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1 Introduction

Over the past decade, a growing consensus has emerged among academic economists and policy-

makers pointing to a substantial decline in the natural rate of interest in advanced economies.1

Some of the likely sources of that decline, including a lower trend growth rate of productivity

and demographic factors, suggest that the decline in the natural rate is likely to be highly

persistent, or even permanent.2

A persistent decline in the average natural rate of interest —which, following convention, we

henceforth refer to as r∗—has important implications for monetary policy, due to the presence of

a zero lower bound (ZLB) on the nominal interest rate. Thus, and given the inflation target, a

lower r∗ will generally hamper the ability of monetary policy to stabilize the economy, bringing

about more frequent episodes in which the ZLB becomes binding and the economy plunges

into a recession with below-target inflation. Not surprisingly, the evidence of a decline in r∗

has been a key motivation behind the monetary policy strategy reviews undertaken by many

central banks in recent years.

On the research front, and as discussed in the literature review below, several authors have

studied the problem of optimal monetary policy in the face of shocks that drive the natural

rate of interest temporarily into negative territory. A common finding of those analyses is that

the central bank finds it desirable to keep the short-term nominal rate at zero during those

episodes, even for some time once the natural rate has returned to positive values. In all of

those analyses, however, the natural rate tends to gravitate towards a positive mean, i.e. r∗ > 0.

By contrast, in the present paper we study the problem of optimal monetary policy under the

ZLB constraint when the natural rate fluctuates around a mean that is permanently negative,

i.e. r∗ < 0.

As discussed below, that environment is of particular interest since the optimal policy implies

a binding ZLB constraint in the steady state, a feature that is absent from conventional analyses

that assume a positive steady state real rate. While the assumption of a negative r∗ is at

odds with the predictions of a standard macro framework with an infinite-lived representative

consumer, it can be microfounded once the latter assumption is relaxed, e.g. by assuming an

1See, e.g. Brand and Mazelis (2019), Del Negro et al. (2019), Holston et al. (2017).
2See, e.g., Eggertsson et al. (2019).
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overlapping generations structure. Furthermore, we believe the assumption of a negative r∗

is more than a theoretical curiosum: recent estimates of the evolution of the natural rate in

advanced economies display a downward trend that has already attained negative territory for

some of them.3 But even if one negates the current relevance of a negative r∗, that relevance

can hardly be dismissed as a real possibility in a not too distant future, if the trends in some

of the fundamental forces behind the recent decline in the natural rate were to persist or even

strengthen further.

As much of the related literature, we cast our analysis of the optimal monetary policy

problem in the context of an otherwise standard New Keynesian model subject to a ZLB

constraint. A number of interesting results emerge from that exercise. Firstly, our findings

show that the optimal policy aims at steering the economy gradually towards a steady state

characterized by positive inflation, a positive output gap and a zero nominal rate. Thus, and

even though the combination of a negative r∗ and the ZLB constraint rules out the first-best

outcome of a zero inflation steady state, the choice of a gradual transition (rather than an

immediate jump to the new steady state) makes it possible for inflation to remain closer to zero

—its effi cient value—for a longer period, which is welfare improving.

Secondly, once the steady state is reached, inflation and output fluctuate optimally in re-

sponse to shocks to the natural rate, even though the nominal rate remains at zero most of

the time (all the time in our baseline calibration). We show that, behind the appearance of

extreme passivity, the central bank can implement the optimal outcome by means of an ap-

propriate state-contingent rule which calls for one-sided adjustments in the nominal rate in

response to (off-equilibrium) deviations from the desired inflation and output paths. In order

to establish that result, we derive and exploit a suffi cient condition for local determinacy for a

relatively general class of models with endogenous regime switches, a finding which we believe

has some independent interest.

The rest of the paper is organized as follows. The remaining of the present section provides

a brief review of the related literature. Section 2 formulates the optimal policy problem and

derives the associated optimality conditions. Section 3 analyzes the economy’s (deterministic)

transitional dynamics under the optimal policy. Section 4 characterizes the fluctuations of infla-

3See, e.g., Brand and Mazelis (2019)
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tion and output around the steady state, in response to natural rate shocks. Section 5 discusses

the implementation of the optimal plan, deriving suffi cient conditions on the coeffi cients of a

proposed interest rate rule to support the optimal plan as a unique equilibrium. Section 6

concludes.

1.1 Related Literature

Our paper is related to a branch of the literature that studies the optimal design of monetary

policy in the presence of a ZLB constraint on the nominal rate. Since Krugman (1998), a number

of articles have studied optimal monetary policy with an occasionally binding zero lower bound

(ZLB) on the nominal interest rate. Closest to us is the work by Eggertsson and Woodford

(2003), Jung, Teranishi and Watanabe (2005), Adam and Billi (2006), and Nakov (2008), who

analyze the problem of optimal policy under commitment in the basic New Keynesian model

with a ZLB constraint. A different line of work has focused on the implications of the ZLB

for the optimal choice of an inflation target, conditional on a given interest rate rule. Relevant

papers include Coibion et al. (2012), Bernanke et al. (2019), and Andrade et al. (2020, 2021).

In all the papers above, however, the natural interest rate becomes negative only temporarily,

and the binding ZLB is a transitory phenomenon. In contrast, the analysis of the present paper

assumes a negative steady state natural rate, and hence a long-lasting “secular stagnation”

environment with a ZLB that is binding in steady state.

The present paper is also related to a rather different branch of the literature, one studying

the conditions for equilibrium determinacy in regime-switching models. Applications of this

literature have typically focused on regime switches driven by stochastic variations in the co-

effi cients of a Taylor-type interest rate rule, which are often assumed to follow a finite-state

Markov process. Prominent examples include Davig and Leeper (2007), Farmer et al. (2009)

and Barthélemy and Marx (2019). The main difference in our approach is that we allow for

endogeneity in the regime switches, i.e. the regime is a function of the state.4 That endogeneity

arises as a consequence of the particular nonlinearity embedded in the interest rate rule that

implements the optimal allocation, which makes the effective coeffi cients of the corresponding

4Barthélemy and Marx (2017) also allow for endogeneity of the regime switches but only of a sort with
continuous transition probabilities, which rules out the threshold switches that arise naturally in models with a
ZLB constraint like ours.

3



linear model depend on the levels of inflation and output.5

2 The Optimal Monetary Policy Problem

The equilibrium conditions describing the economy’s non-policy block are assumed to be given

by

πt = βEt{πt+1}+ κyt (1)

yt = Et{yt+1} −
1

σ
(it − Et{πt+1} − rnt ) (2)

for t = 0, 1, 2, ...where πt denotes inflation, yt is the output gap, it is the short-term nominal rate

and rnt is the natural rate of interest. Equation (1) is the familiar New Keynesian Phillips curve,

which can be derived from the aggregation of firms’price setting decisions in an environment

with price rigidities à la Calvo (1983). Equation (2) is the so-called dynamic IS equation, which

results from combining an Euler equation for (log) aggregate consumption, a goods market

clearing condition and an equation describing the evolution of output and the real interest rate

under flexible prices.6

Variations in the natural rate of interest rnt are assumed to be described by

rnt = r∗ + zt (3)

where {zt} follows an exogenous AR(1) process with zero mean, autoregressive coeffi cient ρz

and innovation variance σ2z. The unconditional mean of the natural rate is given by r
∗, which

coincides with the real interest rate in the deterministic steady state. Henceforth, we assume

r∗ < 0 (4)

In a companion appendix, we formally describe an environment where (1) and (2) obtain

as equilibrium conditions, and where the steady state real interest rate may be negative. The

proposed environment is a version of a New Keynesian model with overlapping generations à la

5One drawback of our approach, of limited consequence in our particular application, is that it only allows
us to derive suffi cient conditions for determinacy, i.e. we cannot establish necessity, in contrast with the papers
mentioned above.

6See, e.g. Woodford (2003) or Galí (2015) for a derivation of (1) and (2) in a standard New Keynesian model.
In a companion appendix, we show that similar equilibrium conditions obtain in an OLG version of the New
Keynesian model that allows for a negative steady state real rate, as considered below.
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Blanchard-Yaari, as developed in Galí (2021). In that environment the steady state real interest

is not fully pinned down by the discount rate; instead it also depends on the extent to which

income of any given cohort declines over time as a result of retirement or other shocks that

make individuals leave employment permanently (e.g. skill obsolescence). That phenomenon

tends to enhance savings, lowering the steady state real rate, which may take a negative value.

The monetary authority is assumed to choose at t = 0 a state-contingent sequence {yt, πt}∞t=0
that minimizes the welfare loss function

1

2
E0

∞∑
t=0

βt
(
π2t + ϑy2t

)
subject to the sequence of constraints (1) and (2), as well the ZLB constraint

it ≥ 0 (5)

all for t = 0, 1, 2, ..7

Note that the ZLB constraint can be rewritten in terms of inflation and the output gap as:

rnt + Et{πt+1}+ σ(Et{yt+1} − yt) ≥ 0 (6)

for t = 0, 1, 2, ..

The (discounted) Lagrangian is given by:

L = E0
∞∑
t=0

βt
[

1

2

(
π2t + ϑy2t

)
− ξ1,t(πt − κyt − βπt+1)− ξ2,t[πt+1 + σ(yt+1 − yt)]

]
The associated optimality conditions are:

πt = ξ1,t − ξ1,t−1 + β−1ξ2,t−1 (7)

ϑyt = −κξ1,t − σξ2,t + σβ−1ξ2,t−1 (8)

ξ2,t ≥ 0 (9)

ξ2,t [rnt + Et{πt+1}+ σ(Et{yt+1} − yt)] = 0 (10)

7As discussed in the companion appendix, the previous loss function can be microfounded as the second
order approximation to the expected welfare losses of individuals currently alive in a New Keynesian model
with overlapping generations.
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which should be interpreted as holding for each time period and each possible state. The

previous conditions, combined with (1), (2), (3), (6) and initial conditions ξ1,−1 = ξ2,−1 = 0,

describe the economy’s equilibrium under the optimal policy.

In the next two sections, we characterize that equilibrium and provide simulations for a

calibrated version of the model. First we study the transitional dynamics. Then we look at the

economy’s response to shocks in a neighborhood of the steady state.

3 Transitional Dynamics under the Optimal Monetary
Policy

In the present section we focus on the transitional dynamics implied by the optimal policy. For

simplicity, we focus on the deterministic case, with rnt = r∗ < 0 for t = 0, 1, 2, ...

We start by characterizing the perfect foresight steady state under the optimal policy. In

the (deterministic) steady state we must have i = π + r ≥ 0 or, equivalently, π ≥ −r∗ > 0. In

addition, it follows from (7)-(10) that under the optimal policy:

π = β−1ξ2 ≥ 0

ϑy = −κξ1 + σ(β−1 − 1)ξ2

ξ2 ≥ 0 ; ξ2(r
∗ + π) = 0

It is easy to check that the optimal policy requires that i = 0. To see this, note that if i > 0

then ξ2 = 0 implying π = 0, which is inconsistent with a steady state. Thus the steady state

under the optimal policy must satisfy:

π = −r∗ > 0

y =
1− β
κ

π = −1− β
κ

r∗ > 0

ξ2 = βπ = −βr∗ > 0

ξ1 = −ϑ
κ
y +

σ(β−1 − 1)

κ
ξ2

= −(1− β)

κ

(
σ − ϑ

κ

)
r∗
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Next we study the transitional dynamics, i.e. we characterize the equilibrium paths that

satisfy

π̂t = βπ̂t+1 + κŷt

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − σξ̂2,t + σβ−1ξ̂2,t−1

ξ̂2,t + ξ2 ≥ 0

π̂t+1 + σ(ŷt+1 − ŷt) ≥ 0

(ξ̂2,t + ξ2) [π̂t+1 + σ(ŷt+1 − ŷt)] = 0

for t = 0, 1, 2, ...with initial conditions ξ̂1,−1 = −ξ1 and ξ̂2,−1 = −ξ2, and such that limt→∞ x̂t = 0

for x̂t ∈ {π̂t, ŷt, ξ̂1,t, ξ̂2,t}, where a ” ̂ ” symbol on a variable denotes deviations from the

corresponding steady state value. In Appendix A we describe our approach to solving the

above system of difference equations.

Figure 1 illustrates the transitional dynamics for a calibrated version of our economy. In

particular, we assume σ = 1, β = 0.99, κ = 0.1717, ϑ = 0.0191, which are values consistent

with the baseline calibration in Galí (2015). In addition, we set r = −0.0025, implying an

annualized steady state natural rate of minus 1 percent. Interest rates and the inflation rate

are shown in annualized terms.

As shown in Figure 1, the transition to the steady state under the optimal policy is not

immediate. Instead, the initial values of inflation and the output gap are significantly below

their long run values of 1 and 0.058 percent, respectively, and adjust only gradually towards that

steady state. In fact, inflation is negative for a few periods under our baseline calibration.8 By

choosing a path like the one depicted in Figure 1, the central bank succeeds in keeping inflation

close to the first best temporarily, even though it is at the cost of a persistently negative output

gap. Given the relative small weight of the latter under our baseline calibration (ϑ ' 0.02),

that choice turns out to be more desirable than jumping immediatly to the steady state (which

would be perfectly feasible). The persistent low inflation and output gaps are consistent with the

observed path for the real rate, which remains above its long run value r during the transition.

8The result of an optimal negative inflation in the short run is not general. In particular, it doesn’t obtain
when the weight on the output gap is raised suffi ciently (e.g. when ϑ = 1).
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Most interestingly, the path for the real rate is entirely driven by expected inflation, since the

nominal rate remains at the ZLB throughout the transition. Thus, the central bank manages

to implement its nontrivial optimal plan while keeping the setting for its policy instrument

unchanged. In section 4 below, we discuss how the central bank may implement the optimal

outcome, given the multiplicity of equilibrium paths consistent with a constant nominal rate.

4 Aggregate Fluctuations under the Optimal Monetary
Policy

In this section, we characterize the behavior of inflation and the output gap under the optimal

policy in a neighborhood of the steady state, in response to shocks to the natural rate (i.e.

fluctuations in zt). The (local) equilibrium dynamics are described by the system of stochastic

difference equations given by:

π̂t = βEt{π̂t+1}+ κŷt

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − ξ̂2,t + β−1ξ̂2,t−1

ξ̂2,t + ξ2 ≥ 0

σ(Et{ŷt+1} − ŷt) + Et{π̂t+1}+ zt ≥ 0

[ξ̂2,t + ξ2][σ(Et{ŷt+1} − ŷt) + Et{π̂t+1}+ zt] = 0

for t = 0, 1, 2, ...with initial conditions now given by ξ̂1,−1 = 0 and ξ̂2,−1 = 0. Appendix B

describes our approach to determining the solution to the system above.

Figure 2 displays the equilibrium path for inflation and the output gap under the optimal

policy, given a sequence of realized values of the shock {zt}, drawn from an AR(1) process with

ρz = 0.5 and σz = 0.0025. The remaining parameters are kept at their baseline settings. The

top-left box of the Figure displays the simulated path of the natural rate (in black) and the

actual real rate (in blue). Note that the latter is much smoother than the former, which reflects

the central bank’s inability to match one-for-one fluctuations in the natural rate, due to the

ZLB constraint. As a result, the central bank can’t prevent some fluctuations in inflation and

8



the output gap around the steady state, as illustrated in the two bottom plots. Furthermore

the nominal rate remains at the ZLB throughout the simulation, as shown on the top-right

plot. Thus, the central bank manages to steer the economy along the optimal path without

changing the settings for its policy instrument, and keeping it instead constant at its steady

state level. The reason why it does not lower the nominal rate in the face of negative natural

rate shocks is clear: the ZLB prevents it from doing so. Perhaps less obvious is why it keeps the

nominal rate at zero even when the natural rate lies above its steady state value. Intuitively,

the anticipation that the central bank will keep the interest rate lower than the natural rate

when the latter is high helps stabilize inflation and the output gap when the natural rate is low

(and can thus not be matched due to the ZLB). That policy, which relies on the forward looking

nature of aggregate demand and inflation, can thus be viewed as a form of forward guidance.

In the simulation shown in Figure 2, the contemporaneous stabilizing gains from raising the

nominal rate above zero, in order to bring it closer to the natural rate when the latter is high

do not compensate the gains in earlier periods with a low natural rate from the anticipation of

a constant zero nominal rate in the future. As a result, the nominal rate remains at the ZLB

throughout the simulation.

The previous property is not general, however. In particular, the central bank may find it

desirable to deviate from the constant zero nominal rate policy in response to an increase in the

natural rate of interest that is suffi ciently large and which may thus induce very high inflation if

not counteracted at least partly by an increase in the nominal rate. This is illustrated in Figure

3, which shows a simulation of equilibrium fluctuations in a calibrated economy identical to that

underlying the simulations of Figure 2 except for a higher shock volatility, with σz = 0.0075.

Thus, in the simulation shown in Figure 3 there are three episodes in which the central bank

optimally chooses to raise the nominal rate above zero, even if only briefly. Roughly speaking,

those episodes can be seen to take place when two conditions are met simultaneously: (i) the

natural interest rate is unusually high, and (ii) this has not been preceded by a recent episode

with an unusually low natural rate, for in the latter case it would be desirable to keep the

nominal rate "low for longer" for the reasons discussed above. Note, however, that the nominal

rate remains unchanged at the ZLB for much of the simulation.

How the central bank manages to steer the economy as required by the solution to its
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optimal policy problem while keeping the nominal rate unchanged most or all of the time is the

subject of the next section.

5 Implementing the Optimal Monetary Policy when the
ZLB Constraint is Nearly-Always Binding

Let (i∗t , y
∗
t , π

∗
t ) denote the central bank’s optimal plan, i.e. the solution to the policy problem

analyzed in the previous sections. Consider next deviations from the optimal plan satisfying

the equilibrium conditions (1), (2) and (5). Formally, and letting π̃t ≡ πt−π∗t , ỹt ≡ yt− y∗t and

ĩt ≡ it − i∗t , we have

π̃t = βEt{π̃t+1}+ κỹt (11)

ỹt = Et{ỹt+1} −
1

σ
(̃it − Et{π̃t+1}) (12)

as well as the ZLB constraint

ĩt ≥ −i∗t (13)

for all t.

We complement the previous equations with the following interest rate rule

ĩt = φπ,t |π̃t|+ φy,t |ỹt| (14)

where (φπ,t, φy,t) ≥ 0. According to the rule, the central bank commits to deviating from the

nominal rate path prescribed by the optimal plan whenever inflation and/or the output gap

deviate from their corresponding optimal paths. The fact that the adjustment of the nominal

rate is proportional to the absolute value of those deviations guarantees that it ≥ i∗t ≥ 0, thus

meeting the ZLB constraint (13) at all times, even on any off-equilibrium path.

Note that π̃t = ỹt = ĩt = 0 for all t is always a solution to the system (11)-(14). Our

objective is to study the conditions (if any) on (φπ, φy) that guarantee that the previous solution

is (locally) unique or, equivalently, that the optimal plan is effectively implemented.

We tackle this problem in two stages. First we specify the time-varying interest rate rule

in a way that allows us to reformulate our model of the deviations from the optimal plan as a
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regime switching model. In particular we assume that (14) takes the form of a piecewise linear

rule, given by

ĩt =


φ(1)π π̃t + φ(1)y ỹt if π̃t ≥ 0 and ỹt ≥ 0

−φ(2)π π̃t − φ(2)y ỹt if π̃t < 0 and ỹt < 0

φ(3)π π̃t − φ(3)y ỹt if π̃t ≥ 0 and ỹt < 0

−φ(4)π π̃t + φ(4)y ỹt if π̃t < 0 and ỹt ≥ 0

(15)

where (φ(i)π , φ
(i)
y ) ≥ 0 for i ∈ {1, 2, 3, 4}. Thus, we allow for coeffi cients in the interest rate

rule that depend on the sign configuration of the deviations (π̃t, ỹt). The resulting system,

consisting of (11), (12) and (15), can be viewed as a regime switching model, with endogenous

regime switches.

In a second stage, to which we turn next, we apply a novel result that allows us to establish

suffi cient conditions for the (local) uniqueness of the solution of our endogenous regime switching

model. Given its potential interest beyond the problem at hand, we first state our result for a

more general setting before we apply it to the model above.

5.1 A Suffi cient Condition for Equilibrium Determinacy of a (Pos-
sibly Endogenous) Regime Switching Model

Consider a regime switching model whose equilibrium is described by a system of difference

equations of the form:

xt = AtEt{xt+1} (16)

where xt is an (n× 1) vector of non-predetermined variables and At is an (n× n) matrix. We

assume At ∈ A where A ≡ {A(1),A(2), ...,A(Q)} is a finite set of (n× n) nonsingular matrices.

The evolution of At over time is left unspecified. It may evolve exogenously, e.g. according

to a Markov process. Alternatively At may vary endogenously, i.e. as a function of current or

lagged values of xt.

It is clear that xt = 0 for all t is a solution to (16). Our goal is to establish suffi cient

conditions on A that guarantee that xt = 0 all t is the only bounded solution to (16). We take

this to be the case if limT→+∞ Et{‖xt+T‖} > M ||xt|| for any M > 0 and xt 6= 0, and where ‖·‖

is the usual L2 norm.

Let us define the induced matrix norm
∥∥A(q)

∥∥ ≡ maxx
∥∥A(q)x

∥∥ subject to ‖x‖ = 1. In

addition, define α ≡ max{
∥∥A(1)

∥∥,∥∥A(2)
∥∥ , ....∥∥A(Q)

∥∥}. Note that nonsingularity of A(q) for
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q = 1, 2, ...Q implies α > 0.

Theorem [suffi cient condition for determinacy] : If α < 1, then xt = 0 for all t is the only

bounded solution to (16)

Proof: See Appendix C

Remark: note that
∥∥A(q)

∥∥ < 1 implies that all the eigenvalues of A(q) lie within the unit

circle (though the converse is not true). See Appendix D for a proof. Hence our suffi cient

condition α < 1 also implies that xt = 0 is the unique bounded solution to the single regime

model xt = A(q)Et{xt+1}, for q = 1, 2, ..., Q.

5.2 Application to the Problem of Optimal Policy Implementation

Next, we apply the result of the previous subsection to the problem of implementation of the

optimal monetary policy analyzed above. Recall that the dynamics of feasible deviations from

the optimal policy allocation are described by (11), (12) and (15), with the latter effectively

defining four regimes. Plugging (15) into (12) to eliminate ĩt, and after some straightforward

substitutions, we can represent the dynamics for xt ≡ [ỹt, π̃t]
′ as in (16), with

A(1) ≡ 1

σ + φ(1)y + κφ(1)π

[
σ 1− βφ(1)π
σκ κ+ β(σ + φ(1)y )

]

A(2) ≡ 1

σ − φ(2)y − κφ(2)π

[
σ 1 + βφ(2)π
σκ κ+ β(σ − φ(2)y )

]

A(3) ≡ 1

σ − φ(3)y + κφ(3)π

[
σ 1− βφ(3)π
σκ κ+ β(σ − φ(3)y )

]

A(4) ≡ 1

σ + φ(4)y − κφ(4)π

[
σ 1 + βφ(4)π
σκ κ+ β(σ + φ(4)y )

]
corresponding to the four regimes defined above (i.e., Q = 4).

The blue (dark) areas in Figures 4a-4d display the configurations of (φ(q)π , φ(q)y ) values for

which
∥∥A(q)

∥∥ < 1, for q ∈ {1, 2, 3, 4}. Thus, to the extent that the central bank adopts rule

(15) with state-contingent coeffi cients that fall within those regions, no deviations from the

desired allocation will be consistent with a (bounded) equilibrium, and hence the rule will

indeed implement the desired allocation (y∗t , π
∗
t ), while satisfying the ZLB constraint.
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As discussed above, the norm condition
∥∥A(q)

∥∥ < 1 is stronger than the usual eigenvalue

condition for determinacy in a model with no regime switches. The grey (light) areas in Figure 4

display the configurations of inflation and output coeffi cients that meet the eigenvalue criterion

but not the norm one. The previous result is consistent with the finding in Barthélemy andMarx

(2019), in the context of a New Keynesian model with exogenous switches in the interest rate

rule coeffi cients, showing that indeterminacy may emerge even if each of the regimes adheres to

the Taylor principle (i.e. it satisfies the eigenvalue condition for uniqueness in the corresponding

single regime economy).

Note also that there is a nonempty intersection for the determinacy regions shown in Figures

4.a-4.d, which corresponds to that of regime q = 4.9 Thus, any configuration of inflation

and output gap coeffi cients within this region will make it possible to support the optimal

allocation as a unique equilibrium by means of a version of rule (15) with constant coeffi cients,

i.e. (φ(q)π , φ(q)y ) = (φπ, φy) for q = 1, 2, 3, 4.

Finally, a word about some of the rule’s implications. The rule instructs the central bank

to keep the interest rate at the level i∗t , consistent with the optimal policy, and to deviate

from it only if inflation and/or output deviate from their optimal values, π∗t and y
∗
t . If the

rule coeffi cients satisfy the suffi cient condition for a unique equilibrium (as assumed in our

simulations), those deviations never materialize ex-post. While the previous feature can be

shown to be common to any interest rule that implements a given feasible allocation, a specific

characteristic of our rule is that all its implied off-equilibrium deviations are positive, i.e. they

involve raising the nominal interest rate above i∗t . That property guarantees that that the ZLB

constrained is never violated, not even on off-equilibrium paths, given that i∗t ≥ 0 for all t

(with i∗t = 0 most of the time in our simulations). Needless to say, some of the off-equilibrium

interest rate movements called for by the rule may be perceived ex-post as being suboptimal

(e.g. raising the interest rate if inflation falls below its desired level), but this sort of time

inconsistency is inherent to optimal policies under commitment even in the absence of the ZLB

constraint, their benefits arising from the (desirable) effects of their anticipation (as it is the

case here).

9The previous property applies to our baseline calibration, it is not necessarily general.
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6 Concluding Remarks

An eventual permanent decline in the natural rate of interest to negative levels raises the

prospect that central bankers may feel compelled to keep the policy rate at zero for an indefinite

period. The analysis in the present paper shows that monetary policy can keep influencing

macro outcomes in that environment, in the face of continuous shocks that may impinge on the

economy.

More specifically, we have studied the optimal monetary policy problem in a New Keynesian

economy with a zero lower bound (ZLB) on the nominal interest rate, and in which the natural

rate of interest has a negative mean, i.e. r∗ < 0. We have shown that the optimal policy in

that environment aims to approach gradually a steady state with positive average inflation. A

gradualist approach minimizes welfare losses by keeping inflation close to zero for longer.

Around that steady state, inflation and the output gap have been shown to fluctuate in

response to shocks to the natural rate, since the central bank is unable to fully stabilize those

variables at their (first-best) zero value due to the ZLB constraint. Under the optimal policy,

persistent fluctuations in the output gap and inflation coexist with a nominal rate that remains

at its ZLB most (or all) of the time.

Finally we have shown that the central bank can implement the optimal policy as a (locally)

unique equilibrium by means of an appropriate state-contingent rule. In order to establish that

result, we derive a suffi cient condition for local determinacy in a more general model with

endogenous regime switches, a finding that may be of interest beyond the problem studied in

the present paper.
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APPENDIX A: Solving for the transitional dynamics under the optimal policy

We seek to determine the solution to the system

π̂t = βπ̂t+1 + κŷt

ŷt ≤ ŷt+1 + σ−1π̂t+1

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − σξ̂2,t + σβ−1ξ̂2,t−1

ξ̂2,t ≥ βr∗

(ξ̂2,t − βr) [π̂t+1 + σ(ŷt+1 − ŷt)] = 0

for t = 0, 1, 2, ...and such that limt→∞ x̂t = 0 for x̂t ∈ {π̂t, ŷt, ξ̂1,t, ξ̂2,t},

We conjecture that it > 0 for t < t∗ and it = 0 for t ≥ t∗, for some t∗ ≥ 0 to be determined.

In that case, for t = t∗, t∗ + 1, ...we have

π̂t = βπ̂t+1 + κŷt

ŷt = ŷt+1 + σ−1π̂t+1

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − σξ̂2,t + σβ−1ξ̂2,t−1

with ξ̂2,t∗−1 = −ξ2 = βr∗ and an initial condition for ξ̂1,t∗−1 to be determined below.

Next we derive the canonical representation. Note that:

π̂t = βπ̂t+1 + κŷt

= (β + σ−1κ)π̂t+1 + κŷt+1

ξ̂1,t−1 = ξ̂1,t − π̂t + β−1ξ̂2,t−1

= ξ̂1,t − (β + σ−1κ)π̂t+1 − κŷt+1 + σ−1ϑŷt + σ−1κξ̂1,t + ξ̂2,t

= (1 + σ−1κ)ξ̂1,t + (σ−2ϑ− σ−1κ− β)π̂t+1 + (σ−1ϑ− κ)ŷt+1 + ξ̂2,t

ξ̂2,t−1 = σ−1βϑŷt + σ−1βκξ̂1,t + βξ̂2,t

= βξ̂2,t + σ−1βκξ̂1,t + σ−1βϑŷt+1 + σ−2βϑπ̂t+1
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More compactly,
π̂t
ŷt

ξ̂1,t−1
ξ̂2,t−1

 =


β + σ−1κ κ 0 0
σ−1 1 0 0

σ−2ϑ− σ−1κ− β σ−1ϑ− κ 1 + σ−1κ 1
σ−2βϑ σ−1βϑ σ−1βκ β



π̂t+1
ŷt+1
ξ̂1,t
ξ̂2,t


or, letting x̂t ≡ [π̂t, ŷt]

′ and ξ̂t ≡ [ξ̂1,t, ξ̂2,t]
′[

x̂t
ξ̂t−1

]
=

[
A11 0
A21 A22

] [
x̂t+1
ξ̂t

]
The eigenvalues of A correspond to those of A11 and A22. Each has two real eigenvalues,

one inside and one outside the unit circle. Thus the solution is (locally) unique and has the

following state-space representation:

x̂t = Cξ̂t−1 (17)

ξ̂t = Bξ̂t−1 (18)

for t = t∗, t∗ + 1,...with ξ̂t∗−1 = [ξ̂1,t∗−1, βr
∗]′.

For t = 0, 1, ..., t∗ − 1 we have it > 0 and ξ̂2,t = βr. The equilibrium dynamics are given by

π̂t = βπ̂t+1 + κŷt

ϑŷt = −κξ̂1,t + σ(1− β)r (19)

π̂t = ξ̂1,t − ξ̂1,t−1 + r∗ (20)

for t = 0, 1, ..., t∗−1 with initial condition ξ̂1,−1 = −ξ1 = (1−β)
κ

(
σ − ϑ

κ

)
r and terminal condition

π̂t∗ = c11ξ̂1,t∗−1 − c12ξ2 = c11ξ̂1,t∗−1 + c12βr
∗

Combining the previous equations to eliminate output:

π̂t = βπ̂t+1 + κŷt

= βπ̂t+1 −
κ2

ϑ
ξ̂1,t +

κ

ϑ
σ(1− β)r∗

For t = 1, ..., t∗ − 2 we have

ξ̂1,t − ξ̂1,t−1 = βξ̂1,t+1 − βξ̂1,t −
κ2

ϑ
ξ̂1,t +

(κσ
ϑ
− 1
)

(1− β)r∗

or, rearranging terms

ξ̂1,t = γξ̂1,t−1 + βγξ̂1,t+1 + δr∗

18



where γ ≡ ϑ
(1+β)ϑ+κ2

and δ ≡ γ
(
κσ
ϑ
− 1
)

(1− β) > 0.

For t = 0,

ξ̂1,0 = βγξ̂1,1 + (δr∗ − γξ1)

For t = t∗ − 1,

ξ̂1,t∗−1 − ξ̂1,t∗−2 = β[b11ξ̂1,t∗−1 + b12βr
∗]− βξ̂1,t∗−1 −

κ2

ϑ
ξ̂1,t∗−1 +

(κσ
ϑ
− 1
)

(1− β)r∗

or, rearranging terms,

[1− βb11 + β +
κ2

ϑ
]ξ̂1,t∗−1 = ξ̂1,t∗−2 +

[
b12β

2 +
(κσ
ϑ
− 1
)

(1− β)
]
r∗

or, rearranging terms,

ξ̂1,t∗−1 =
1

1− βb11 + β + κ2

ϑ

ξ̂1,t∗−2 +
b12β

2 +
(
κσ
ϑ
− 1
)

(1− β)

1− βb11 + β + κ2

ϑ

r∗

Thus, we have a system S with t∗ unknowns (ξ̂1,0, ξ̂1,1,...,̂ξ1,t∗−1) and equal number of equa-

tions.

Algorithm:

(1) Conjecture t∗ = 0. Solve (18) with ξ̂−1 = [−ξ1,−ξ2]′. If ξ̂2,t > −ξ2 for t = 0, 1, 2, ... then

conjecture is validated. Otherwise move on to (2)

(2) Increase t∗ by one period. Solve (18) with ξ̂t∗−1 = [ξ̂1,t∗−1,−ξ2]′ where ξ̂1,t∗−1 is obtained

by solving system S. If ξ̂2,t > −ξ2 for t = t∗, t∗ + 1, ... then conjecture is validated and move

on to (3). Otherwise back to (2).

(3) Solve for π̂t, ŷt using (17) for for t = t∗, t∗+ 1, ... and (19) and (20) for t = 0, 1, ..., t∗− 1.

APPENDIX B: Solving for the local equilibrium dynamics under the optimal

policy

We use the numerical algorithm for solving rational expectations models as implemented in

the CompEcon toolkit of Miranda and Fackler (2002). In particular, we solve for the optimal

policy x as a function of the state s, when equilibrium is governed by a system of the form

f [st, xt, Eth(st+1, xt+1)] = ξt
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where s follows the state transition function

st+1 = g(st, xt, εt+1)

and xt and ξt in our case satisfy the following Kuhn-Tucker condition

it > 0, ξ2t > 0, it > 0⇒ ξ2t = 0.

The solution is obtained with the collocation method, which consists of approximating the

expectation functions by linear combinations of known basis functions, θj. The corresponding

coeffi cients, cj, are determined by requiring the approximating function to satisfy the equilib-

rium equations exactly at n collocation nodes:

h[s, x(s)] ≈
n∑
j=1

cjθj(s)

For a given value of the coeffi cient vector c, the equilibrium policies xi are computed at the

n collocation nodes si by solving a standard root-finding problem. The coeffi cient vector c is

updated solving the n-dimensional linear system
n∑
j=1

cjθj (si) = h (si, xi)

The previous iterative procedure is repeated until the distance between successive values

of c becomes suffi ciently small. To approximate the expectation functions, we discretize the

innovation to rnt using a K-node Gaussian quadrature scheme:

Eh[s, x(s)] ≈
K∑
k=1

n∑
j=1

ωkcjθj [g (si, x, εk)]

where εk and ωk are Gaussian quadrature nodes and weights chosen so that the discrete dis-

tribution approximates the continuous univariate normal distribution N(0, σ2). We use linear

splines on a uniform grid of 200 points for values of the natural rate of interest between −10

percent and +10 percent, so that each point on the grid corresponds to 10 basis points.

APPENDIX C: Proof of Theorem [suffi ciency conditions for determinacy]

From (16) we have xt+T−1 = At+T−1Et+T−1{xt+T} from which it follows that

‖xt+T−1‖ = ‖At+T−1Et+T−1{xt+T}‖ ≤ α ‖Et+T−1{xt+T}‖
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Accordingly, and given that α > 0, can write

‖Et+T−1{xt+T}‖ ≥
1

α
‖xt+T−1‖

=
1

α
[Et+T−2{‖xt+T−1‖}+ ξt+T−1]

≥ 1

α
[‖Et+T−2{xt+T−1}‖+ ξt+T−1]

where ξt+k ≡ ‖xt+k‖−Et+k−1{‖xt+k‖}. To simplify the notation, define yt+k ≡ ‖Et+k{xt+k+1}‖.

Thus we have

yt+T−1 ≥
1

α
yt+T−2 +

1

α
ξt+T−1

which can be iterated recursively to yield

yt+T−1 ≥
1

αT−1
yt +

1

α
ξt+T−1 +

1

α2
ξt+T−2 + ...+

1

αT−1
ξt+1

Taking expectations conditional on information available in period t on both sides, and

using the law of iterated expectations (which implies Et{ξt+k} = Et{Et+k−1{ξt+k}} = 0 for

k = 1, 2, 3, ..) we can write

Et{yt+T−1} ≥
1

αT−1
yt

or, equivalently,

Et{‖Et+T−1{xt+T}‖} ≥
1

αT−1
‖Et{xt+1}‖

=
1

αT−1
∥∥A−1t xt

∥∥
which in turn allows us to write

Et{‖xt+T‖} = Et{Et+T−1{‖xt+T‖}}

≥ Et{‖Et+T−1{xt+T}‖}

≥ 1

αT−1
∥∥A−1t xt

∥∥
Define δq ≡ minx

∥∥(A(q))−1x
∥∥ subject to ‖x‖ = 1. Note that nonsingularity of A(q) implies

δq > 0. Let δ ≡ min{δ1, δ2, .., δQ}. Thus, it follows that

Et{‖xt+T‖} ≥
δ

αT−1
‖xt‖

21



Thus, α < 1 implies

lim
T→+∞

Et{‖xt+T‖} > M ‖xt‖

for any M > 0 and xt 6= 0. QED.

APPENDIX D

Let A be a nonsingular matrix with ‖A‖ < 1. Thus, 0 < x′A′Ax < 1 for all x such

that ‖x‖ = 1. Let Q be the matrix of (orthonormal) eigenvectors of A′A and let Υ be the

corresponding (diagonal) matrix with (real) eigenvalues on its diagonal. Thus, A′AQ = QΥ

with Q′Q = I. Hence Q′A′AQ = Υ, with all diagonal elements of Υ between zero and one.

Thus we can write A′A = QΥQ′ or, equivalently, A′QQ′A = (QΥ
1
2 )(Υ

1
2Q
′
) implying A′Q =

QΥ
1
2 . Thus the eigenvalues of A′ (and, hence, of A, since both share the same characteristic

polynomial) are given by the diagonal elements of Υ
1
2 and are thus real and between zero and

one. This is precisely the condition for determinacy of a single regime model.
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Figure 1: Transitional dynamics under the optimal monetary policy. Percent deviations from
steady state in annualized terms.
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Figure 2: Aggregate fluctuations under the optimal monetary policy with baseline calibration.
Percent deviations from steady state in annualized terms.
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Figure 3: Aggregate fluctuations under the optimal monetary policy with higher shock volatil-
ity. Percent deviations from steady state in annualized terms.



Figure 4: Implementation of the optimal monetary policy with state-contingent interest rate
rule. Blue (dark) areas show values of the rule coefficients consistent with the norm condi-
tion for determinacy, while grey (light) areas show the values that meet only the standard
eigenvalue condition.
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