights as a proxy for economic activity. Other recent

research using night light includes Michalopoulos and Papaioannou (2013, 2014), Alesina et al.

(2016), Pinkovskiy and Sala-i Martin (2020) o Montalvo and Reynal-Querol (2020).

In this paper we use satellite imagery to calculate inequality measures instead of economic

activity. As we argued in the previous paragraph, past literature has shown the usefulness of

luminosity data as proxy for economic activity. Our objective is to show that these data can

also be useful to measure economic inequality at high levels of geographical disaggregation and to

decompose between and within groups inequality.

Thus, the idea is to find a procedure that can be generalised to a global scale and produce

methodologically homogeneous measurements, particularly important when estimating inequality

since there are significant differences in the methodology and calculation of the Gini index by

different organisations that affect not only low income-low quality data countries but also middle-
2The cross-validation analysis in Michalopoulos and Papaioannou (2013) shows that light density at night is

highly correlated with a wealth index across households in four large African countries.
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and high-income countries. For instance, there are significant differences between the Gini indices

calculated using LIS (Luxembourg Income Survey), which is an important reference for European

countries, and the indices for those countries in the database of the World Bank. The average

difference during the period 1988-2013 is close to 3 points. In the case of Spain, the National

Statistical Office reported a Gini index of 33.7 in 2013 while the World Bank database reports an

index of 36.2. These differences extend to the trend in the Gini coefficients in countries with a high

index like US, South Africa or Brazil.

Our paper contributes to a growing literature that uses satellite imagery to proxy economic

magnitudes. The first contribution is a new procedure to calculate inequality using luminosity

and population measured using small pixels. The previous literature has relied on the value of

nighttime light or difference in night light across regions or ethnic groups (spatial inequality). We

weight economic activity by gridded population to proxy for income per capita. Second, it is well

known that saturated night light, which is the one mostly used in the literature, is top-coded, and

the use of different satellites can alter the measurement. We propose a procedure that allows us to

estimate the optimal correction for the values of saturated nighttime light in areas where lights are

very intense. In addition, instead of using the average of the nighttime light from all the satellites

available in a particular period of time, we search for the one that generates the best fit. Once

we have the corrected version of night-light we calculate the Gini index using the average light by

pixel as the representative value for the individuals living in that pixel. We validate our inequality

indicators using country data. After ranking all the pixels in each country we use the standard Gini

formula to calculate the index based on nighttime light, which we denominate MIFA. We perform

the validation analysis using country data since the alternative sources of Gini indices use country

data. This approach makes the validation exercise quite challenging since countries are large units,

and our indicator is expected to work better for small areas. Finally, we use our methodology to

evaluate within and between regions and ethnic groups inequality.

The paper has the following structure. Section 2 locates the paper in the context of the literature

on the measurement of inequalities using nighttime light, also introducing our methodological

contribution in terms of the transformation of the data. Section 3 explains the sources of the

data. Section 4 discusses a transformation to deal with the issue of the top coding of the saturated

nighttime light measurements, and the choice of the parameters for such a transformation. Section

5 compares the results obtained using nighttime light with the inequality measures obtained using

alternative sources of data. The purpose of this exercise is to obtain a common factor to all the

available inequality indicators and to check the correlation between this common Gini factor and

our measure. Section 6 calculates, using our methodology, inequality within and between regions
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and ethnic groups across countries. Finally, Section 7 summarizes the conclusions.

2 Measuring Inequality From Above

The initial research on the use of nighttime lights as proxy for social indicators was devoted to its

relationship with population density. Later research looked into the correlation between night light

and economic activity. Only more recently, the attention has turned to other economic measures

and, in particular, inequality. There are basically two approaches in the literature, although the

basic view is the calculation of spatial inequality (regional, ethnic homelands, etc.). Lessmann

and Seidel (2017) calculate regional predicted GDP per capita using several luminosity variables

(average nighttime light within a region, top-coded pixels within the region and low-coded pixels

within a region, among other variables). They use these predictions to calculate a Gini index

that accounts for inequality across the regions of a country and claim that using predicted income

generated inequality measures that are more correlated to the indices based on observed income

than inequality measures simply based on nighttime light (NTL) density.

A second approach uses precise NTL dispersion to proxy for income inequality. The original

contribution of Henderson et al. (2012b) was centred around the predictive ability of night light

as a proxy of GDP per capita. In one of the tables, they show a Gini index calculated for eight

countries using only NTL density3. Alesina et al. (2016) calculate ethnic inequality using the

results of averaging luminosity of all the observations within the boundaries of an ethnic group and

then dividing by population. Their Gini index is constructed using night light per capita for each

ethnic group as one observation to be ranked in the construction of the Gini index.

Our main objective is computing inequality measures based on a proxy of income built from

remote sensing data sources. Unlike traditional data sources, where individual census or tax data

represent the income from a single person or household, our approach builds upon geographical

units that represent a set of people living in a particular geographical area. Differently from other

proposals using the night light referred to in the previous sections, that basically calculate between

groups or spatial inequality, we calculate a measure of total inequality. Our approach tries to

reproduce, as closely as possible, the calculation of a standard Gini index. The income of each

individual is calculated as the average night light in a very small geographic unit (i.e., pixel) using

data from satellite imagery combined with the corresponding gridded population. Many papers

show that night light is a good proxy for economic activity, but it has some limitations related to
3Henderson et al. (2012b) Table 1. For the countries included in that table, there is a large difference between

the Gini indices calculated using only light density and the standard Gini indices calculated using incomes surveys
or national accounts.
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the calculation of night light.4 In particular, research uses mostly the saturated version of night

light which implies that the range of light is measured between 0 and 63. The presence of this

top coding limits the ability of night light to capture high density of economic activity. The basic

problem is that radiance light, which is not top-coded, has large measurement errors although

radiance light is being found to be a better proxy for some measures.5 Instead of using radiance

light, we use a correction for the saturated light that tries to overcome the problem of top-coding.

We eliminate the pixels that do not have any associated population, which correspond mostly to 0

night-light scores. Thus, our income per capita proxy at the pixel level is defined as:

(1) wi = li
pi

where li is our proxy of total income measured as the luminosity corrected, if that is the case,

by top-coding in pixel i, and pi is the number of people located at pixel i. That is, we use the

luminosity per capita as the proxy of the level of economic development for a given geographic

unit i. As a result, we create new raster data where each unit of analysis is a proxy of income

per capita, calling this income raster. Elvidge et al. (2012) introduced a similar approach, the

Night Light Development Index -NLDI-, which combines night-light and population satellite data

to measure the inequality. For doing this, they aggregated the original pixel-level data into larger

grids (10km x 10km), that might mask the problems such as top-coding and miss-aligned rasters.

Figure 1 shows an example of building wi using population and luminosity rasters with the same

resolution (i.e., pixel size) and perfectly aligned. After overlapping both rasters, the new income

raster is the result of intersecting both rasters in which each pixel contains the estimated wi. In

case of perfectly aligned rasters, the resolution of the income raster is the same as the input ones.
4We will discuss other limitations related to the obsolesce of satellites and its ability to correct for atmospheric

effects.
5Mellander et al. (2015)
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Figure 1: Example of building economic development approach at pixel level using a perfectly
aligned rasters

Notes– This graph represents the main unit of analysis after the intersection of the population density and luminosity rasters with the same resolution and perfectly

aligned.

If we could access a perfectly aligned raster of luminosity and population, like the one shown in

Figure 1, it would be simple to calculate our proxy of income per capita. However, this is not feasible

since the basic information on both variables comes from different sources and methodologies. To

construct the overlapping of the two rasters to produce the proxies wi in a situation like the

one in Figure 2, we need to make operational decisions. By assuming that both luminosity and

population raster are homogeneously distributed within each pixel, it is possible to obtain li and

pi in the presence of nonaligned rasters. Since pixels have a very small size, this is not a very

restrictive assumption. To assign a value for the new partitioned pixel resulting from intersecting

the two nonaligned rasters, we interpolated its value depending on the original value of the pixels

using interpolation methods. The two most used methods to perform this task are bicubic and

bilinear interpolation. Even if the bicubic algorithm gives smoother shapes and better results in

general, with abrupt population changes, negative values were obtained, notably on the coast. This

is a well-known problem (bicubic interpolation can give values that are out of the bounds defined

by the pixels in the frontier of the resampled one) (Keys, 1981). Hence, bilinear interpolation

has been chosen. Figure 3 shows a 2D example to better understand the previously explained

reasoning. In this case, the point 0.5 has a lower value regarding all the original input points.
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Figure 2: Example of pixel level income per capita calculation using not aligned rasters

https://www.overleaf.com/project/5d499792749eca36aa167dd6 Notes– This graph represents the main unit of analysis

after the intersection of the population density and luminosity rasters with the same resolution, yet not aligned.

Figure 3: Example of linear and cubic interpolation in 2D

Notes– This graph represents the interpolated points each 0.5 units when using linear and cubic interpolations for the points (0,0), (1,0), (2,1) and (3,0).

3 Data

The aim of this paper is to construct an index of inequality that uses a common methodology for all

the countries and can cover any area of the world since it does not rely on the existence of surveys

or National Accounts. The two basic inputs for our approach are luminosity and population.
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3.1 Luminosity

We use the cloud-free night-light data collected by the Defense Meteorological Satellite Program -

Operational Linescan System (DMPS-OLS) program6 processed by the National Geophysical Data

Center at the National Oceanic Administration Agency -NOAA-, specifically the Earth Observation

Group (EOG)7. EOG provides information on the average quantity of light observed at each pixel

across cloud-free nights for every year at 30 arc-second resolution (approx. 750 m x 750 m),

spanning from -180 to 180 degrees longitude and -65 to 75 degrees latitude8. Figure 4 shows the

temporal availability for year and the different satellites. Its values range from 0 to 63, where 0 is

the lowest luminosity and 63 the highest.9

Figure 4: Temporal availability by luminosity data set by satellite

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
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Luminosity data have some potential sources of measurement error (Addison and Stewart,

2015). The first source of measurement error is associated to the high intensity of light in large

cities. On the one hand, to capture this large spectrum of light intensity, a satellite would need

a very sensitive-to-light lens and large storage capacity. Unfortunately, the data we use do not

provide these requirements, capturing the intensity of light in truncated integer bins spanning

from 0 to 63. As a consequence, the information available is a truncated distribution of intensity of

light. That is, as information is top-coded at 63, and it is not possible to distinguish the difference

between the main downtown and suburbs in big cities as they are coded as 63. This problem is

known as top-coding 10. On the other hand, even if the lens were sensitive enough to capture

the entire spectrum of light, there are physical phenomena of light (e.g., light reflection, world
6The nighttime light data from the DMPS-OLS has been a primary data source for most of the previous economic

literature.
7For further information and data at http://www.ngdc.noaa.gov/eog/. NOAA also generates series of radiance-

calibrated lights combining the stable lights data with auxiliary information from low amplifications sensors.
8In the appendix there is a detailed description of each dataset
9The information of the radiance-calibrated lights are not top-coded and, therefore, there is no upper-bound in

the value. However, they are very limited for time comparison, they are quite unstable and infrequently measured.
Recently, the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite using the Visible Infrared Imaging
Radiometer Suite (VIIRS) has begun producing information on nighttime light. In principle, the radiometric and
spatial resolution of the VIIRS has improved with respect to the DMPS. It has few over-glow effects and it is more
precise with light within cities. However, at the time we began this research the information was not available, and
it is only produced since 2013.

10To see some examples of the top-coding problem for the main cities see Rosenbloom (2009)

9

http://www.ngdc.noaa.gov/eog/


curvature, among others) that might over-magnify the size of the city. In some cases, cities appear

magnified to approximately 10 times their true size (Imhoff et al., 1997; Henderson et al., 2003;

Small et al., 2005). This problem is known for creating a problem known as pervasive blurring,

dubbed ’overglow’ or ’blooming’11.

In contrast with large cities, the second source of measurement error is in those places where

the intensity of light is so weak that it is very similar to the background illumination of the earth.

Therefore, satellites often code places with very weak light either as zero light or very low values

(below 5). The final and third source of potential bias is the lack of comparability in absolute

term of the data. As satellite technology has been improving over time with more sensitive lenses,

large storage capacity, among other improvements, there is a lack of comparability across years

with different satellites. For solving this problem, Hsu et al. (2015) and Wu et al. (2013) provides

adjustment parameters to allow temporal comparability across satellites12.

In our case, we would like to estimate relative measures of inequalities based on building a new

wealth raster. The main sources of measurement error are those associated with the behaviour

of the night-light intensity at both ends of the distribution (i.e., top-coding and zero light). We

have devoted a extensive work to minimise their potential effect over our main results. The exact

procedure will be described in the following sections.

3.2 Population

To capture the geographical population distribution at very high resolution, we used the Landscan

Global model, which represents an ’ambient’ population distribution over a 24-hour period by

integrating diurnal movements and collective travel habits into a single measure (Dobson et al.,

2000). The model combines a multilayered, dasymetric, spatial modeling approach (also known

as “smart interpolation”), to reallocate population within the lowest geographical units available

in each country (i.e., census units) (Dobson et al., 2000). This modelling process is based on the

census units for each country and primary geospatial input or ancillary data sets, including land

cover, roads, slope, urban areas, village locations, and high resolution imagery analysis (Lanscan,

2018). As result, the process offers raster data representing human population distributions at 30

arc-second resolution (approx. 750 m x 750 m) worldwide from 2000 until 2019. These data are

widely used for risk management and policy intervention around the world (Dobson et al., 2000).13

11Abrahams et al. (2018) provide a very comprehensive review of the blurring bias for the main cities around the
world.

12Another problem associated with night-light data is light emissions that are not associated with an economic
activity such as gas flares. In these cases, NOAA provides gas flare boundaries, which allow exclusion of those
specific pixels, solving the problem

13Appendix A offers a review on census-based alternatives to decompose census units into smaller geographical
units.
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3.3 Inequality index

The income raster developed in the previous section provides a geographically explicit continuous

distribution of nighttime light at a very low geographical level available worldwide. This infor-

mation is the main input to calculate inequality indices like the Gini index. The Gini index is a

measure of inequality, defined as the mean of absolute differences between all pairs of individuals

within a given unit of analysis (e.g., administrative borders, social groups, among others). Thus,

it can be interpreted as the expected income gap between two individuals randomly selected from

the population (Sen and Foster, 2005). There are several alternatives to estimate the Gini in-

dex (Yitzhaki and Schechtman, 2013). The final choice among the different alternatives is based

mainly on the types of distribution (e.g., continuous, nonnegative values, among others) or the use

of weights. The classical notation for Gini index based on the theory of relative mean difference is

given by:

(2) Gini =
∑n
i=1
∑n
j=1 |wi − wj |

2n2
∑n

i=1
|wi|

n

=
∑n
i=1
∑n
j=1 |wi − wj |

2n
∑n
i=1 wi

where wi stands for the nighttime light per pixels and n is the number of observations.

To calculate the Gini index, we rank the light per capita of each pixel from the lowest to

the highest values. Table 1 shows the basic statistics derived from the methodology proposed in

the previous section. We consider 186 countries. Our methodology generates an average of 4.41

million of pixels per country. However, the average number of populated pixels by country is 2.22

million.14 The average of the proportion of populated pixels over total pixels across countries is

85%. This implies that there is a large dispersion across countries in the proportion of populated

pixels.15 Canada and Iceland have proportions below 25% while the proportion is 100% in San

Marino, Monaco or Malta. The country average of inhabitants per populated pixel is 81.6.

Table 1: Summary statistics

Variable Number of countries Mean St. Dev.

Num. pixels by country (millions) 186 4,41 15.3
Num. of populated pixels by country (millions) 186 2.22 4.98
Percentage of populated pixels 186 0.85 0.21
Population by populated pixel 186 81.6 510.6
Percentage of pixels DS > 50 186 0.048 0.14
Percentage of top-coded pixels DS = 63 186 0.016 0.09

The literature has recognised three basic issues when working with luminosity as a proxy for

income. The first one is the censoring of data derived from the top-coding of very high luminosity
14We exclude from our calculation the pixels that have no population.
15The proportion of populated pixels over the total number of pixels is close to 50%
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pixels in the saturated version. In our data 1.6% of the pixels are top coded and 4.8% are above

50. The second problems is the low, or zero, coding of some pixels. This is not problematic if there

is no population. For pixels that have population we set the value to the minimum luminosity per

capita of the country.16 Finally, the sensitivity of the light measurement depends on changes in

satellites and sensor technology. The following section discusses these issues.

4 Measuring inequality using luminosity

In this section, we describe the methodology to deal with the issues that we discussed in the

description of the luminosity data and the alignment of the rasters.

4.1 Interpolation

In the previous section, we discussed the interpolation procedure. In this section, we present the

application of the procedures to our data with some examples to clarify the method. The first

stage is to interpolate the data to align rasters of income and population. As an example, we show

the application of the interpolation to the case of the area around the city of Barcelona. Figure 5

shows the interpolation of luminosity and Figure 6 represents the interpolation of population.

Figure 5: Bipolar Resampling -Year 2013 - Satellite F18
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16In the applications in Section 6 we use the minimum value of luminosity per capita of the region/ethnic group
that the pixel belongs to.
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Figure 6: Bipolar Resampling -Year 2013 - Population
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4.2 Dealing with the top-coding at pixel level: a local Pareto correction

As we pointed out, in our basic data source nighttime light (NTL) is upper-bounded at 63, leading

to some urban areas with uniform values. Initially, scholars used to disregard this problem by

creating a threshold above which data would be discarded. This approach was rapidly abandoned,

and in many cross-country analyses using night-light, this problem is not even mentioned. Elvidge

et al. (2009) and Hsu et al. (2015) developed an alternative solution by triangulating the original

data with complementary sources. They proposed the combination of the DMSP-OLS data set with

auxiliary data set obtained from the pre-flight sensor calibration. As a result, it is possible to have

a radiance calibrated NTL free of top-coding. The OLS radiance calibrated NTL might potentially

solves the saturation bias, there are some important caveats. First, as the pre-flights calibration are

seldom done, the data is only available in seven years (1996,1999,2000,2003,2004,2006 and 2010).

Second, because the DMSP-OLS does not have any on-board calibration device, there is not a

clear baseline value from the actual level of saturation. Thus, the radiance values should still be

considered relative and not absolute (Hsu et al., 2015). Third, there are important differences in

the time frequency with year (fewer orbits) and geographical coverage for the calibration values

might varies across time. As a result, the radiance calibrated products present high instability in

its quality and coverage (Hsu et al., 2015).

An alternative solution to overcome the top-coding problem is to assume a particular distribu-

tion for nighttime light. In urban economics the upper tail of the size of the distributions has been
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model as a power law distribution.17 Small et al. (2011) analyze the urban extent of cities using

night lights and shows that the size distribution of big agglomerations follows a Pareto distribution,

a particular power law distribution. This distribution is also a common choice for the distribution

of top income18. In addition Bluhm and Krause (2018) argue that the Pareto distribution is a

good description of top lights. Following these insides, we are going to assume that the distribu-

tion of light above the threshold follows the Pareto law. That is, the top-light distribution could

be described following a cumulative distribution function F (l) for luminosity l, defined by:

(3) 1− F (l) =
(
lm
l

)α
(lm > 0, α > 1)

where lm and α are exogenous values, also known as Pareto parameters. The corresponding

density function could be expresses as f(l) = α
lαm

l
(1+α)
m

. The assumption that the actual luminosity

distribution follows a Pareto distribution implies that the ratio of average light intensity at the top

pixels over the threshold income does not depend on the level of the threshold.

(4) ltop

l
= β with β = α

α− 1

where β is known as the inverted Pareto coefficient, which intuitively indicates that higher β

means a fatter upper tail of the distribution (Atkinson et al., 2011).

The Pareto correction assumes that each observation is independent. We name this version the

static neighbourhood approach. That is, the location of each observation is not considered when

interpolating the value of the top-coded observation. However, using luminosity data, it is difficult

to support this assumption, as data have an intrinsic spatial correlation. That is, pixels around

a large city will be more likely to be top-coded than pixels located in rural areas. Likewise, the

magnitude of the top-coding will depend on its location relative to their neighbourhood, so even if

a pixel is not over the top-coding threshold, its value might be overmagnified (e.g., blurring effect

of light). As a consequence, the Pareto correction needs to explicitly include the spatial location

when interpolating the top-coded values.

To overcome this issue, we built a local version of the Pareto correction in which each top-

coded observation was corrected relative to the distribution of non-coded observations located
17Rozenfeld et al. (2011)
18For instance Atkinson et al. (2011)
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in its neighbourhood. That is, once a top-coded pixel was detected, we defined a NxN square

neighbourhood in which the studied pixel would be the centre, then we used this distribution to

correct the top-coded pixel. As we pointed out above, it is very likely that top-coded pixels are

clustered around themselves, so it is possible that within a NxN neighbourhood of a given top-

coded pixel, we can have several top-coded pixels. In those cases, all the values that contain a top

value in their neighbourhood will be modified. Nevertheless, this change will be conditioned by

the number of top level pixels in it.19

Therefore, we can define the local Pareto correction as follows:

(5) lcorrected =
∑
lA∈A lA + α

1−α
∑
lB∈B lB

N ·N

where N is an odd number that indicates the size of the square defining the neighbourhood.

A is the set of non-top-coded pixels located in the NxN neighbourhood, and B are the sub-set of

the neighbourhood top-coded pixels. We name this version the dynamic neighbourhood approach.

Finally, α is the Pareto parameter. Figure 7 shows the application of this methodology to the city

of Barcelona assuming an α = 2. Both the static and the dynamic neighbourhood techniques give

similar results. Nevertheless, the second technique is smoother than the first one.
19Bluhm and Krause (2018) provide a top-coded correction using the Pareto distribution. However, in this case,

all the top-coded pixels in a given region are considered when performing the corrections. Thus, this change will be
conditioned by the number of top-level pixels in it. Indeed, the new value will be the average of the non-top-coded
values and the corrected top-coded values present in the neighbourhood considered. Hence, the more top-coded
values in the considered square, the higher the change. In addition, a global study on each top-coded concentration
is done to sort the pixels considering their distribution, assuming a monocentric and circular shape. This sorting
makes the method computationally intensive and is not viable when considering the whole world. We have decided
to consider only the near pixels when correcting their value.
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Figure 7: Changes in the rasters with the explained techniques in Barcelona’s area

Original raster

Static neighbourhood Variable neighbourhood
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To choose the parameter for the local Pareto correction, we calculate the optimal value over

different values of α In particular, we create a local Pareto correction for the entire world for

α ∈ {1.25, 1.5, 2, 2.5, 5, 50}, or equivalently, β ∈ {5, 3, 2, 1.6, 1.2, 1}. Likewise, after considering

different values, we set the neighbourhood side at N = 5.

Once the luminosity and population data sources have been correctly treated following the

procedures explained above, the new light per capita raster maps are generated.

4.3 Choosing the optimal α

To complete the correction of the luminosity data, we need to fine-tune our procedure. There are

two basic parameters that we need to calculate: (i) the Pareto parameters (α) for the top-coding

correction; and, (ii) the optimal satellite for years in which there are data from more than one

satellite available20. The objective is to choose the optimal α comparing the difference between

measures of inequality calculated not using satellite imagery and our estimate using a particular

parameter.

We approach this selection heuristically, choosing first the α parameter from the set we described

before and, afterward, choosing the optimal satellite for each year. Therefore, we calculate the α

to minimise the following expression21:

(6) Minα

K∑
k=1

N∑
i=1

T∑
t=1

(Ginii,t,k −GiniMIFA
i,t,α )2

where i refers to countries, t to years, k to the alternative Gini indices exposed below, and α is

the parameter for the correction of the top-coded pixels for our MIFA index.22

For comparison purposes we use alternative sources of inequality measures.23 There are several

international organisations and research centres that compile datasets by country. They differ in

coverage, data sources and indicators. For the purposes of this research we are going to consider

only Gini indices. The basic difference between these alternative Gini indices is the source of data,

which also determines the temporal coverage. Some of the indices are calculated from primary

sources while others use secondary sources. Among the indicators that use primary sources, there

are two types: those that try to be consistent with the definitions of National Accounts, and those

based on microdata from surveys.
20Previous research has mostly chosen to calculate the average luminosity across the available satellites.
21All the calculation were performed using the MareNostrum 4 supercomputer at Barcelona Supercomputing

Center.
22In principle, we take the average across the Gini indices calculated with all the available satellites. Later, we

discuss the selection of one satellite for each year.
23See the Appendix for more information.
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A well-known problem of the calculation of inequality using microdata is that they severely

underrepresent the extent of high income individuals. A notorious example of the data that tries

to correct that problem using National Accounts is the World Income Database (WID) described

by Piketty and Saez (2014). The differences in the type of data used to calculate the inequality

indices lead to inconsistencies both in the levels and the trends. In addition, there is a clear tradeoff

between coverage and comparability: increasing coverage means decreasing quality (imputation of

missing values) and comparability (using sources that measure inequality using different primary

sources).

For the validation exercise, we considered two indices constructed from primary sources and

two indices that use secondary sources. Table 2 summarizes the data sources.24

Table 2: Country-Level Income Inequality Data

Data Set Host Institution Source data

PovcalNet/World Development Indicators

(WDI)
World Bank

National household surveys and Luxem-

bourg Income Study (LIS).

World Income Inequality Database (WIID) UNU-Wider

household survey statistics obtained from

national statistical offices, the SocioEco-

nomic Database for Latin America and

the Caribbean (SEDLAC), the OECD In-

come Distribution database (IDD), the EU-

Statistics on Income and Living Conditions

(EU-SILC), LIS and PovCalNet.

World Wealth and Income Inequality

Database (WID)
World Inequality Lab

Fiscal (income tax) data and data from na-

tional accounts combined with other sources

(household income and wealth surveys, in-

heritance and wealth tax data, as well as

wealth rankings published in the media).

Global Consumption and Income Project

(GCIP)

Arjun Jayadev, Rahul Lahoti, Sanjay G.

Reddy

The project builds on various existing data

resources, including the LIS.

In the first group we include the estimates of the World Bank (WB) and the World Inequality

Dataset (WID). The World Bank uses more than one thousand household surveys to construct their

index while the WID uses fiscal information and National Accounts.25 In addition, we consider the

two largest datasets constructed using secondary sources. These datasets have, logically, a larger

coverage than the previous datasets, but they include less comparable data. The World Income

Inequality Database (WIID) includes information on 182 countries from many different sources

(including the World Bank). The Global Consumption and Income Project (GCIP) presents the

largest coverage of all the secondary datasets available.
24The Appendix describes in detail each of the sources and the construction of the indices. We have chosen

databases that are currently updated or that have a very large coverage.
25Among the different versions of the WID data, we take the one that has the largest coverage, which is three

times the coverage of the other versions.
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Overall, there are trade-offs between coverage and comparability when developing income and

inequality data sets. On the one hand, to develop a comparable and homogenised inequality mea-

sure, researchers might require harmonised data sources that guarantee same methodologies and

time coverage. These are extremely difficult even among developed countries. Thus, maximising

comparability and quality means focusing on a small number of countries, often developed coun-

tries. On the other hand, increasing coverage might require several data sources with different

variables and data methodologies to produce estimates or performance imputations. This fact

reduces comparability and quality of data sources.

Figure 8: Choosing the optimal top-codding correction α

Notes– This graph presents the average Mean Square Error (panel a) and Percentage of Error (PE) (panel b) from 2000 until 2013 across the seven data sources

for eight alphas.

Figure 8 shows the average MSE from 2000 until 2013 across the four data sources. We use

eight different Pareto correction values, α ∈ {1.25, 1.5, 2, 2.5, 5, 15, 50}. On average the MSE for

all α’s and years is 0.055. The mean squared error is reduced over time for all the possible values

of α. The best performance was obtained using α = 2.526. Setting α = 2.5, we perform the similar

analysis for the different satellites available in each year, where sat ∈ (F14, F15, F16, F18).

(7) Minsat

K∑
k=1

N∑
i=1

∑
t∈sat

(Ginii,t,k −GiniMIFA
i,t,α=2.5)2

Figure 9 presents the satellite-year that minimises the mean squared error. Not surprisingly,

the newest satellite in each period is the one that fits better.
26This parameter implies that the average value above the threshold is 67% higher than the value at the threshold.

We should notice that the optimal α could also be calculated letting its value differ across countries. We follow the
more restrictive approach of assuming a common parameter for all the countries.
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Figure 9: Satellite that minimise the MSE each year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

F15 F16 F18

Using the optimal choices of α and satellite our Gini index produces the Figure 10 that shows

the spatial distribution of the average GINI MIFA from 2000 to 2013. The highest indices are

found in Africa where our estimates are quite high. In most developed countries, we find indexes

that the value varies from 0.3 to 0.5.

Figure 10: Average Gini from Above

5 Extracting the common Gini factor

The objective in this section is to calculate inequality as a common factor among the five Gini

indices that we have described in the data section: the World Bank (WB), the Global Con-

sumption and Income Project (GCIP), the World Income Inequality Database (WIID) from the

UNU-WIDER, the World Inequality Database (WID) and our indicator for Measuring Inequality

from Above (MIFA). This approach implies that if there are missing values in any of the non-MIFA

indicators, that observation is not considered in the common factors estimation. Table 1 presents

the basic statistics of the observations of the five Gini indices included in the balanced sample.
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The mean of the indicators ranges from 0.35 to 0.48. The highest average Gini index corresponds

to the WID indicator. The largest standard deviation corresponds to the MIFA indicator.

Table 3: Summary Statistics, 2000-2013

Statistic Mean St. Dev. Min Max
Gini - WB 0.351 0.075 0.237 0.647
Gini - GCIP 0.398 0.119 0.236 0.852
Gini - WIID 0.354 0.075 0.239 0.661
Gini - WID 0.487 0.091 0.331 0.776
Gini - MIFA 0.461 0.189 0.128 0.950

In addition to the difference across countries, we can also look at time variability within each

country, especially among the countries with high levels of inequality. Figure 11 shows the evolu-

tion over time of the Gini index of some representative countries comparing the MIFA index with

the Gini in the largest dataset among the other sources, which is the GCIP. The similarity of the

evolution of the MIFA Gini and the GCIP index is quite remarkable in countries like Brazil, Do-

minican Republic, Spain and the US. In the case of South Africa and Colombia, the correspondence

between the two indices is less remarkable.

Figure 11: Average Gini from Above
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(a) United States of America
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(b) Spain
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(c) Colombia
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(d) South Africa
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(e) Dominican Republic
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(f) Brazil
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To evaluate our index we need to compare it with the unobserved common factor, or factors,

which drive the co-movements of the different indicators of inequality discussed previously. First

of all, in this section, we run an exploratory analysis to determine the number of factors associated

with all these indicators. In a second stage, we specified an SEM model to estimate the unobserved

factor. Finally, we analyse the determinants of the difference between our proposed Gini index and

the estimated factor.

5.1 Exploratory factor analysis

The first stage is to explore the number of factors that correspond with the indicators. In principle,

since all the indicators are measuring inequality, there should be a single common factor. The scree

plot is the standard instrument to determine the number of common factors in our setup. We obtain

the scree plot, or representation of the eigenvalues, presented in Figure 12.

Figure 12: Scree plot

The scree plot shows that there is only a very strong common factor with an eigenvalue clearly

above 1. The other factors have very low eigenvalues. In addition, the overall Kaiser-Meyer-Olkin

(KMO) is 0.84 which implies that the overall sampling adequacy is appropriate. The KMO for

each indicator shows that they are also adequate. The three highest KMOs are associated with the

WID indicator (0.88), the GCIP indicator (0.86) and the MIFA indicator (0.84). Therefore, the

data seem appropriate for factor analysis, and there is one common factor to all these indicators.

5.2 Confirmatory factor analysis

The second stage is to characterise the relationship between the indicators, the common factor and

the measurement errors. Following the results of the exploratory analysis, the specification of our
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problem corresponds to a one-factor model. This framework is similar to the proposal in Pinkovskiy

and Sala-i Martin (2016), Henderson et al. (2012a) and Chen and Nordhaus (2011). However, our

approach to this signal extraction problem is different from the approach in this previous research.

We assume the classical set up of a factor model: the Gini indicators are a linear function of the

true Gini, measured with some error,

GMIFA
i,t = λMIFAG

∗
i,t + εMIFA

i,t(8)

GWB
i,t = λWBG

∗
i,t + εWB

i,t

GWID
i,t = λWIDG

∗
i,t + εWID

i,t

GWIID
i,t = λWIIDG

∗
i,t + εWIID

i,t

GGCIPi,t = λGCIPG
∗
i,t + εGCIPi,t

where G∗i,t is the true Gini and the εs are the error terms which are uncorrelated with G∗i,t

(9) E(εki,tG∗i,t) = 0

Therefore, we can represent the system, including constants, as

(10) X − µ = Λf + ε

where Λ is the vector of factor loadings and f is the common factor. We assume that E(fε) = 0

and E(ε) = 0. However, and opposite to the traditional orthogonal factor model, we cannot assume

that E(εε′) = Ψ where Ψ is diagonal. Following the previous literature, we assume that the error

term of the measurement constructed using night-light, in our case the Gini-MIFA, is uncorrelated

with the other indicators. We also assume that the WID is uncorrelated with other indicators.

However, the GCIP and the WIID are secondary indicators that use the WB and LIS as some of

their sources.27 Therefore, there is potentially a correlation between the measurement error in the

WB indicator and the errors in the WIID and the GCIP indices. Logically, this correlation implies

that there is potentially a correlation between the errors of the GCIP and the WIID indicators.
27The algorithms to choose among the different datasets available are different for the GCIP and the WIID indices.
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Considering those assumptions the problem we need to solve is

(11) Σ = ΛΛ′ + Ψ

where Σ is the covariance matrix of the Gini indicators. Using the assumptions described before,

we have an overidentified system since there are 15 equations and 13 parameters to be estimated.

Table 4 shows the results of the estimation of the system. To identify the variance of the latent

Gini, we need to fix either a load or the variance of the latent Gini. The first column includes

the results of the estimation using a fixed load for the first indicator, which is called the reference

indicator. The second column presents the results when fixing the variance of the latent variable

to 1. Since the variance of the latent Gini has been fixed to 1, there is no need for a reference

indicator. Both columns show that all the loads and the variances of the errors are statistically

significant.28 The covariances are also significant with the exception of the one between the World

Bank Gini and the GCIP. The final column presents the estimates of the standardised loadings,

which is helpful for the interpretation of the results. For instance, one standard deviation on the

latent Gini indicator will imply an increase of 0.59 standard deviations of the MIFA index, 0.91

standard deviations of the World Bank index or 0.98 standard deviations of the WID indicator.

To assess the goodness of fit of the model, there are several alternatives. How closely is the

one-factor model to fit the data? The Comparative Fit Index (CFI) is generally used to measure

this fit by comparing the estimated model with a baseline model that assumes no relationship

between our five observed indicator variables. It is calculated as 1 minus the ratio of the chi-

square of the estimated model divided by the chi-square of the baseline specification. The CFI of

the estimated structure is 0.991, which indicates that the model is appropriate, and the standard

cutoff for the CFI is approximately 0.9. Finally, the root mean squared error of the approximation

is approximately 0.055, which shows that the fit is reasonably good. Finally, the reliability of this

type of model is calculated as

(12) ρ = (
∑
λk)2

(
∑
λk)2 +

∑
σ2
kk + 2

∑∑
σkk′

where k represents each of the indicators, λk are the unstandardised loadings, σ2
kk is the variance

of the measurement error of each indicator, and σkk′ is the unstandardised covariance of the errors.

The reliability is 0.79, which implies that the true unobserved Gini can account for almost 80% of
28Results are robust for using other estimation procedures and the calculation of the standard errors of the

coefficients using a robust, or bootstrap, estimator.
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Table 4: Structural Equation Models

Unstarndardized Gini = 1 Standardized
(1) (2) (3)

MIFA
Gini 1 0.111∗∗∗ 0.590∗∗∗

(constrained) (0.008) (0.030)
Constant 0.461∗∗∗ 0.461∗∗∗ 2.443∗∗∗

(0.008) (0.008) (0.088)

WB
Gini 0.612∗∗∗ 0.0682∗∗∗ 0.913∗∗∗

(0.040) (0.003) (0.009)
Constant 0.351∗∗∗ 0.351∗∗∗ 4.696∗∗∗

(0.003) (0.003) (0.152)

GCIP
Gini 0.938∗∗∗ 0.104∗∗∗ 0.878∗∗∗

(0.052) (0.004) (0.017)
Constant 0.398∗∗∗ 0.398∗∗∗ 3.342∗∗∗

(0.005) (0.005) (0.113)

WIID
Gini 0.598∗∗∗ 0.0667∗∗∗ 0.885∗∗∗

(0.039) (0.003) (0.011)
Constant 0.354∗∗∗ 0.354∗∗∗ 4.704∗∗∗

(0.003) (0.003) (0.153)

WID
Gini 0.810∗∗∗ 0.0903∗∗∗ 0.988∗∗∗

(0.050) (0.003) (0.007)
Constant 0.487∗∗∗ 0.487∗∗∗ 5.337∗∗∗

(0.004) (0.004) (0.172)

Var(εMIFA) 0.0232∗∗∗ 0.0232∗∗∗ 0.651∗∗∗
(0.001) (0.001) (0.034)

Var(εWB) 0.000929∗∗∗ 0.000929∗∗∗ 0.167∗∗∗
(0.000) (0.000) (0.017)

Var(εGCIP ) 0.00324∗∗∗ 0.00324∗∗∗ 0.229∗∗∗
(0.000) (0.000) (0.021)

Var(εWIID) 0.00123∗∗∗ 0.00123∗∗∗ 0.217∗∗∗
(0.000) (0.000) (0.020)

Var(εWID) 0.000196 0.000196 0.023
(0.000) (0.000) (0.014)

Variance Gini 0.0124∗∗∗ 1 1
(0.002) (constrained) (constrained)

Cov(εWIID, εGCIP ) 0.00378∗∗∗ 0.00378∗∗∗ 0.436∗∗∗
(0.000) (0.000) (0.037)

Cov(εWB , εGCIP ) 0.0000770 0.0000770 0.044
(0.000) (0.000) (0.032)

Cov(εWB , εWIID) 0.000776∗∗∗ 0.000776∗∗∗ 0.725∗∗∗
(0.000) (0.000) (0.025)

Observations 518 518 518
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the total variation of the indicators.

From the estimation, we can derive the unobserved factor or score. In the context of the

factor model, there are two standard estimators of the score: Thomson’s regression predictor and

Bartlett’s estimator. Bartlett’s estimator was justified as being the minimum variance unbiased

estimator of f when Λ and Ψ are known. However, assuming Ψ > 0, Neudecker and Satorra (2003)

show that Thomson’s predictor has a smaller mean square error than Bartlett’s score. For this

reason, we use Thomson’s predictor for the score.

Table 5: Correlation matrix

Predicted Score Gini-MIFA Gini-WIID Gini-WB Gini-WID Gini-GCIP

Predicted Score 1
Gini-MIFA 0.59 1
Gini-WIID 0.89 0.45 1
Gini-WB 0.92 0.48 0.94 1
Gini-WIB 0.90 0.59 0.87 0.90 1
Gini-GCIP 0.88 0.69 0.77 0.80 0.86 1

Table 5 shows the correlation of the predicted score with each of the inequality indicators. The

MIFA indicator has a correlation with the predicted score close to 0.6. The highest correlation

is associated with the World Bank indicator. From the analysis in the previous sections and

the correlations with other sources of inequality29 we see that this new methodology to calculate

inequality using satellite imagery provides a very useful indicator.

5.3 Determinants of the fit of the MIFA index

To complete the characterization of the MIFA index, in this section we analyse the explanatory

factors of the difference between the predicted country score and the MIFA Gini. For this purpose,

we use variables related to the pixels used for the calculation of the MIFA index (proportion of

top-coded pixels, proportions of pixels with no light, etc.) and other characteristics of the country

capture by traditional indicators (population, density, GDP per capita, etc.).30

Since we are interested in explaining the size of the difference independently of the sign, we use

as a dependent variable the absolute difference between our MIFA Gini and the common factor.

Table 6 presents the results. The increase in population density, size of the country or level of

development reduces the difference between the predicted score, the common factor Gini, and

our MIFA Gini. By contrast, the increase in the percentage of pixels with no light reduces the

adjustment. The proportion of pixels that are top-coded does not have a significant effect on the

difference, seeming to indicate that our correction for top-coded areas is working, at least when
29Considering also that those indicators are measured with error.
30Lessmann and Seidel (2017) use a similar strategy to predict regional GDP per capita using data on night-light

by region.
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Table 6: Determinant of the quality of the adjustment: country data

(1) (2) (3) (4) (5) (6) (7)

Ln Population density -0.04∗∗∗ -0.05∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗
(0.006) (0.007) (0.006) (0.006) (0.006) (0.005) (0.005)

Ln Number of pixels in the country (size) -0.01∗∗ -0.01∗∗ -0.01∗∗ -0.01∗∗∗ -0.008∗ -0.008∗
(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)

Ln GDP/capita -0.05∗∗∗ -0.02∗∗∗ -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗
(0.004) (0.008) (0.008) (0.008) (0.008)

1 - Percentage of no light pixels 0.17∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.13∗∗∗
(0.041) (0.042) (0.035) (0.035)

Percentage of top-coded pixels -0.89∗∗∗ 0.08 0.09
(0.169) (0.143) (0.146)

Constant 0.66∗∗∗ 0.88∗∗∗ 1.34∗∗∗ 1.04∗∗∗ 1.09∗∗∗ 0.80∗∗∗ 0.83∗∗∗
(0.02) (0.08) (0.08) (0.11) (0.11) (0.12) (0.12)

Region Fixed Effect - - - - - Yes Yes
Year Fixed Effect - - - - - No Yes

R2 0.11 0.12 0.39 0.42 0.43 0.61 0.62

Observations 518 518 518 518 518 518 518

the regional dummies are included.

6 Applications

In this section we consider several applications of the data constructed in the previous sections. In

particular, we consider the calculation of ethnic and regional inequality. Recently several papers

have proposed to measure these dimensions of inequality using methodologies based on nighttime

light data.

Alesina et al. (2016) use data on night-light to calculate a Gini index across ethnic groups

for each country. Their methodology implies calculating the mean income per capita, proxied by

luminosity per capita, at each ethnic homelands, and ranking the average income by ethnic group to

calculate the Gini index. This index has the same value independently of the proportion that each

group represents in the population of the country. In addition Alesina et al. (2016) also calculate

what they define as spatial inequality, which aggregates luminosity per capita across large equally

sized, or Thiessen, polygons.

Lessmann and Seidel (2017) propose a method to calculate regional income inequality using

nighttime light data. They argue that luminosity cannot be used directly to measure regional

income per capita. For this reason they construct a regression model to predict GDP per capita

using several variables including the average nighttime light within a region, or the number of top

coded pixels and dark pixels in each region as well as fixed effects for satellite configuration. Using

a random effects model they predict regional GDP per capita. Once they have the income per

capita of each region they calculate several measures of inequality (e.g. Gini, Theil) weighted by

population in each region.

As we described before, our procedure to calculate inequality is different. We use nighttime
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light per capita of very small pixels to construct an index of inequality. There are more than

2.2 million populated pixels in the average country, and 81 individuals by populated pixel. Our

approach, differently from the previous research, allows calculating inequality within and between

regions, and ethnic groups, since we have many observations for each region / ethnic group. In

order to perform this exercise we calculate the Theil index since it is a decomposable indicator.31

The Theil index can be calculated as

(13) Theil = 1
N

N∑
i=1

yi
ȳ
ln

(
yi
ȳ

)

where N is the number of individuals, yi is the income of the i-th individual and ȳ is the average

income. In our case yi is the average light per capita in each pixel.

The decomposition of the Theil index takes the form

(14) Theil =
M∑
i=1

siTi +
M∑
i=1

siln
ȳi
ȳ

= Within+Between

where M is the number of groups, T is the Theil index for group i, ȳi is the average NTL per capita

for group i, and si is the proportion of NTL per capita of group i over the total NTL per capita of

the country, si = Niȳi
Nȳ .

We use the previous methodology to calculate within and between regions/ethnic groups across

all the countries in the world. To define the regions for each country we use the political borders

provided by The Global Administrative Unit Layers (2010) –GAUL– project of the Food and

Agriculture Organization (FAO) of the United Nations. It compiles and standardizes the best

available information on different administrative units for all the countries in the world, providing a

contribution to the standardization of the spatial dataset representing administrative units. GAUL

always maintains global layers with a unified coding system at country, first (e.g. departments)

and second administrative levels (e.g. districts). Where data is available, it provides layers on a

country by country basis down to third, fourth and lowers levels. Because GAUL works at global

level, unsettled territories are reported. At the first administrative level there are 3.304 regions.

For the ethnic borders we use the ‘Geo-referencing of ethnic groups’ (GREG) dataset, which

relies on maps and data drawn from the Atlas Narodov Mira that stems from a major project of
31Opposite to the case of the Theil index, which is decomposable, the Gini index is not. For this reason in the

decomposition of the Gini index there is an overlap component which occurs when there are individuals in different
groups who have an income difference between them that is of opposite sign to the average income difference
between the groups. This effect is called trans-variation between groups. This overlap component makes it difficult
the interpretation and the comparison across countries.
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charting ethnic groups worldwide, to represent groups territories as polygons. Figure 13 shows

the distribution of between inequality across administrative regions and ethnic groups in different

continents.

Figure 13: Inequality between regions and ethnic groups: countries by continent
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Figure 13 represents the distribution of the proportion of between inequality over total inequal-

ity. Between ethnic groups inequality represents also an important proportion of total inequality in

Africa.32 In fact, the six countries with the highest proportion of between ethnic groups inequality

over total inequality are from Africa: Central African Republic (82%), Chad (75%), Kenya (64%),

D.R. of Congo (64%), Tanzania (63%) and Gabon (54%).33 The inequality between regions is also

an important source of inequality in Africa. The highest proportion of between regions inequality is

reached in Guinea Bissau, Mauritania, Uganda, Burundi, Central Africa Republic and Gambia.34

Between regions inequality in Latin America is quite important, while the inequality between eth-

nic groups is less relevant. That is also the case in Asia: the inequality between regions is more

relevant than the inequality between ethnic groups.

7 Conclusions

We propose a new method to calculate inequality measures using nighttime light (NTL) captured

by satellite imagery. The economic literature has shown the usefulness of these measures to proxy

economic activity. In this paper, we show that these data can also be useful to measure economic

inequality around the world using a common methodology. Currently, there are several indicators

of inequality across countries produced by different institutions. They use different data and

methodology, producing indicators that do not necessarily coincide. Our objective is to propose

a procedure that can be generalised to a global scale and produce methodologically homogeneous

measurements that could be applied to any geographical scale. Our methodology is based on

constructing small pixels and calculating the average NTL per capita as a proxy for the income

per capita of the representative individual of the pixel. This procedure produces an average of

2.2 million populated pixels per country, and an average population of 81 individuals per pixel.

Then, we rank the pixels and perform the calculation of the Gini index following the standard

formulation. We name this index the MIFA (Measuring Inequality from Above) Gini index. To

check the appropriateness of this indicator we run a common factor analysis across the Gini indices

available from different sources. The exploratory analysis confirms that all those indices reflect

one common factor. The confirmatory analysis provides the loading of each indicator on the

common factor, and the predicted score of the common inequality factor. Despite the difficulties in

matching country Gini indices constructed using other sources, the MIFA Gini index works quite
32Alesina et al. (2016) also find that Africa is the most ethnically unequal place in the word.
33The procedure Alesina et al. (2016) only includes Chad among the countries with highest cross-ethnic-group

inequality.
34As in the case of between ethnic groups inequality, the ranking of countries with the highest levels of spatial

inequality following the procedure of Alesina et al. (2016) only has one coincidence: Central African Republic.
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well producing a correlation with the common inequality factor close to 0.6. The MIFA index

works best for countries with a low proportion of zero light pixels, high population density, and

high income per capita. Our methodology naturally allows calculating within and between groups

inequality for each country. We applied this decomposition to two dimensions: administrative

regions and ethnic groups. Future research will further investigate the relevance of this inequality

decomposition, in particular the ethnic dimension, to explain conflict, public good provisions, etc.
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A Pixel level

A.1 Nighttime light

We use the cloud-free night-time light (NTL) that provides artificial light on the Earth obtained

from the Defense Meteorological Satellite Program-Operational Line Scanner (DMSP-OLS). This

data offers a long-run viewpoint approach to the human economic activity from 1992 and 2013.

The DMSP-OLS values ranges from 0 (non-illuminated areas) to 63 (strongly illuminated areas).

DMSP-OLS has been extensively used in economics. It presents some limitation due to its relatively

coarse spatial resolution, lack of on-board calibration system, and relatively low radiometric resolu-

tion. The combination of these limitation result in signal saturation of OLS nighttime observations

(top-coding).

To overcome this problem, Elvidge et al. (1999) proposed the combination of the DMSP-OLS

data set with auxiliary data set obtained from the pre-flight sensor calibration. As a result, it

is possible to have a radiance calibrated NTL free of top-coding. Despite the case of the OLS

radiance calibrated NTL might potentially solves the saturation bias, there are some important

caveats. First, as the pre-flights calibration are seldom done, the data is only available in seven years

(1996,1999,2000,2003,2004,2006 and 2010). Second, because the DMSP-OLS does not have any on-

board calibration device, there is not a clear baseline value from the actual level of saturation. Thus,

the radiance values should still be considered relative and not absolute (Hsu et al., 2015). Third,

there are important differences in the time frequency with year (fewer orbits) and geographical

coverage for the calibration values might varies across time. As a result, the radiance calibrated

products present high instability in its quality and coverage (Hsu et al., 2015).

From 2013, a new version of cloud-free NTL data was released by the Earth Observation Group

(EOG) in the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric

Administration (NOAA), using the Suomi National Polar-orbiting Partnership (Suomi-NPP) satel-

lite using the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. VIIRS-NPP data sets

are available at an annual scale for 2015 and 2016, and a monthly scale for the 2012–2019 period.

Unlike DMSP-OLS data, the VIIRS data do not have any over-saturation bias and a higher reso-

lution (15 arc-second, approximately 500 m) but it is available for a short period of time. For this

reason we do not consider these data.
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A.2 Population Raster

The best data available on the human population distributions are the national population census.

Nonetheless, this information is rarely available at individual level and its time frequency is non-

homogeneous across countries. National census data are only available at census units (usually at

villages/cities, districts or, in some cases, sub-district level), which are generally quite aggregated

geographical units. As a consequence, there are different techniques that decomposed the census

units into smaller geographical units using different allocation models. Thus, in order to create

high-resolution population raster it is necessary to re-allocate people within each census units.

There are three main alternatives to do this procedure:

Without Allocation Model: This method only relies on the census unit to allocate population

into a specific grid. By assuming that people is homogeneously distributed within the census

unit, it possible to obtain a pixel-based population approach. When census unit is larger

than the resolution, population is allocated based on the proportion geographical area.

Lightly Modeled Allocation Model: Under this method, people is allocated within the census

unit using external information about the actual location of people. Normally, the external

information is luminosity which provides information of the actual location of people during

night. Then, the allocation within the census unit is based in the share of the total luminosity.

Modeled Allocation: This approach uses a complex interpolation model that based on several

layers (e.g. roads, coastlines, elevation, among others) predicts the most likely allocation

with the census unit. Then based, on this predictions the population raster is built.

The main sources of information on population raster currently available are described in table

7.

Table 7

Population Raster Resolution Census Units Reallocation Method

GPW V.3 2.5 arc-min (5kmx5km) 399,747 Unmodeled

GPW V.4 30 arc-sec (1kmx1km) Unmodeled

GRUMP 30 arc-sec (1kmx1km) 12,500,00 Lightly Modeled Allocation Model

Landscan 30 arc-sec (1kmx1km) 8,285,172 Modeled Allocation

Figure 14 presents the temporal availability of the population raster by the different sources.
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Figure 14: Temporal availability by population rasters
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A.2.1 Landscan

Landscan is often know as the daytime population as combines a multi-layered, dasymetric, spatial

modeling approach (also known as “smart interpolation”), to reallocate population based on the

census units. This modeling process is based on the census units for each country and primary

geospatial input or ancillary datasets, including land cover, roads, slope, urban areas, village

locations, and high resolution imagery analysis (Landsat, 2015). This information is availably

yearly from 2000-2015.

A.2.2 The Gridded Population of the World

The Gridded Population of the World (GPW) is known as the night-time population as relies on

the information housing without taking into account any other economic variable. Currently there

are available two versions with different resolutions: Version 3 (2.5 arc-min) and Version 4 (30

arc-sec 1kmx1km). The sooner is available for 1990,1995,2000,2005 and 2010. Data from 1990

and 2000 are based on round census data for each country. The remaining days are built using

projections, which are corrected to guarantee that does not exceed UN projections. In contrast,

besides to provide a much higher resolution, the latter uses either 2000 and 2010 census rounds to

build gridded information on total population,sex, urban/rural designation.

A.2.3 Other sources

Another known source of high-resolution population data is the Global Rural-Urban Mapping

Project –GRUMP– a 30 arc-second (1km at the equator) resolution that include a relocation

available for 1990, 1995 and 2000. Despite its high resolution, the allocation of population within

the grid is based on luminosity.
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B Country data

B.1 Gini indices

B.1.1 PovcalNet/World Development Indicators (WDI)

Host institution: World Bank.

Source data: National household surveys and Luxembourg Income Study (LIS).

Coverage: 1,000+ income or expenditure household surveys from 159 countries with different

coverage depending on the year. Comparative estimate for 91 countries from 1993 to 2013, 81

countries for 2008 to 2013 (mostly developing countries) for trend data. In our database, available

data from 2000 to 2013.

Description: The indicator is mainly based on household data. In particular, expenditure rather

than income surveys for developing countries and income surveys for high-income countries with

Gini indexes calculated from the LIS database. No interpolation is done.

Available for download through the World Bank Open Data website: https://data.worldbank.org.

B.1.2 World Income Inequality Database (WIID)

Host institution: UNU-Wider.

Source data: Household survey statistics obtained from national statistical offices, the Socio- Eco-

nomic Database for Latin America and the Caribbean (SEDLAC), the OECD Income Distribution

database (IDD), the EU-Statistics on Income and Living Conditions (EU-SILC), LIS and PovCal-

Net. Version 3.4 of January 2017.

Coverage: 182 countries for various years starting in the 1940s. Most data series start in the 1980s.

In our database: available data from 2000 to 2013.

Description: Collection of country-year estimates from many databases. The inequality statistics

are categorized by income concept and equivalence scale. No interpolation is done.

Available for download through the Wider-UNU website: https://www.wider.unu.edu.

B.1.3 World Wealth and Income Inequality Database (WID.world)

Host institution: World Inequality Lab.

Source data: Fiscal (income tax) data and data from national accounts combined with other sources

(household income and wealth surveys, inheritance and wealth tax data, as well as wealth rankings

published in the media). Indicator: pre-transfers, national income

Coverage: National accounts and fiscal data from 57 countries for the years 1980-2016 and older
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data for some countries. In our database: available data from 2000 to 2013.

Description: Annual estimates of the distributions of income and wealth (”distributional national

accounts”) harmonized based on definitions of income and wealth that are consistent with the

macroeconomic national accounts. Pareto interpolation is done.

Available for download through the Wid World website: https://wid.world.

B.1.4 Global Consumption and Income Project (GCIP)

Arjun Jayadev, Rahul Lahoti, Sanjay G. Reddy.

Source data: The project builds on various existing data resources, including the LIS.

B.2 GDP per capita

GDP per capita is gross domestic product divided by midyear population. GDP is the sum of

gross value added by all resident producers in the economy plus any product taxes and minus any

subsidies not included in the value of the products. It is calculated without making deductions for

depreciation of fabricated assets or for depletion and degradation of natural resources. Data are

in current U.S. dollars. Source: World Bank (https://data.worldbank.org).

B.3 Population density

Population density is midyear population divided by land area in square kilometers. Population

is based on the de facto definition of population, which counts all residents regardless of legal

status or citizenship–except for refugees not permanently settled in the country of asylum, who are

generally considered part of the population of their country of origin. Land area is a country’s total

area, excluding area under inland water bodies, national claims to continental shelf, and exclusive

economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.

Source: World Bank (https://data.worldbank.org).

B.4 Region

Common geographical classification used by World Bank to assign a region to each country.

There exist seven categories: East Asia and Pacific, Europe and Central Asia, Latin America

and Caribbean, Middle East and North Africa, North America, South Asia, Sub-Saharan Africa.
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