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Abstract. We provide revealed preference foundations to ordered logit, for discrete

and continuous decision problems. In both cases, the axiomatizations are based on a

simple property that reflects the additivity of cumulative logits.
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1. Introduction

Ordered logit involves (i) a mapping between preferences and alternatives in which

lower preferences are associated with lower choices, and (ii) a logistic distribution over

preferences. As a result, choices in a given decision problem are stochastic. Denoting

by (τ, σ) the location and scale parameters of the logistic distribution, and by taj the

last (threshold) preference where alternative a is maximal in decision problem j, the

ordered logit probability of selecting alternatives below or equal to a in decision problem

j is

F ol
j (a) =

1

1 + e−(t
a
j−τ)/σ

.

Ordered logit is one of the most commonly used models in empirical analysis across

various fields such as Economics, Sociology or Biology.1 In spite of the massive empirical

use of ordered logit, it lacks a proper revealed-preference analysis. This paper is the

first to provide choice-based foundations for the ordered logit model.
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We assume a given continuous family of preferences and observe choice behavior over

an arbitrary collection of decision problems. We pose the question as to what choice

data should be like in order to be rationalized by a logistic distribution over the family

of preferences. We study the two most fundamental choice settings in the application of

the model, one involving discrete choice and the other continuous choice. In the discrete

case, choices are a censored version of preferences, in the sense that each alternative

is chosen by an interval of preferences. In the continuous case, we have to distinguish

between interior choices and the corners. In the interior, there is a bijection between

choices and preferences. However, choices may be censored at the corners, where they

may be maximal for their corresponding intervals of preferences.

Our characterizations build upon the statistical literature. Galambos and Kotz

(1978), using classical results on the exponential distribution by Cauchy (1821), give

a condition under which a probability distribution defined over the real numbers, and

assumed to be symmetric with respect to the origin, can be a logistic distribution. Our

choice-based approach needs to depart from the statistical approach in a number of

ways. First, for any given decision problem, we observe the distribution of choices, not

the underlying distribution over preferences. Due to censoring, choices provide only

partial information over the preference distribution, and the challenge here is how to

expand the partial information to the totality of preferences. A second issue to be

addressed is that the distribution of choices may not generate a symmetric distribution

at the origin. A third is that, since there are multiple decision problems, we observe

multiple choice distributions, and we need to show that they have mutual consistency

and will therefore allow us to obtain a single underlying distribution over preferences.

Our axiomatic foundations are based on a single, intuitive property, which can be

operationalized by means of the usual cumulative logits. For a given alternative a in

decision problem j, the cumulative logit is

`j(a) = log
Fj(a)

1− Fj(a)
,

where Fj(a) is the observed cumulative choice probability in j of the alternatives below

or equal to a. Cumulative logit is a standard tool in the treatment of ordered logit,

where it corresponds to the normalized threshold preference (taj − τ)/σ. Notice then

that, for every two pairs of threshold preferences in two, possibly different, decision

problems, {taj , tbj} and {ta′j′ , tb
′

j′}, such that taj + tbj = ta
′

j′ + tb
′

j′ , it follows immediately

that ordered logit implies that `j(a) + `j(b) = `j′(a
′) + `j′(b

′). In our study of the
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continuous setting, we show that this property is not only necessary, but, remarkably,

sufficient. That is, any choice dataset satisfying the property can be rationalized by

a logistic distribution over preferences. The corresponding analysis of the discrete

setting requires us to consider a generalization of this property that operates over any

two equally-sized collections of threshold types. Interestingly, the proofs of the two

characterization results are susceptible to the same statistical treatment as used by

Galambos and Kotz (1978), but deal in unique ways with the specific natures of their

censored choice data.

We close this introduction by placing our contribution within the literature. First

and foremost, as already mentioned, this paper provides choice-based foundations to

the extensive empirical literature using ordered logit in both continuous and discrete

settings.2 This paper also contributes to the strand of literature that provides choice-

based foundations to various stochastic choice models. The classic works are those of

Luce (1959) and Block and Marshak (1960).3 Another relevant strand of the literature

is that formed by recent papers seeking to bridge the gap between the choice-based

foundations and the econometric implementation of stochastic models, such as Dard-

anoni, Manzini, Mariotti and Tyson (2020), Aguiar and Kashaev (2021), Barseghyan,

Molinari, and Thirkettle (2021), and Apesteguia and Ballester (2021). The current

paper is the first in obtaining the revealed preference foundations of ordered logit.

2. Continuous choice

The ordered set of preference types is the real line, R. Let J = {1, 2, . . . , J} be

a collection of continuous decision problems.4 For every decision problem j ∈ J and

type t ∈ R, we denote by atj the alternative chosen by type t in j, assuming it to be

2Apart from the references cited above, influential examples of papers using empirically ordered

logit in fields as diverse as political economy, finance, labour, political science, welfare, management,

gender and networks are, respectively, Besley and Persson (2011), Kaplan and Zingales (1997), Blau

and Hagy (1998), Baum (2002), Campante and Yanagizawa-Drott (2015), Cummings, (2004), Carlana

(2019) and Bailey, Cao, Kuchler and Stroebel (2018).
3Other recent contributions are Gul and Pesendorfer (2006), Manzini and Mariotti (2014), Caplin

and Dean (2015), Fudenberg, Iijima and Strzalecki (2015), Matejka and McKay (2015), Brady and

Rehbeck (2016), Apesteguia, Ballester and Lu (2017), Cerreia-Vioglio, Dillenberger, Riella and Ortol-

eva (2019), Frick, Iijima, and Strzalecki (2019), Natenzon (2019) or Cattaneo, Ma, Masatlioglu and

Suleymanov (2020).
4The archetypical examples of the continuous setting in Economics are linear budget sets.
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unique (except for a non-measurable set of types). We assume that the set of maximal

alternatives within a decision problem,
⋃
t∈R{atj}, is a connected subset of alternatives

on the frontier of the decision problem. Thus, we opt to represent each continuous

decision problem by the interval [0, 1]. Ordered choice is formalized by assuming that

for every j ∈ J:

(1) lim
t→−∞

atj = 0,

(2) t1 < t2 implies at1 ≤ at2j with strict inequality whenever at1j , a
t2
j ∈ (0, 1),

(3) lim
t→+∞

atj = 1.

Notice that the ordered choice structure allows us to invert the (subset of the) map

of types to (interior) choices and, whenever this is the case, we can denote by taj the

unique type for which alternative a ∈ (0, 1) is maximal in menu j.

2.1. Ordered-logistic choices. In a continuous setting, an ordered-logistic distribu-

tion with median type τ ∈ R and scale parameter σ ∈ R++ determines a collection

of menu-dependent, continuous CDFs describing choices. Interior alternatives are se-

lected by a unique type and have no mass. For every j ∈ J and every alternative

a ∈ (0, 1), the choice probability, within menu j, of the measurable set of alternatives

[0, a] is

F ol
j (a) =

1

1 + e−(t
a
j−τ)/σ

.

The value of the choice probability of any interval (a1, a2], with a1, a2 ∈ (0, 1), is

F ol
j (a2) − F ol

j (a1). Notice that we allow for corner alternatives of a decision problem,

a ∈ {0, 1}, to be maximal for a measurable subset of types. Whenever this is the case,

these corner alternatives will obviously be atoms that are chosen with strictly positive

mass in the corresponding decision problem. If a = 0 is chosen by a measurable subset

of types within decision problem j, ordered choice guarantees that there is a largest

type making that choice, i.e., t0j = lim
a→0+

taj . Hence, the choice probability of the corner

alternative a = 0 in ordered-logistic choice is equal to:

lim
a→0+

F ol
j (a) =

1

1 + e−(t
0
j−τ)/σ

.

Similarly, if a = 1 is selected by a measurable subset of types in decision problem j, we

can denote by t1j the smallest type which selects that particular alternative, and the
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choice probability of this corner alternative in ordered-logistic choice will be equal to:

1− lim
a→1−

F ol
j (a) = 1− 1

1 + e−(t
1
j−τ)/σ

.

The interpretation of the parameters is straightforward. Parameter τ captures the

median type, which is equal to the mean type, in the distribution. Notice that, when

τ points to an interior alternative aτj ∈ (0, 1), it is F ol
j (aτj ) = .5.5 Parameter σ captures

the variability of the distribution around this median type. When σ goes to zero,

the model resembles deterministic rational choice, with the choice probability of any

interval containing type τ approaching 1, and the choice probability of any interval not

containing τ approaching zero. When σ goes to ∞, the density of τ becomes closer to

that of any other type for any given interval (and thus, the CDF resembles uniform

choices over larger intervals of types).

2.2. A characterization. Choice data are represented by a collection of menu-dependent

CDFs, {Fj}j∈J, each of which is defined over the space of alternatives [0, 1]. We assume

that each of these CDFs is continuous and strictly increasing in (0, 1). We also assume

that, for every decision problem, a corner alternative, a ∈ {0, 1}, has strictly positive

mass if, and only if, it is maximal for some measurable subset of types. Finally, we con-

sider the following richness assumption, which states that, for every two decision prob-

lems j, j′ ∈ J, there exists a sequence of decision problems j0 = j, j1, . . . , jk, . . . , jK = j′

such that, for every k ∈ {0, . . . , K − 1}, the set of types,
⋃
a∈(0,1){tajk}, leading to in-

terior alternatives in decision problem jk has measurable intersection with the set of

types,
⋃
a∈(0,1){tajk+1}, leading to interior alternatives in decision problem jk+1. That

is, we can link the types that are informative in decision problem j to the types that

are informative in decision problem j′, without necessarily assuming that these two

decision problems have measurable intersection between informative types, but simply

that this occurs through some chain of decision problems. This is a minimal richness

assumption satisfied by all relevant datasets.

We now introduce a simple property on choice data {Fj}j∈J and show that it is

necessary and sufficient for choice data to be rationalized by a logistic distribution

over preferences. The property considers a pair {a, b} of interior alternatives in decision

problem j and a pair {a′, b′} of interior alternatives in decision problem j′, and it states

5Obviously, if aτj = 0 or aτj = 1, we know that lima→0+ F
ol
j (a) ≥ .5 and lima→1− F

ol(a) ≤ 0.5,

respectively.
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that, if the sum of types taj+t
b
j coincides with the sum of types ta

′

j′+t
b′

j′ , the corresponding

sums of cumulative logits coincide. That is:

Cumulative Logit Additivity (CLA). For every j, j′ ∈ J and every a, b, a′, b′ ∈
(0, 1), taj + tbj = ta

′

j′ + tb
′

j′ implies that `j(a) + `j(b) = `j′(a
′) + `j′(b

′).

We can now establish the following result.

Theorem 1. In a continuous setting, {Fj}j∈J is ordered logistic iff it satisfies CLA.

Proof of Theorem 1: In a continuous setting, it is immediate to see that any choice

data that are ordered logistic must satisfy CLA. We then need to prove the sufficiency

part of the result. For this, we start by constructing, for every decision problem j ∈ J, a

sequence of open intervals of types, {I0j , I1j , . . . , Inj , . . . }, and a sequence of real functions

defined over them, {G0
j , G

1
j , . . . , G

n
j , . . . }, satisfying the following four properties:

(1) For every n, Inj ⊆ In+1
j .

(2) For every n, Gn+1
j extends Gn

j .

(3) For every n, Gn
j takes values in (0, 1), is continuous, and strictly increasing.

Moreover, if Inj is bounded from above (respectively, from below), the function

Gn
j must be strictly bounded from above by a value k < 1 (respectively, strictly

bounded from below by a value k > 0).

(4) For every n and every four types t1, t2, t
′
1, t
′
2 in Inj , if t1 + t2 = t′1 + t′2 then

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
.

For every decision problem j ∈ J, the first interval of types, I0j , is the set of types

that select interior alternatives in j, i.e.,

I0j =
⋃

a∈(0,1)

{tja}.

The first function, G0
j , corresponds to the function induced by choice data over these

types, i.e., for every t ∈ I0j ,

G0
j(t) = Fj(a

t
j).

G0
j is a well-defined function thanks to the uniqueness assumption made on optimal

alternatives. It is obviously strictly increasing and takes values in (0, 1), given the

assumptions made over Fj. Moreover, if the interval I0j is bounded from above (respec-

tively, from below), there is a measurable subset of types selecting a = 1 (respectively,
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a = 0) and hence, lima→1− Fj(a) < 1 (respectively, lima→0+ Fj(a) > 0) and the bound-

edness conditions hold for G0
j . In addition, G0

j must satisfy property 4. To see this,

notice that we can apply CLA with j = j′ using the collection of interior alternatives

at1j , a
t2
j , a

t′1
j , a

t′2
j , and the equality over choice data corresponds exactly to property 4

over G0
j .

The remaining intervals and functions are now defined recursively. Given the collec-

tions {I0j , I1j , . . . , Inj } and {G0
j , G

1
j , . . . , G

n
j } satisfying all the properties, we define inter-

val In+1
j and function Gn+1

j such as to guarantee that {I0j , I1j , . . . , In+1
j } and

{G0
j , G

1
j , . . . , G

n+1
j } also satisfy the properties. Our first consideration is the defini-

tion of the new interval of types, In+1
j , which depends on the parity of n. If n is an

even (respectively, an odd) integer, we define interval In+1
j as follows:

• If Inj is not bounded from above (respectively, from below) define In+1
j = Inj .

• If Inj is bounded from above (respectively, from below), define In+1
j as the union

of: (i) the previous interval Inj , (ii) the lowest upper bound (respectively, the

largest lower bound) znj of interval Inj , and (iii) the set of types t for which there

exists t′ ∈ Inj such that t = 2znj − t′.6

We now consider the definition of function Gn+1
j . For every t ∈ Inj , define Gn+1

j (t) =

Gn
j (t). For the limit alternative znj , define Gn+1

j (znj ) = lims→znj G
n
j (s), where a right-

hand or left-hand limit must be considered, depending on the parity. Finally, for any

other type t belonging to In+1
j , we know that there exists a unique value t′ ∈ Inj such

that t = 2znj − t′, so we can define Gn+1
j (t) as the unique real value satisfying the

equation:

log
Gn+1
j (t)

1−Gn+1
j (t)

= 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gn
j (t′)

1−Gn
j (t′)

.

It is then evident that the function Gn+1
j is well defined on In+1

j .

We now show thatIn+1
j and Gn+1

j satisfy the properties above. First, it is immediate

to see that Inj ⊆ In+1
j and, hence, property 1 holds.

6Intuitively, we are simply duplicating the original bounded interval Inj to its right (respectively,

to its left) and adding the boundary points between the two. This step is not needed when there are

no corner choices, and hence the initial interval I0j is the set of all types R. When choices are observed

in only one of the corners, or, equivalently, I0j is bounded on one side, a unique duplication is needed,

which already forms the entire real line. If choices are observed in both corners, or, equivalently, the

initial interval is bounded on both sides, we need to duplicate the initial bounded interval an infinite

number of times, as the proof indicates.
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Second, it is also immediate that the construction guarantees that the function Gn+1
j

extends Gn
j , therefore property 2 is satisfied.

Third, notice that, by the continuity of Gn
j and the fact that all values belong to

(0, 1), it is guaranteed that the limit value at znj is well defined when needed. The

continuity of the function Gn+1
j is then an immediate consequence of this limit definition

at znj . To appreciate the strictly increasing nature of the new function, consider two

types t1 < t2. If both belong to Inj , we know that Gn+1
j (t1) < Gn+1

j (t2) must hold

because Gn+1
j extends the strictly increasing function Gn

j . If t1 ∈ Inj but t2 does not,

it must be the case that n is even and there exists t′2 ∈ Inj such that t2 = 2znj − t′2.

Since log
Gnj (z

n
j )

1−Gnj (znj )
> log

Gnj (t
′
2)

1−Gnj (t′2)
, it is log

Gn+1
j (t1)

1−Gn+1
j (t1)

= log
Gnj (t1)

1−Gnj (t1)
< log

Gnj (z
n
j )

1−Gnj (znj )
<

2 log
Gnj (z

n
j )

1−Gnj (znj )
− log

Gnj (t
′
2)

1−Gnj (t′”)
= log

Gn+1
j (t2)

1−Gn+1
j (t2)

, as desired. If t1 is not in Inj but t2 is, an

analogous argument applies in which n is odd and znj is the lower bound of Inj . If neither

of them is in Inj , they must both be above or below znj , depending on the parity. There

must exist t′1, t
′
2 ∈ Inj such that t1 = 2znj − t′1 and t2 = 2znj − t′2. It clearly must be that

t′1 > t′2 and we know that Gn
j (t′1) > Gn

j (t′2). The definition of Gn+1
j (t1) and Gn+1

j (t2)

guarantees that the former is strictly smaller than the latter. Hence, we have shown

that Gn+1 is strictly increasing and, to complete property 3, we need to show that this

function takes values in (0, 1) and is bounded as required. We show the case of n even;

the other case being analogous. If Inj is not bounded from above, the new function

merely replicates the original one and the property holds. If Inj is bounded from above,

we know that the value Gn+1(znj ) must be strictly lower than 1 due to the boundedness

condition. For every t ∈ In+1
j with t > znj , the construction guarantees that Gn+1

j

takes values in (0, 1). To show boundedness, notice that nothing has changed in the

lower part of the interval and hence the property is satisfied, as Gn+1
j extends Gn

j . For

the upper part of the interval, suppose that In+1
j is bounded from above. Therefore,

it must be that Inj is bounded from below (say, with largest lower bound k). It then

becomes obvious that log
Gn+1
j (t)

1−Gn+1
j (t)

< 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gnj (k)

1−Gnj (k)
, and hence Gn+1

j (t)

must be strictly lower than 1. This completes the proof that Gn+1
j satisfies property 3.

Fourth, consider any four types t1, t2, t
′
1, t
′
2 in In+1

j such that t1 + t2 = t′1 + t′2 and

assume, without loss of generality, that t1 < t′1 ≤ t′2 < t2.
7 Again, we show the case of

n even, the other case being analogous. We start by noticing that property 4 holds over

the closure of Inj , denoted I
n

j , thanks to the recursive assumption on Gn
j , the fact that

7Notice that if types were equal across the two pairs, the property would be trivially satisfied.
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Gn+1
j extends Gn

j and the limit construction at znj . Hence, we only need to consider

cases where not all four types belong to I
n

j :

• Case 1: None of the four types belongs to I
n

j . In this case, there must exist

s1, s2, s
′
1, s
′
2 ∈ Inj such that t1 = 2znj − s1, t

′
1 = 2znj − s′1, t2 = 2znj − s2 and

t′2 = 2znj − s′2. Clearly, it must be that s1 + s2 = s′1 + s′2 and hence, we know

that log
Gnj (s1)

1−Gnj (s1)
+log

Gnj (s2)

1−Gnj (s2)
= log

Gnj (s
′
1)

1−Gnj (s′1)
+log

Gnj (s
′
2)

1−Gnj (s′2)
, which is equivalent to

log
Gnj (s1)

1−Gnj (s1)
+ log

Gnj (s2)

1−Gnj (s2)
+ 4Gn+1

j (znj ) = log
Gnj (s

′
1)

1−Gnj (s′1)
+ log

Gnj (s
′
2)

1−Gnj (s′2)
+ 4Gn+1

j (znj ),

which implies log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
, as desired.

• Case 2: t1 ∈ I
n

j . In this case, there must exist s2, s
′
1, s
′
2 ∈ Inj such that t′1 =

2znj −s′1, t2 = 2znj −s2 and t′2 = 2znj −s′2. It must be clearly t1+s′1+s′2 = s2+2znj .

Define t̂ = s2 + znj − t1, which clearly belongs to Inj . Given that t1 + t̂ = s2 + znj ,

property 4 holds over these four types. Now, notice that it must also be that

s′1 + s′2 = t̂ + znj and hence property 4 holds over these four types. We can

combine the two expressions to verify that property 4 holds over t1, t2, t
′
1 and

t′2, as desired.

• Case 3: t1, t
′
1 ∈ I

n

j . In this case, there must exist s2, s
′
2 ∈ Inj such that t2 =

2znj − s2, and t′2 = 2znj − s′2. It must be clearly t1 + s′2 = t′1 + s2 and hence, we

know that log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (s
′
2)

1−Gnj (s′2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (s2)

1−Gnj (s2)
, which implies

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (s
′
2)

1−Gnj (s′2)
+ 2Gn+1

j (znj ) = log
Gnj (t

′
1)

1−Gnj (t′1)
+ log

Gnj (s2)

1−Gnj (s2)
+ 2Gn+1

j (znj ),

which implies log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
, as desired.

• Case 4: t1, t
′
1, t
′
2 ∈ I

n

j . In this case, there must exist s2 ∈ Inj such that t2 =

2znj − s2. It must clearly be that t1 + 2znj = t′1 + t′2 + s2. Define t̂ = t1 + znj − t′1,
which clearly belongs to Inj . Given that t′1 + t̂ = t1 + znj , property 4 holds over

these four types. Now, notice that it must also be that t̂+znj = t′2+s2 and hence

property 4 holds over these four types. We can combine the two expressions to

verify that property 4 holds over t1, t2, t
′
1 and t′2, as desired.

This completes the proof that property 4 holds and hence, we have shown that the

collections, {I0j , I1j , . . . , In+1
j } and {G0

j , G
1
j , . . . , G

n+1
j }, satisfy all the properties.

The limit interval of the sequence {I0j , I1j , . . . , Inj , . . . } is the entire set of reals. The

limit function of the sequence {G0
j , G

1
j , . . . , G

n
j , . . . }, which we denote by Gj, must be a

continuous, strictly increasing CDF over the reals. Moreover, it extends G0
j and must

also satisfy property 4 above.
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Consider the median type of distribution Gj, i.e., the type τj such that Gj(τj) = .5.

Define the function Hj over the reals as follows:

Hj(x) = Gj(τj + x).

We claim that Hj is a continuous, strictly increasing CDF over the reals that is sym-

metric with respect to the origin. We need to show symmetry. For this, consider

t1 = τj − x, t2 = τj + x and t′1 = t′2 = τj. Then, since t1 + t2 = t′1 + t′2, we know

that log
Gj(t1)

1−Gj(t1) + log
Gj(t2)

1−Gj(t2) = log
Gj(t

′
1)

1−Gj(t′1)
+ log

Gj(t
′
2)

1−Gj(t′2)
= 0 + 0 = 0. Hence, it

must be that log
Gj(t1)

1−Gj(t1) = log
1−Gj(t2)
Gj(t2)

and Gj(t1) = 1 − Gj(t2) follows. As a re-

sult, Hj(−x) = Gj(t1) = 1 − Gj(t2) = 1 − Hj(x), and the symmetry of Hj has been

proved.

Consider now the following function defined over the positive reals:

Oj(x) =
1−Hj(x)

Hj(x)
.

Since Hj is a continuous, strictly increasing CDF over the reals with Hj(0) = .5,

it is immediate that 1 − Oj(x) must be a continuous, strictly increasing CDF over

the positive reals with no mass at zero. Moreover, given that Gj satisfies property 4

above, the definition of Hj and Oj guarantees that Oj(x)Oj(z) = Oj(x+ z) must hold

for every pair of positive real values x and z. One can then reproduce the standard

argument that goes back to Cauchy (1821), and is described in Galambos and Kotz

(1978; Theorem 1.3.1), which guarantees that Oj must be of the exponential type with

no mass at the origin.8 That is, there exists σj ∈ R++ such that

1−Oj(x) = 1− 1−Hj(x)

Hj(x)
= 1− e−x/σj .

That is, for every x ≥ 0, it is true that Hj(x) = 1

1+e−x/σj
. Moreover, given the symmetry

of Hj with respect to the origin, for every x < 0, it must also be true that Hj(x) = 1−
Hj(−x) = 1− 1

1+ex/σj
= 1

1+e−x/σj
. That is, Hj is a logistic distribution with median zero

and parameter σj and, evidently, Gj is ordered logistic with median τj and parameter

σj. Since Gj extends G0
j , all choices in menu j are explained by this ordered-logistic

distribution.

Consider now two decision problems j, j′ ∈ J. By our richness assumption, there

exists a sequence of menus j0 = j, j1, . . . , jk, . . . , jK = j′ such that, for every k ∈
8The property is satisfied by exponential types with and without mass at zero. Since we know

that O has no mass at zero, it must be of the latter type.
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{0, . . . , K − 1}, I0
jk
∩ I0

jk+1 6= ∅. Consider t ∈ I0
jk
∩ I0

jk+1 and take t1 = t2 = t′1 = t′2 = t.

Using the ordered-logistic structure of Gjk and Gjk+1 , it follows immediately that they

must both have a common median type τ and a common parameter σ. The recursive

application of this argument shows that Gj and Gj′ must have the same common

median type τ and parameter σ, which concludes the proof. �

The proof of the theorem comprises a number of steps. First, we need to account for

the censoring generated by choices of the corner alternatives. Alternatives a ∈ (0, 1) are

associated with a unique type and hence, the choice distribution over these alternatives

immediately induces a distribution over the corresponding types. However, alternatives

{0, 1} may be associated with a measurable set of types generating these choices.

Whenever this is the case, the respective masses of the corner alternatives must be

appropriately distributed among these types, in such a way as to ensure that the

distribution over types thus constructed satisfies the assumed CLA constraint on the

interior choices. We use a recursive construction to address this requirement. Second,

in order to adopt the ordered-logistic form, we build upon Galambos and Kotz (1978;

Theorem 2.1.5), which provides a necessary and sufficient condition over triplets of real

numbers for a single CDF that is symmetric with respect to the origin. Importantly,

notice that in our revealed preference setting, the induced distribution over types can

have any mean, therefore its symmetry needs to be proved. We show that our CLA

property using quadruplets provides sufficient proof. Third, we need to show that all

the induced distributions over types, one for each decision problem, share the location

and scale parameters of the logistic distribution. We do this by applying the CLA

property to different decision problems.

We close this section by noting that the parameters of the logistic distribution (τ, σ)

rationalizing the choice data are unique. This is guaranteed by the assumed existence

of interior choices.

3. Discrete Choice

The ordered set of preference types is the real line, R. Let J = {1, 2, . . . , J} be a

collection of discrete decision problems. We assume ordered choice over the maximal

alternatives, which, in the present discrete setting, implies that, in any given menu

j, types (−∞, t1j) uniquely select one alternative, which we label as 1, types (t1j , t
2
j)
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uniquely select another alternative labelled 2, and so on and so forth, with types (t
Ij
j ,∞)

uniquely selecting another alternative labelled Ij + 1.9 Denote the set of maximal

alternatives in decision problem j by Ij = {1, 2, . . . , i, . . . , Ij + 1}.

3.1. Ordered-logistic choices. In a discrete choice setting, an ordered-logistic distri-

bution with median type τ ∈ R and scale parameter σ ∈ R++ determines a collection

of menu-dependent (discrete) probability distributions. We can work with the cor-

responding (discrete) CDFs; for every j ∈ J and every i < Ij + 1, the cumulative

choice probability of alternatives {1, 2, . . . , i} in decision problem j is determined by

the threshold type tij as

F ol
j (i) =

1

1 + e−(t
i
j−τ)/σ

.

Again, the interpretation of the parameters is straightforward. Parameter τ captures

the median type and hence, when τ = tij, it is F ol
j (i) = .5. Parameter σ captures

the variability of the distribution around this median type. When σ goes to zero, the

model resembles deterministic rational choice, with the mass of any interval containing

type τ approaching 1 (and hence, the alternative i in menu j such that ti−1j < τ < tij

concentrates all the choice probability). When σ goes to ∞, the density of τ becomes

closer, for any given interval, to that of any other type (and hence, alternatives 1 and

Ij + 1, which are selected by unbounded intervals of types, concentrate all the choice

probability, each to the same degree).

3.2. A characterization. Choice data are represented by a collection of discrete

menu-dependent CDFs {Fj}j∈J each of which is defined on Ij. Fj describes the ob-

served, cumulative, choice probabilities in decision problem j, with Fj(i) representing

the cumulative choice probability of alternatives {1, 2, . . . , i} ⊆ Ij. We assume positiv-

ity, that is, 0 < Fj(1) < · · · < Fj(i) < · · · < Fj(Ij) < 1 = Fj(Ij + 1) for every j ∈ J.

In addition, we make the following technical assumption: there exist threshold types

ti1j1 , t
i2
j2
, ti3j3 , t

i4
j4

, and ti
∗
j∗ such that Fj1(i1) < Fj∗(i

∗) = .5 < Fj2(i2), and the value
t
i3
j3
−ti∗
j∗

t
i4
j4
−ti∗
j∗

is an irrational number.

We introduce a generalization of CLA that characterizes ordered-logistic choice in

discrete settings. Consider any two equally-sized collections of threshold types. The

property states that the sum of the first collection is larger than that of the second,

9Since types have no mass in our analysis, the choice at threshold types is irrelevant and ties can

be avoided.
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if, and only if, the corresponding sum of cumulative logits in the former is larger than

that in the latter. That is,

Generalized Cumulative Logit Additivity (GCLA). For every positive inte-

ger M , and for every two collections of threshold types {ti1j1 , . . . , t
im
jm
, . . . , tiMjM} and

{ti
′
1

j′1
, . . . , t

i′m
j′m
, . . . , t

i′M
j′M
},

∑M
m=1 t

im
jm
≥

∑M
m=1 t

i′m
j′m

iff
∑M

m=1 `jm(im) ≥
∑M

m=1 `j′m(i′m).

We can then establish the following result.

Theorem 2. In a discrete setting, {Fj}j∈J is ordered logistic iff it satisfies GCLA.

Proof of Theorem 2: In a discrete setting, it is immediate to see that any choice data

that are ordered logistic must satisfy GCLA. We then need to prove the sufficiency

part of the result. For this, we start by constructing a function over the reals. By

assumption, there is a threshold type ti
∗
j∗ such that Fj∗(i

∗) = .5. Consider then the

subsets of real numbers

T = {x : x = tij − ti
∗

j∗ for some j ∈ J and i < Ij + 1},

T IC = {x : x is an integer combination of elements in T }.

It is immediate to see that T IC is a subgroup of the reals, and given our technical

assumption on the existence of threshold types producing a ratio that is irrational,

well-known results guarantee that T IC must be dense in the reals.10 We can then

find, for every x ∈ R, a sequence of elements (x1, x2, . . . , xk, . . . ) in T IC such that

xk → x. Each of the elements xk in this sequence is an integer combination of elements

in T and hence, we can find collections of threshold types {ti1j1 , . . . , t
iv
jv
, . . . , tiVjV } and

{si1j1 , . . . , s
iw
jw
, . . . , siWjW } such that xk =

∑V
v=1 nv(t

iv
jv
− ti∗j∗) −

∑W
w=1 nw(siwjw − t

i∗
j∗), where

all nv and nw are strictly positive integers. Consider the real value Hk(x) that solves

the equality log Hk(x)
1−Hk(x)

=
∑V

v=1 nv`jv(iv) −
∑W

w=1 nw`jw(iw). Denoting by H(x) the

limit of the sequence of values formed by Hk(x), we have constructed a function H

over the reals.

First of all, notice that for any given threshold type t, there may be several decision

problems which have this value t as a threshold type. GCLA guarantees that the

cumulative choice probability is the same in both decision problems, and hence the

function H is well defined.11 We now prove that H is increasing. Let x < x′. We know

10See, e.g., Theorem 1.6 in Salzmann, Grundhöfer, Hähl and Löwen (2007).
11Indeed, the same idea applies to the extension of H to any real number, by using limits of integer

combinations of threshold types. This argument is omitted below.
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that there exist sequences of elements (x1, x2, . . . , xk, . . . ) and (x′1, x
′
2, . . . , x

′
k, . . . ) in

T IC such that xk → x and x′k → x′. Since x < x′, there exists K such that xk < x′k

for every k ≥ K. Let k ≥ K, and consider the integer representations of xk given

by {nv, tivjv}
V
v=1 and {nw, siwjw}

W
w=1 and of x′k given by {n′v, t

i′v
j′v
}V ′v=1 and {n′w, s

i′w
j′w
}W ′w=1.

Consider the two positive integer values
∑V

v=1 nv +
∑W ′

w=1 n
′
w and

∑V ′

v=1 n
′
v +

∑W
w=1 nw,

one of which must be larger than the other. Consider w.l.o.g, that the former is the

larger and, on this basis, construct the following two collections of threshold types.

In collection one, we perform nv repetitions, from v = 1 to V , of the threshold type

tivjv , and n′w repetitions, from w = 1 to W ′, of the threshold type s
i′w
j′w

. In the second

collection, we perform n′v repetitions, from v = 1 to V ′, of the threshold type t
i′v
j′v

; nw

repetitions, from w = 1 to W , of the threshold types siwjw ; and, finally,
∑V

v=1 nv +∑W ′

w=1 n
′
w −

∑V ′

v=1 n
′
v −

∑W
w=1 nw repetitions of the threshold type ti

∗
j∗ . By construction,

these two collections have the same number of components, all of which are threshold

types. Moreover, given that xk < x′k, the sum of types is strictly smaller in the

former collection than in the latter, and the application of GCLA guarantees that the

sum of cumulative logits is strictly smaller in the former collection than in the latter.

The limit definition of H guarantees that H(x) ≤ H(x′). Similarly, it is immediate

to see that H is continuous and, given the definition of ti
∗
j∗ , it is also obvious that

H(0) = .5. Moreover, by assumption, there are threshold types ti1j1 and ti2j2 such that

Fj1(i1) < Fj∗(i
∗) = .5 < Fj2(i2) and hence by taking into account the sequences of

real numbers given by {ti1j1 − t
i∗
j∗ , 2(ti1j1 − t

i∗
j∗), . . . , k(ti1j1 − t

i∗
j∗), . . . } and {ti2j2 − t

i∗
j∗ , 2(ti2j2 −

ti
∗
j∗), . . . , k(ti2j2 − ti

∗
j∗), . . . }, it is obvious that H approaches 0 (respectively 1) when

considering real values approaching −∞ (respectively, ∞). It is also immediate to see

that H satisfies property 4 as described in the proof of Theorem 1.

Consider now the following function defined over the positive reals:

O(x) =
1−H(x)

H(x)
.

From the properties of H, it is immediate that 1−O(x) must be a continuous CDF over

the positive reals and that O(x)O(z) = O(x + z) must hold for every pair of positive

real values x and z. The same arguments used in the proof of Theorem 1 can be used

to show the ordered-logistic nature of H, as desired. �

The proof of the theorem is different from that of Theorem 1. In the case of contin-

uous choice, choice data from a decision problem provide information on an interval of
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types that can be extended to the real line yet still satisfy CLA. Then, we use the inter-

section of the intervals of types across menus and the CLA property to guarantee that

the extensions are of the same CDF. However, each discrete choice problem provides

CDF information only over a finite number of thresholds. Given the sparsity of these

thresholds, we need to consider all of them together, and expand the information to

the real line. We do this by using integer combinations of these thresholds, which, from

classic results, are known to form a dense subset of the reals. In order to implement

this strategy, we need a stronger additivity property, GCLA, which operates not only

over pairs of types but over two equally-sized collections of types. Once the extension

to the reals is done, we can complete the proof using arguments from the proof of

Theorem 1.12
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