
 

bse.eu/research 
 
 

Constrained School Choice: 
An Experimental QRE Analysis 
BSE Working Paper 1270 
July 2021 (Revised: September 2022) 
Jorge Alcalde-Unzu, Flip Klijn, Marc Vorsatz 



Constrained School Choice:
An Experimental QRE Analysis∗

Jorge Alcalde-Unzu† Flip Klijn‡ Marc Vorsatz§

September 24, 2022

Abstract
The theoretical literature on public school choice proposes centralized mechanisms that as-
sign children to schools on the basis of parents’ preferences and the priorities children have for
different schools. The related experimental literature analyzes in detail how various mecha-
nisms fare in terms of welfare and stability of the resulting matchings, yet often provides only
aggregate statistics of the individual behavior that leads to these outcomes (i.e., the degree
to which subjects tell the truth in the induced simultaneous move game). In this paper, we
show that the quantal response equilibrium (QRE) adequately describes individual behavior
and the resulting matching in three constrained problems for which the immediate acceptance
mechanism and the student-optimal stable mechanism coincide. Specifically, the comparative
statics of the logit-QRE with risk-neutral and expected-payoff-maximizing agents capture the
directional changes of subject behavior and the prevalence of the different stable matchings
when cardinal payoffs (i.e., relative preference intensities) are modified in the experiment.
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1 Introduction

Motivation
In many public school choice programs, centralized mechanisms such as the student-optimal stable
mechanism and the immediate acceptance mechanism are used to assign children to schools on
the basis of parents’ preferences and the priorities of children for different schools (based on, e.g.,
walking distance, siblings, etc.).1 In a constrained setting where parents can only rank a limited
number of schools, which happens in many real-life applications,2 there may be incentives to behave
strategically. Specifically, a very common situation is that the parents prefer their child to go to
school x instead of school y but the child has higher priority at school y than at school x. The
parents then face an important decision. Will they report their preferences on the pair (x, y)

truthfully or will they misrepresent their preferences by ranking school y above school x? Our
paper contributes to the experimental literature that analyzes the structure of manipulations in
school choice problems by studying how cardinal payoffs affect subject behavior.

For the constrained setting, laboratory experiments have shown that subjects may fail to
coordinate on a Nash equilibrium.3 In fact, to the best of our knowledge, there are no studies
that give clear-cut descriptions of subjects’ behavior and resulting matchings. We consider three
constrained problems for which the immediate acceptance mechanism and the student-optimal
stable mechanism coincide and show that quantal response theory introduced by McKelvey
and Palfrey (1995) is capable of describing the main behavioral patterns.4 From a logit-QRE
perspective, if the payoff of school x is much higher than the payoff of school y, there are incentives
to play a strategy in which school x is ranked above school y. On the other hand, if the payoffs
of the two schools are close to each other, strategies that rank school y above school x have the
advantage that not much payoff is foregone and that the risk of getting an even worse outcome
than school y diminishes. We next detail the experimental design and our main findings to clarify
these points further.

Experiment and contribution
We consider a setting with three students and two schools (s1 and s2) such that each student can
only apply to one school. The preferences of the students and the priorities students have at the
schools remain the same throughout the experiment. Two parameters vary in our study. First, the
number of seats schools offer changes each six rounds of an experimental session. School s1 offers
one and school s2 offers two seats in the first six rounds of a session (we refer to this situation as

1The student-optimal mechanism is the mechanism based on the deferred acceptance algorithm (Gale and Shap-
ley, 1962). The immediate acceptance mechanism is also known as the “Boston mechanism.” For further details we
refer to Abdulkadiroğlu and Sönmez (2003) who initiated the market design literature on school choice.

2See Dur (2019), Dur and Morrill (2020), and Kojima and Ünver (2014) for details.
3See the subsection “Related literature” at the end of the Introduction for references.
4The quantal response equilibrium has been applied as an equilibrium notion in many experimental settings in-

cluding all-pay auctions (Anderson, Goeree, and Holt, 1998), the traveler’s dilemma (Capra et al., 1999), jury deci-
sion rules (Guarnaschelli, McKelvey, and Palfrey, 2000), alternating offer bargaining games (Goeree and Holt, 2000),
coordination games (Anderson, Goeree, and Holt, 2001), first price auctions (Goeree, Holt, and Palfrey, 2002), gen-
eralized matching pennies games (Goeree, Holt, and Palfrey, 2003), capacity allocation games (Chen, Su, and
Zhao, 2012), and two-sided matching (Echenique, Wilson, and Yariv, 2016).
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problem P1), both schools offer one seat in the next six rounds (problem P2), and in the final six
rounds s1 offers two and s2 offers one seat (problem P3). Our treatment variable is the material
payoff subjects receive from their matches. A subject always receives 1 monetary unit if she is
assigned to the school she likes most and nothing if she remains unmatched. In treatment L (low
payoff), a subject receives 0.3 monetary units if she is matched to the school she likes least. This
payoff equals 0.7 monetary units in treatment H (high payoff). In each of P1 and P3, there are two
stable matchings: the student-optimal stable matching µI and the school-optimal stable matching
µS. All students weakly prefer µI to µS. There is a unique stable matching in P2.5

Our experimental predictions are based on the logit version of the quantal response equilibrium
(logit-QRE) with risk-neutral and expected-payoff-maximizing agents, which is parametrized by
a “rationality parameter” λ ≥ 0.6 It is well-known that for large λ, the logit-QRE tends towards
a Nash equilibrium in mixed strategies. For both P1 and P3, the resulting matching under this
limiting logit-QRE is µI in treatment L but µS in treatment H. The underlying intuition is that at
the pure strategy Nash equilibrium that yields µI some students take the risk of being unmatched.
This risk comes with the potential benefit of being matched to the most preferred school. For it
being worthwhile to take this risk (instead of applying to the worst school, which ensures a seat,
but comes with a low payoff), the payoff difference between the two schools must be sufficiently
high, which is the case in treatment L but not in treatment H. A similar argument applies in the
general (non-limiting) case as well. In fact, we establish that independently of the actual rationality
parameters in treatments L and H, µI is more likely to be obtained than µS in treatment L but µS

is more prevalent than µI in treatment H. Our data supports this prediction, which we consider
to be our main finding. In P1 of treatment L, µI is obtained in 30.2% and µS in 27.2% of the cases
(the frequency of an unstable matching is thus 42.6%). On the other hand, in P1 of treatment H,
µI is obtained in 19.7% and µS in 45.1% of the cases. The frequencies for P3 are 43.2% for µI and
37.0% for µS in treatment L, but 24.1% for µI and 59.9% for µS in treatment H. In each of the
two problems, the frequency difference between µI and µS is significant at the 5-percent level for
treatment H but not for treatment L.

The logit-QRE also permits us to derive hypotheses regarding student behavior. Point predic-
tions indicate for a given problem P ∈ {P1,P2,P3} and for a given treatment whether a student
is more likely to apply to school s1 or to school s2. And treatment comparisons refer to how
the probability with which a student applies to each of the two schools changes between the two
treatments. The experimental data is in almost all instances consistent with these predictions. In
particular, for P1 and P3, 4 out of a total of 5 statistical tests regarding treatment comparisons
yield a one-sided p-value below 0.05. With respect to the point predictions, there is more noise in
the data because “only” 3 out of a total of 12 comparisons are significant at the 5-percent level.

We also estimate the logit-QRE for the pooled data at the problem level via maximum
5Problem P2 has been added to the design mainly for completeness reasons. We thus concentrate in the intro-

duction on our two main problems P1 and P3. A complete set of predictions and the corresponding data analysis
for problem P2 is presented alongside the other two problems in Sections 2 and 3, respectively.

6We concentrate on the logit-QRE because Haile, Hortaçsu, and Kosenok (2008) show that in its most general
form, the quantal response equilibrium is not falsifiable in any game (any behavior can be rationalized). See also
Goeree, Holt, and Palfrey (2005).
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likelihood. The estimated λ is largest in P2, which is arguably the simplest setting because it has
a unique Nash equilibrium outcome (supported by an infinite number of Nash equilibria in mixed
strategies). In each of P1 and P3, the estimated λ is smaller in treatment L than in treatment H.
Finally, we find that this discrepancy in the estimation of λ is reduced if agents are risk-averse
but not if they have preferences for the student-optimal stable matching (the expected utility
depends positively on the probability that this matching is reached) or the expected group payoff.

Related literature
There is a steadily increasing number of experimental studies that complement the theoretical
literature on school choice (see Hakimov and Kübler, 2020, for an excellent overview). It is by now
well understood that some subjects fail to report their true preferences under the unconstrained
student-optimal stable mechanism. Under the immediate acceptance mechanism, subject behavior
is even less in line with the true preferences (see, e.g., Calsamiglia, Haeringer, and Klijn, 2010;
Chen and Kesten, 2019; Chen and Sönmez, 2006; Featherstone and Niederle, 2016; and Pais and
Pinter, 2008). The kind of deviations subjects employ under the two mechanisms are very similar.
In particular, the order of two schools at the top of their preference ranking might be switched if
students have a higher priority in the less desired of the two schools.

The existing experiments on school choice mainly compare various mechanisms in terms of their
outcome (stability and welfare of the resulting matching), but only offer a less detailed overview of
the behavior that leads to these outcomes (i.e., often the focus is a comparison of truth-telling rates
across mechanisms). It seems therefore necessary to develop alternative models that capture the
observed behavioral patterns. The logit-QRE is a natural starting point because it takes relative
preference intensities explicitly into account.7 Apart from our study, only Echenique, Wilson,
and Yariv (2016) and Dreyfuss, Heffetz, and Rabin (2021) estimate a logit-QRE in a two-sided
matching market. The main difference between our study and Echenique, Wilson, and Yariv (2016)
is that we specifically design the experiment in such a way that the predictions of the logit-QRE
depend on the treatment condition. Furthermore, Echenique, Wilson, and Yariv (2016) do not
derive testable hypotheses from the logit-QRE.

Using the data of Li (2017) on the (strategy-proof) random serial dictatorship mechanism,
Dreyfuss, Heffetz, and Rabin (2021) suggest that expectation-based loss aversion can explain
individuals’ deviations from truth-telling. When the underlying mechanism is strategy-proof, the
logit-QRE with expected-payoff-maximizing agents converges towards truthful preference revela-
tion, which implies that deviations of rational subjects are likely to be caused by non-standard
preferences.

Remainder
We proceed as follows. In Section 2, we detail the experimental design and procedures and we
derive predictions from the logit-QRE. In Section 3, we present all experimental results. Section 4
concludes. The appendix contains the experimental instructions, formal proofs, additional data
analysis, and theoretical predictions for lists of length 2 (i.e., the unconstrained mechanisms).

7Abdulkadiroğlu, Che, and Yasuda (2011) highlight in a restricted environment that the immediate acceptance
mechanism allows parents to express their relative preference intensities.
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2 Laboratory experiment

2.1 Design and procedures

Our experiment is designed to analyze behavior in three school choice problems in which three
students (labeled 1, 2, and 3) seek to obtain a seat at schools s1 and s2. The preferences of the
students and the priorities of the schools are presented in Table 1 and are the same in all three
problems. The number of seats schools offer, however, changes over the course of an experimental
session and is given in Table 2.

Preferences Priorities
1 2 3 s1 s2

Best match: s1 s1 s2 3 2

Second best: s2 s2 s1 1 1

Third best: 2 3

Table 1: Preferences of students over schools
and priorities of schools over students.

Problem # seats
s1 s2

P1 1 2

P2 1 1

P3 2 1

Table 2: Number of seats at schools.

During the experiment, subjects assume the role of students. Schools are not strategic players.
The information in Table 1 is common knowledge. The number of seats schools offer is made
public at the beginning of each round of the experiment. Given this information, the subjects’
task is to submit a single application to a school (not necessarily to the most preferred school)
to be used by a central clearinghouse to assign students to schools. Specifically, we focus on
the constrained immediate acceptance or, equivalently, the constrained deferred acceptance
mechanism (the equivalence is due to the fact that lists are of length 1):

Constrained Immediate/Deferred Acceptance Mechanism

Step 1. Each student sends an application to exactly one school.

Step 2. Each school that has received at least one application accepts the application from the
student with the highest priority (among all received applications). If a school with two
seats has received at least two applications, then it also accepts the application from the
student with the second highest priority (among all received applications). All other
applications (if any) are rejected.

Each student is assigned to the school that she applied to provided that the school
accepted her application. If the application of a student was rejected, then the student
remains without a seat.
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The experiment was programmed within the z–Tree toolbox provided by Fischbacher (2007)
and carried out at Lineex (www.lineex.es) hosted at the University of Valencia. At the beginning
of a session, subjects received written instructions that were read aloud by an instructor (see
Appendix A). Participants were informed in particular that the experiment would take a total
of 18 rounds and that the number of seats schools offer would change each six rounds. In all
sessions, P1 was always played first (rounds 1–6), P2 always played second (rounds 7–12), and
P3 always played third (13–18).8 Then, the computer software started. The program matched
participants anonymously into groups of three. Within each group, one subject was assigned the
role of student 1, another subject the role of student 2, and a third subject the role of student 3.
Groups and roles did not change over the course of the experiment. Before round 1, subjects first
went individually over an illustrative example (to get used to the mechanism) and then played a
trial round that was not taken into account for payment (to become familiar with the computer
software). At the beginning of each round, the computer screen presented the preferences of the
three group members, the priorities of the two schools, and the number of seats at each school.
Subjects took then their respective decisions. At the end of each round, each subject was informed
of her resulting match.

Our treatment variable is the payoff subjects receive. In each round, a subject received 1 ECU
if she ended up at her most preferred school and 0 ECU if her application was rejected (in which
case she ended up unmatched). In treatment L (low), a subject received 0.3 ECU if she ended up
at her second most preferred (or equivalently, her least preferred) school. In treatment H (high),
this payoff was 0.7 ECU. Each ECU was worth 1e.

We ran two sessions (one with 42 and another one with 39 subjects) per treatment. In total, 162
undergraduates from various disciplines participated in the experiment. Each session lasted about
90 minutes. Apart from the payoff subjects accumulated during the session, they also received a
show-up fee of 3e. Subjects earned on average 13.73e in treatment L and 14.60e in treatment H.

2.2 Predictions

In this subsection, we derive our experimental predictions. A (school choice) problem is a five-tuple
P = ⟨I, S, q, PI , PS⟩ where

• I = {1, 2, . . . , n} is a finite set of students (individuals);
• S is a finite set of schools;
• q ≡ (qs)s∈S where for each s ∈ S, qs is the number of available seats at school s;
• PI ≡ (Pi)i∈I is a profile of strict preference relations of the students, where for each i ∈ I, Pi

is a complete, irreflexive, and transitive binary relation over S ∪ {i}; and
• PS ≡ (Ps)s∈S is a profile of strict priority relations of the schools, where for each s ∈ S, Ps

is a complete, irreflexive, and transitive binary relation over I.

We assume that for each student i, each school is preferred to her outside option (being unmatched),
which is denoted by i. A matching of students to schools is a function µ : I → S such that for

8There is no need to counterbalance the order in which problems are played because we do not compare outcomes
between problems.
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each i ∈ I and for each s ∈ S,

• µ(i) ∈ S ∪ {i} and
• |µ−1(s)| ≤ qs.

We will often write a matching µ as the vector (µ(1), µ(2), . . . , µ(n)), where for each i, µ(i) is
called student i’s match. Whenever µ(i) = i, student i is unmatched, i.e., remains without seat.
A pair (i, s) ∈ I × S blocks matching µ if s Pi µ(i) and

• |µ−1(s)| < qs or
• |µ−1(s)| = qs and there exists k ∈ µ−1(s) such that i Ps k.

A matching is stable if no pair (i, s) blocks it. The set of stable matchings is non-empty (Gale
and Shapley, 1962). Moreover, there exists a student-optimal stable matching µI which is weakly
preferred by all students to all other stable matchings. Similarly, there exists a school-optimal
stable matching µS which is student-pessimal, i.e., all students weakly prefer any other stable
matching to µS. Table 3 shows all stable matchings in our three problems. In problems P1 and P3,
there are two stable matchings (µI and µS). Since there is only one stable matching in problem
P2, the side-optimal stable matchings µI and µS coincide in this problem.

Problem µI µS

P1 (s1, s2, s2) ̸= (s2, s2, s1)

P2 (1, s2, s1) = (1, s2, s1)

P3 (s1, s1, s2) ̸= (s1, s2, s1)

Table 3: Set of all stable matchings.

We consider the strategic game induced by the school choice mechanism. Let I = {1, 2, 3}
be the set of players. Each player i ∈ I has a set of pure strategies Ai = {ai1, ai2}, where aij
is player i’s strategy of sending an application to school sj. Let A ≡ "i∈I Ai denote the set of
strategy-profiles a = (a1, a2, a3).

Let P ∈ {P1,P2,P3}. For each a ∈ A and each i ∈ I, let βi(a,P) denote the match of player i
when players send applications a and schools have priorities and seat availability as given by P .
Fix a problem P ∈ {P1,P2,P3} and a treatment T ∈ {L,H}. We assume that player i has a
utility function ui : A → R that reflects the possible per-round payoffs in the experiment, i.e.,

ui(a) ≡


0 if βi(a,P) = i, i.e., player i is unmatched;
0.3 if βi(a,P) is player i’s bad match and T = L;
0.7 if βi(a,P) is player i’s bad match and T = H;
1 if βi(a,P) is player i’s good match.

Here, good (bad) match refers to player i’s most (least) preferred school at P .
A strategy-profile â ∈ A is a Nash equilibrium (in pure strategies) if for each i ∈ I and each

ai ∈ Ai, ui(â) ≥ ui(ai, (âj)j ̸=i). For each problem, the set of Nash equilibrium outcomes of the
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simultaneous-move game induced by the constrained immediate acceptance mechanism coincides
with the set of stable matchings (Haeringer and Klijn, 2009). Hence, while there is a unique stable
matching and therefore a unique Nash equilibrium outcome in problem P2, there are two Nash
equilibrium outcomes in each of the other two problems.

Let ∆i denote the set of mixed strategies for player i. More specifically, an element of ∆i is a
probability distribution pi : Ai → R, i.e., pi(ai1) + pi(ai2) = 1 and for each aij ∈ Ai, pi(aij) ≥ 0.
Let ∆ ≡ "i∈I ∆i. The domain of the utility function u is extended from A to ∆ by defining for
each p ∈ ∆,

ui(p) ≡
∑

a=(a1,a2,a3)∈A

[∏
i∈I

pi(ai)

]
· ui(a).

Since pi(ai1)+pi(ai2) = 1, we can denote pi(ai1) by pi and pi(ai2) by 1−pi, and thus interchangeably
refer to an element of ∆i by (pi, 1 − pi) or simply by pi. For each p = (p1, p2, p3) ∈ ∆ and each
i ∈ I, we let p−i ≡ (pj)j ̸=i.

A strategy-profile p̂ ∈ ∆ is a Nash equilibrium in mixed strategies if for each i ∈ I and each
pi ∈ ∆i, ui(p̂) ≥ ui(pi, p̂−i). The set of Nash equilibria in mixed strategies is computed and
depicted for each problem in Figure 4 of Appendix B. The resulting probability distributions over
matchings are presented in Table 4.

Problem Treatment (p̂1, p̂2, p̂3) µI µS unstable

P1 L,H (1, 0, 0) 1 0 0

L,H (0, 0, 1) 0 1 0

L (0.3, 0, 0.7) 0.09 0.49 0.42

L (0, 0.3, 0.7) 0 0.49 0.51

H (0.7, 0, 0.3) 0.49 0.09 0.42

H (0, 0.7, 0.3) 0 0.21 0.79

P2 L,H (p̂1, 0, 1) for each p̂1 ∈ [0, 1] 1 1 0

P3 L,H (1, 1, 0) 1 0 0

L,H (1, 0, 1) 0 1 0

L (1, 0.3, 0.7) 0.09 0.49 0.42

H (1, 0.7, 0.3) 0.49 0.09 0.42

Table 4: Probability distribution over matchings induced by Nash equilibria in mixed strategies
(p̂1, p̂2, p̂3). Note: x = 0.3 in treatment L and x = 0.7 in treatment H. Recall that in P2, µI = µS .

Table 4 highlights that there are multiple Nash equilibrium outcomes in problems P1 and P3.
The notion of quantal response equilibrium for normal form games, introduced by McKelvey and
Palfrey (1995), can be used as an equilibrium selection criterion. Quantal response equilibria in
its logit form are defined by means of a non-negative parameter λ that is inversely related to the
players’ error level. Given λ ≥ 0, a strategy-profile p∗ ∈ ∆ is a logit quantal response equilibrium
(logit-QRE) if for each i ∈ I and each aij ∈ Ai,

p∗i (aij) =
eλ·ui(aij ,p

∗
−i)

eλ·ui(ai1,p∗−i) + eλ·ui(ai2,p∗−i)
. (1)
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If λ = 0, then players choose uniformly at random. By Theorem 2 in McKelvey and Palfrey
(1995), if λ → ∞, then p∗ converges to a Nash equilibrium in mixed strategies. We refer to this
Nash equilibrium as the limiting logit-QRE.

In each problem, since each of the three players has two pure strategies, the system of equations
(1) reduces to three equations with three unknowns, i.e., p∗1, p∗2, and p∗3 (the probabilities with which
the students apply to school s1). Given λ ≥ 0, we indicate this logit-QRE probability for student
i in problem P ∈ {P1,P2,P3} of treatment T ∈ {L,H} by p∗i (λ | P , T ). Figure 1 depicts the logit-
QRE probabilities for all instances (combinations of problems and treatments) of our experiment.

Panel 5: Problem 3 − Treatment L Panel 6: Problem 3 − Treatment H

Panel 3: Problem 2 − Treatment L Panel 4: Problem 2 − Treatment H

Panel 1: Problem 1 − Treatment L Panel 2: Problem 1 − Treatment H

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

λ

p i∗ (λ
|P

j,T
)

Figure 1: Logit-QRE probabilities. Color scheme: (p∗1, p
∗
2, p

∗
3) → (black, dark-gray, light-gray).

Most importantly, in each of the problems P1 and P3, the limiting logit-QRE depends on the
treatment. In particular, panel 1 of Figure 1 reveals that in P1 (q1 = 1 and q2 = 2) of treatment
L, as λ grows large, the probability with which student 1 applies to school s1 and students 2 and
3 apply to school s2 approaches 1. So, all students are accepted with probability 1 for large λ and
the resulting matching is (s1, s2, s2), which corresponds to the student-optimal stable matching of
P1. However, panel 2 shows that in P1 of treatment H, the resulting matching under the limiting
logit-QRE is the school-optimal stable matching of P1, i.e., (s2, s2, s1). A similar observation can
be made for P3 (q1 = 2 and q2 = 1): for large λ, the resulting matching converges again to
the student-optimal stable matching (s1, s1, s2) in treatment L, while the school-optimal stable
matching (s1, s2, s1) is obtained in treatment H. Finally, while (1, s2, s1) is the unique Nash
equilibrium outcome in P2 (q1 = q2 = 1), Table 4 shows that it is sustained by an infinite number
of Nash equilibria in mixed strategies. The probability distribution over matchings induced by the
logit-QRE converges to the degenerate probability distribution where (1, s2, s1) has probability 1.
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This is because in the limiting logit-QRE of both treatments, the probability with which student
1 applies to school s1 converges to 0.5, while the probability with which students 2 and 3 apply
to schools s2 and s1, respectively, approaches 1. However, the trajectory of the logit-QRE clearly
depends on the treatment.9

Figure 1 permits us to make point predictions and derive treatment effects regarding student
behavior. Point predictions indicate (ranges of) probabilities that are consistent with logit-QRE
behavior and analyze in particular whether a student is more likely to apply to school s1 or to
school s2. Based on Figure 1 we see that for each λ > 0,

P1 : p∗1(λ | P1, L) >
1
2 > p∗1(λ | P1, H), p∗2(λ | P1, L), p

∗
2(λ | P1, H) < 1

2 , and p∗3(λ | P1, L) <
1
2 < p∗3(λ | P1, H);

P2 : for each T ∈ {L,H}, p∗1(λ | P2, T ) ≥ 1
2 , p∗2(λ | P2, T ) <

1
2 , and p∗3(λ | P2, T ) >

1
2 ;

P3 : p∗1(λ | P3, L), p
∗
1(λ | P3, H) > 1

2 , p∗2(λ | P3, L) >
1
2 > p∗2(λ | P3, H), and p∗3(λ | P3, L) <

1
2 < p∗3(λ | P3, H).

As a consequence we formulate the first part of our first hypothesis as follows.

Hypothesis 1.a (point predictions).

P1 : In treatment L, student 1 is (students {2, 3} are) more (less) likely to apply to s1 than to s2.
In treatment H, student 3 is (students {1, 2} are) more (less) likely to apply to s1 than to s2.

P2 : Student 1 is weakly more likely, student 2 is less likely, and student 3 is more likely to apply
to s1 than to s2.

P3 : In treatment L, students {1, 2} are (student 3 is) more (less) likely to apply to s1 than to s2.
In treatment H, students {1, 3} are (student 2 is) more (less) likely to apply to s1 than to s2.

Treatment effects deal with comparative statics by studying how the probability with which
a student applies to school s1 is affected by the payoff x ∈ {0.3, 0.7} (i.e., the two treatments L

and H) that the student receives from being matched to her least preferred school. We distinguish
between ambiguous and unambiguous effects. Given a problem and a student, the treatment effect
is unambiguous if the logit-QRE probability in one treatment is always greater than in the other
treatment, i.e., independently of the rationality parameter λ. Formally, given a problem P and a
student i, the treatment effect is unambiguous if

for all λ, λ′ > 0, p∗i (λ | P , L) > p∗i (λ
′ | P , H) or for all λ, λ′ > 0, p∗i (λ | P , L) < p∗i (λ

′ | P , H).

We can observe from Figure 1 that there are four unambiguous effects.10 Specifically, in P1,
the probability with which student 1 (student 3) applies to s1 in treatment L is always greater
(smaller) than in treatment H. Similarly, in P3, the probability with which student 2 (student 3)
applies to s1 in treatment L is greater (smaller) than in treatment H.

9The structure of the limiting logit-QRE in Figure 1 hinges on the fact that students submit a single application.
We show in Appendix D that if students submit lists of length 2, then the limiting logit-QRE converges for all three
problems of both treatments to the student-optimal stable matching. Thus, the robustness of our results cannot be
analyzed with this alternative design.

10For all λ, λ′ > 0, p∗1(λ | P1, L) > p∗1(λ
′ | P1, H), p∗3(λ | P1, L) < p∗3(λ

′ | P1, H), p∗2(λ | P3, L) > p∗2(λ
′ | P3, H),

and p∗3(λ | P3, L) < p∗3(λ
′ | P3, H).
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The treatment effect is ambiguous if the comparison depends on the actual values λ takes in
the two treatments, i.e., if

there are λ, λ′, λ̃, λ̃′ > 0 such that p∗i (λ | P , L) > p∗i (λ
′ | P , H) and p∗i (λ̃ | P , L) < p∗i (λ̃

′ | P , H).

Ambiguous treatment effects occur for student 2 in P1, all three students in P2, and student
1 in P3. We are able to make some further predictions in these cases if we assume that λ is
treatment-independent. We first define

δi(λ | P) = p∗i (λ | P , L)− p∗i (λ | P , H),

i.e., the logit-QRE probability difference for student i between treatment L and treatment H in
problem P , as a function of λ > 0 (in both treatments). Figure 2 graphically presents this function
for all students in all problems.

Problem 1 Problem 2 Problem 3

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

−1.0

−0.5

0.5

1.0

λ

δ i
(λ

|P
j)

Figure 2: Logit-QRE probability difference δi(λ | P). Color scheme: (student 1, student 2, student 3) →
(black, dark-gray, light-gray).

It can be observed that only for student 1 in P3 there are values λ, λ′ > 0 such that δ1(λ | P3) > 0

and δ1(λ
′ | P3) < 0. So, for student 1 in P3 there is no clear treatment effect even under the

additional assumption that λ is the same in both treatments. For the other four ambiguous effects
we have that for all λ > 0, δ2(λ | P1) > 0, δ1(λ | P2) > 0, δ2(λ | P2) > 0, and δ3(λ | P2) < 0.

Hypothesis 1.b (treatment effects).

Unambiguous effects. Student 1 in P1 and student 2 in P3 apply to s1 more often and student
3 in {P1,P3} applies to s1 less often in treatment L than in treatment H.

Ambiguous effects. Student 1 in P2 and student 2 in {P1,P2} apply to s1 more often and
student 3 in P2 applies to s1 less often in treatment L than in treatment H.

11



Next, we derive predictions about the prevalence of the side-optimal stable matchings. Given λ,
let pI(λ | P , T ) be the probability with which the student-optimal stable matching µI is obtained in
problem P of treatment T . The probability pS(λ | P , T ) for the school-optimal stable matching is
similarly defined. The four panels in the left part of Figure 3 depict for each problem P ∈ {P1,P3}
and for each treatment T ∈ {L,H}, the trajectories of pI and pS as a function of λ. The two panels
in the right part of Figure 3 depict the probability difference

d(λ | P , T ) ≡ pI(λ | P , T )− pS(λ | P , T ).

Panel 3: Problem 3 − Treatment L Panel 4: Problem 3 − Treatment H

Panel 1: Problem 1 − Treatment L Panel 2: Problem 1 − Treatment H

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

λ

pI (λ
|P

j,T
),

pS
(λ

|P
j,T

)

Problem 1 Problem 3

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

−1.0

−0.5

0.0

0.5

1.0

λ

d(
λ|

P
j,T

)

Figure 3: To the left: probabilities of the student-optimal stable matching pI(λ | P, T ) (light-gray) and
the school-optimal stable matching pS(λ | P, T ) (black) under the logit-QRE in P1 and P3 for each of the
two treatments. To the right: probability difference d(λ | P, T ) in P1 and P3 for treatment T = H (black)
and treatment T = L (light-gray).

In all four panels in the left part of Figure 3, if λ = 0, i.e, all three students apply to each of
the two schools with probability 1

2
, then both µI and µS occur with the same probability (namely,

1
8
). Also, for each of the problems P1 and P3, pI is strictly increasing over the whole domain of λ

in treatment L but mostly decreases in λ in treatment H. The opposite happens for pS: it mostly
decreases in λ in treatment L but strictly increases over the whole domain of λ in treatment
H. This is reflected in the right part of Figure 3 where it can be observed that in each problem
P ∈ {P1,P3} and for all λ > 0, d(λ | P , L) > d(0 | P , L) = 0 = d(0 | P , H) > d(λ | P , H). These
inequalities allow us to formulate the following hypothesis.

Hypothesis 2 (side-optimal stable matchings). In each P ∈ {P1,P3}, it is more likely to
obtain µI than µS in treatment L and it is less likely to obtain µI than µS in treatment H.
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3 Results

We next present the results of our experiment. First, we statistically test our two hypotheses
in order to assess whether the logit-QRE makes sound directional predictions in our setting.
Afterwards, we estimate λ.

Treatment

Problem/Student L H

1 49% [0.062] 34%
(0.600) (0.263)

P1 2 18% [0.031] 8%
(0.107) (0.039)

3 40% [0.024] 62%
(0.424) (0.243)

1 72% [0.019] 62%
(0.129) (0.240)

P2 2 7% [0.069] 4%
(0.032) (0.012)

3 84% [0.067] 94%
(0.098) (0.028)

1 93% 99%
(0.006) (0.001)

P3 2 57% [0.040] 34%
(0.448) (0.219)

3 48% [0.025] 70%
(0.551) (0.209)

Table 5: Frequency that a student applies to
s1. In parenthesis [square brackets]: one-sided
p-values of the Wilcoxon signed-rank [Mann-
Whitney U] tests at the student level (pooled
over all six rounds of a problem) corresponding
to Hypothesis 1.

Matching

Problem/Treatment µI µS unstable

P1 L 0.302 (0.353) 0.272 0.426
H 0.197 (0.008) 0.451 0.352

P2 L 0.784 0.216
H 0.901 0.099

P3 L 0.432 (0.363) 0.370 0.198
H 0.241 (0.003) 0.599 0.160

Table 6: Probability distribution over matchings. In
parenthesis: one-sided p-values of the Wilcoxon signed-
rank tests at the group level (pooled over all six rounds
of a problem) corresponding to Hypothesis 2.

The relevant data for the statistical analysis is displayed in Tables 5 and 6. Table 5 indicates
the frequencies with which students apply to s1 and, thus, analyzes how subjects behave in the
different student roles. The corresponding predictions are in Hypothesis 1. We employ Wilcoxon
signed-rank tests for the within-treatments comparisons (point predictions) and Mann-Whitney
U tests for the between-treatments comparisons. Table 6 shows the probability distribution over
matchings that we obtained in the experiment. We focus in Hypothesis 2 on the probability pI

that the student-optimal stable matching and the probability pS that the school-optimal stable
matching is reached. For this reason the probabilities of all other matchings are added up under the
column “unstable.”11 For a visual overview of the per-round data and some additional statistical
tests we refer to Appendix C.

11Truly independent observations for all statistical tests are obtained by aggregating data over all six consecutive
rounds in which a particular problem is played. As an example, consider the hypothesis for treatment L that the
resulting matching in P1 is more likely to be µI than µS . For each of the six groups, we calculate the overall

13



Evidence on Hypothesis 1:
We show that the experimental data in Table 5 considerably supports Hypothesis 1.

Consider first P1. It is expected that in treatment L, student 1 is more and students 2 and 3
are less likely to apply to s1 than to s2. Also, in treatment H, student 3 is expected to be more
and students 1 are 2 are expected to be less likely to apply to s1 than to s2. Only the data for
student 1 in treatment L is outright against this prediction: the experimental frequency with which
the student applies to s1 is 49%, yet this frequency is expected to be greater than 50%. From a
statistical point of view, only the comparison for student 2 in treatment H is significant at the 5%
level (the one-sided p-value is 0.039). With respect to the treatment effects, students 1 and 2 are
expected to be more and student 3 is expected to be less likely to apply to s1 in treatment L than
in treatment H. The experimental data goes in the correct direction. The one-sided p-values of
the corresponding Mann-Whitney U tests are 0.062 for student 1, 0.031 for student 2, and 0.024
for student 3.

Consider next P2. It is expected that in both treatments, student 3 is more and student 2
is less likely to apply to s1 than to s2. It is evident from Table 5 that the experimental data is
completely in line with these predictions even though the comparison for student 3 in treatment L
is only significant at a one-sided p-value of 0.098. With respect to student 1, for whom the point
prediction was expressed in a weak sense, the hypothesis that this student applies to school s1 with
probability 1

2
cannot be rejected in either of the two treatments. The experimental data is also

consistent with the ambiguous treatment effects in Hypothesis 1: Students 1 and 2 are more and
student 3 is less likely to apply to s1 in treatment L than in treatment H. The one-sided p-values
of the corresponding Mann-Whitney U tests are 0.019 for student 1, 0.069 for student 2, and 0.067
for student 3.

Consider finally P3. It is expected that in treatment L, students 1 and 2 are more and student
3 is less likely to apply to s1 than to s2. Also, in treatment H, students 1 and 3 are expected to
be more and student 2 is expected to be less likely to apply s1 than to s2. The experimental data
is again consistent with these predictions. The comparisons for student 1 are in both treatments
significant at the 1% level. Finally, student 2 (student 3) is supposed to apply to s1 more (less)
often in treatment L than in treatment H. The data confirms these predictions: the one-sided
p-values of the Mann-Whitney U tests are 0.040 for student 2 and 0.025 for student 3. □

A first observation from Table 6 is that even though our setting is highly stylized, it is not
straightforward for subjects to coordinate in {P1,P3} on a Nash equilibrium in pure strategies.
A Nash equilibrium in pure strategies leads to a stable matching, however an unstable matching
is reached in P1 in more than 35% and in P3 in more than 16% of the cases. Moreover, the
probability distribution over matchings in these two problems does not coincide with the one
induced by the non-degenerate mixed strategy Nash equilibria in Table 4. To see this, we employ
Wilcoxon signed-rank tests at the group level to analyze whether the empirical distribution over

empirical probabilities pI and pS with which µI and µS are obtained for this P1. For each group, we then take
the difference d = pI − pS between these empirical probabilities. Thus, we obtain for each group a sole number
between -1 and 1. The associated Wilcoxon signed-rank test then analyzes whether the mean of these six numbers
is significantly greater than 0.
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matchings is different from the one that arises from the non-degenerate Nash equilibria in mixed
strategies. The (truly independent) observation for a group is the probability with which a
matching (µI , µS, or unstable) is reached over the course of the six rounds in which the problem
is played. We find that in treatment L of P1, pS is significantly different from 0.49 (two-sided
p = 0.0052). Also, in treatment H of P1, pS is significantly greater than 0.09 and 0.21 (one-sided
p ≤ 0.0003). And the probability of an unstable matching is significantly different from 0.42 in
treatment L (two-sided p < 0.0001) and treatment H (two-sided p = 0.0052) of P3. Finally, in P2

the unique stable outcome is “only” obtained in 78% of the cases in treatment L and in 90% of the
cases in treatment H. This hints at misplays, yet the per-round data at the bottom of Figure 5
in Appendix C provides evidence of learning and coordination effects because unstable matchings
occur less often in later rounds of a problem.

Evidence on Hypothesis 2:
Hypothesis 2 states that for each problem P ∈ {P1,P3}, it is more likely to obtain µI than
µS in treatment L and it is less likely to obtain µI than µS in treatment H. We find for P1

that the probability difference between µI and µS is 0.302 − 0.272 = 0.030 in treatment L and
0.197− 0.451 = −0.254 in treatment H. The one-sided p-values of the Wilcoxon signed-rank tests
at the group level are 0.3528 in treatment L and 0.0078 in treatment H. Similar observations hold
for problem P3: the probability difference between µI and µS is 0.432−0.370 = 0.062 in treatment
L (one-sided p=0.3625) and 0.241 − 0.599 = −0.358 in treatment H (one-sided p=0.0033). We
conclude that the experimental data is supportive of Hypothesis 2. □

In the final part of this section, we estimate the logit-QRE via maximum likelihood. Suppose that
a total of K subjects participate in a given treatment T ∈ {L,H} in each student role i. Let xt

l,i

be a particular observation for subject l in role i of round t ∈ {1, . . . , 6}. We define xt
l,i = 1 if

student l in role i applies in round t to school s1. Otherwise, xt
l,i = 0. Under the logit-QRE, p∗i (λ)

is the probability that xt
l,i = 1 and 1− p∗i (λ) is the probability that xt

l,i = 0. The joint likelihood
of observing the data is then

L(λ) =
3∏

i=1

K∏
l=1

6∏
t=1

p∗i (λ)
xt
l,i · (1− p∗i (λ))

1−xt
l,i .

The data can be pooled if it is assumed that subject behavior is time-independent, i.e., for all
t, t′ ∈ {1, . . . , 6}, xt

l,i = xt′

l,i ≡ xl,i.12 Then,

lnL(λ) = 6 ·
3∑

i=1

K∑
l=1

xl,i · ln(p∗i (λ)) + (1− xl,i) · ln(1− p∗i (λ)).

Let p̃i =
∑K

l=1 xl,i/K be the empirical probability from the experiment that subjects in student
role i apply to school s1. We finally obtain that

12Time-independence is a restrictive condition, but we do not have sufficient data points to perform an estimation
for each round.
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lnL(λ) = 6 ·K ·
3∑

i=1

p̃i · ln(p∗i (λ)) + (1− p̃i) · ln(1− p∗i (λ)).

In order to maximize this function, we calculate the equilibrium probabilities of the logit-QRE
numerically on a fine grid —the unique model parameter λ is varied in steps of 0.01 between 0
and 10, which means that 1000 different values for λ are considered— and evaluate the objective
function at these equilibrium values. For each of the 1000 estimations of λ we use a random
sample that consists of 60% of the available data for each student.13 This yields a distribution
of estimates for λ and allows us to analyze treatment effects. We denote by λ̂T

j the mean of the
estimated distribution for problem Pj of treatment T .

Table 7 presents the estimation results for three different models (utility functions). We first
concentrate on the case when the subjects are risk-neutral expected-payoff maximizers (Model I)
and the only parameter to be estimated is λ. The intuition of the logit-QRE is that larger values of λ
imply that choices are closer to Nash equilibrium behavior. In this sense, λ measures the rationality
of the observed behavior. In our experiment, P2 is arguably the simplest of the three problems.
In this problem, the continuum of mixed strategy Nash equilibria leads to the same (stable)
matching. In the other two problems, there are two stable matchings and a coordination problem
arises because different Nash equilibria induce different stable (or even unstable) matchings. Our
estimation results in Table 7 support this interpretation since in Model I, λ̂ is largest in P2 (for
both treatments).14 Furthermore, it is worth noting that in each of the problems P1 and P3, λ̂
is larger in treatment H than in treatment L. For a possible explanation, recall that for large λ,
the logit-QRE converges to µS in treatment H and to µI in treatment L. At the pure strategy
Nash equilibrium that induces µS, students apply to their “safety schools,” i.e., they maximize
the probability of being accepted. Yet, at the pure strategy Nash equilibrium that yields µI some
students take the risk of remaining unmatched (if some of the other students deviates). This risk
comes with the potential benefit of being matched to the good school. If the payoff of the (bad)
safety school is close to the payoff of the good school, which is the case in treatment H, then
a subject may prefer to send an application to her (bad) safety school, which would result in a
relatively large λ. On the other hand, if there is a big payoff difference between the good and the
(bad) safety school, which is the case in treatment L, the logit-QRE demands to make the risky
choice but some subjects might still apply to their (bad) safety school due to risk preferences (see,
e.g., Klijn, Pais, and Vorsatz, 201315), which would result in a relatively small λ. As a consequence,

13The log-likelihood function is strictly concave and we find an interior solution on the considered grid. Hence,
even though the logit-QRE is defined for all λ > 0, there is no need to widen the grid.

14It might be surprising that λ̂L
2 = 8.1266 is substantially greater than λ̂H

2 = 4.3436 even though there are only
minor treatment differences in Table 5. The logit-QRE trajectories in Figure 1 provide an explanation for this.
According to the empirical data, there is a high likelihood that student 3 applies to school s1. Yet, a high p∗3 requires
a substantially greater λ in treatment L than in treatment H.

15Klijn, Pais, and Vorsatz (2013) show experimentally that the student-optimal stable mechanism is more robust
to changes in the cardinal preference structure than the immediate acceptance mechanism and that subjects with
a higher degree of risk aversion (measured through a Holt-Laury lottery task) are more likely to play a “protective
strategy” under the student-optimal stable mechanism but not under the immediate acceptance mechanism.
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one could expect to obtain larger estimates of λ in treatment H than in treatment L for both P1

and P3.

P1 P2 P3

H L H L H L

Model I
λ 2.663 0.699 4.347 8.127 2.586 1.808

(0.089) (0.173) (0.255) (0.261) (0.073) (0.078)
Model II

λ 1.309 0.404 0.917 0.989 2.566 1.794
(0.024) (0.107) (0.048) (0.007) (0.071) (0.078)

r 1.000 1.000 0.979 0.993 0.001 0.001
(0.000) (0.000) (0.025) (0.008) (0.000) (0.000)

Model III
λ 4.764 1.390 4.346 2.280 11.372 1.798

(0.097) (0.093) (0.258) (0.104) (2.597) (0.078)

c 0.678 0.000 1.000 0.000 0.252 1.000
(0.030) (0.000) (0.000) (0.000) (0.025) (0.000)

Table 7: Maximum likelihood estimation results. Means and standard deviations (in parenthesis) are
obtained via 1000 random samples with 60% of the observations each. For each problem, treatment effects
are significant at two-sided p < 0.0001 (Mann-Whitney U test).

We address in Model II the question whether subjects’ risk aversion indeed affects the estimation
of λ by assuming a CARA utility function on expected payoffs.16 Equation (1) then becomes

p∗i (aij) =
eλ·[ui(aij ,p

∗
−i)

r/(1−r)]

eλ·[ui(ai1,p∗−i)
r/(1−r)] + eλ·[ui(ai2,p∗−i)

r/(1−r)]
,

where r is the Arrow-Pratt measure of risk aversion. If r = 0, subjects are risk-neutral; and if
r → 1, then ui(aij, p

∗
−i)

r/(1− r) tends to ln(ui(aij, p
∗
−i)).

Table 7 shows that r̂ is in all problems consistent across treatments, yet there are important
differences between problems. Risk aversion is maximal in P1 and P2, while r̂ → 0 in P3. It is
worth noting that player 1 has the dominant strategy p1 = 1 in P3, which implies that the optimal
behavior of this player is independent of her risk aversion. If one compares specifications under the
premise that λ is exogenous and is “supposed to be” constant across treatments, Model II improves
upon Model I. In Model I, the ratio |λ̂H

j /λ̂
L
j | is 3.81 in P1, 0.53 in P2, and 1.43 in P3. The ratios

for Model II are closer to 1 than the ratios of Model I: 3.24 in P1, 0.92 in P2, and 1.43 in P3.
Finally, we study in Model III whether the systematic differences of the between-treatment

estimates of λ in Model I are explained by subjects trying to coordinate on the student-optimal
stable matching. For that it is assumed that the utility function is a linear combination of the
expected payoffs and the probability that the student-optimal stable matching is reached. In
particular,

16We are very grateful to an anonymous referee for suggesting us to analyze the impact of risk preferences and
preferences for the student-optimal stable matching on the estimates of λ.
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p∗i (aij) =
eλ·[c·ui(aij ,p

∗
−i)+(1−c)·p(µI)]

eλ·[c·ui(ai1,p∗−i)+(1−c)·p(µI)] + eλ·[c·ui(ai2,p∗−i)+(1−c)·p(µI)]
,

where c ∈ [0, 1]. We find that the estimation outcome of this model is worse than that of Model
II. First, ĉ varies substantially between treatments and between problems (and not only between
problems as in Model II). And second, the ratio |λ̂H

j /λ̂
L
j | is 3.42 in P1, 1.90 in P2, and 6.32 in P3.

For all problems, these ratios are further away from 1 than the ratios of Model II. One natural
alternative to Model III is to assume that subjects have preferences for the expected group payoff
instead of preferences for the student-optimal stable matching. We also estimate this alternative
model and, perhaps surprisingly, no evidence of this type of preferences for efficiency is found. In
all cases, ĉ = 1.

4 Concluding remarks

An important part of the experimental literature on school choice focuses on comparing different
centralized assignment mechanisms. The theoretical literature is sometimes able to provide very
sharp predictions. For example, in an unconstrained setting in which subjects can rank all schools,
both the student-optimal stable mechanism and the top trading cycles mechanism are strategy-
proof, that is, in the induced simultaneous-move games subjects have an incentive to reveal their
preferences truthfully. One can then use the truth-telling rates observed in a laboratory experiment
to make inferences about the quality of the decisions. Since the immediate acceptance mechanism
is manipulable, the comparison of subject behavior between the student-optimal stable mechanism
and the immediate acceptance mechanism is not as straightforward, even in an unconstrained
setting. Thus, comparing truth-telling rates between mechanisms is only useful in certain clearly
defined instances. In general, there is a need to specify a behavioral model that permits the
derivation of testable predictions and compare the quality of the decisions between treatments.
The quantal response equilibrium is a natural tool in this respect.

With the help of a laboratory experiment we have analyzed the effects of changes in the cardinal
payoffs (i.e., relative preference intensities) on subject behavior for three stylized school choice
problems. Our main finding is that the logit-QRE correctly captures the qualitative changes of
both subject behavior and the resulting matching. We note that the logit-QRE can also be used
to derive predictions across mechanisms, which is a recurring topic in the experimental literature.
Given the potential interest for future research, we briefly discuss an example. Consider the
problem with three students (1, 2, and 3) and three schools (s1, s2, and s3) in Table 8. Each
school has 1 seat and gives a strictly positive payoff. Also assume that students submit lists of
size 3.
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Preferences Priorities
1 2 3 s1 s2 s3

Best match: s1 s2 s3 2 3 1

Second best: s2 s3 s1 3 1 2

Third best: s3 s1 s2 1 2 3

Table 8: Preferences of students over schools and priorities of schools over students.

There are three stable matchings. In the student-optimal stable matching, each student is
assigned to her best match. In the “median” stable matching, each student is assigned to her
second best match. And in the school-optimal stable matching, each student is assigned to her
worst match. The unconstrained student-optimal stable mechanism is strategy-proof, which implies
that agents report their preferences truthfully in the limiting logit-QRE. Since students cannot
remain unmatched under the immediate acceptance mechanism, the worst school must be ranked
last (not doing so is a weakly dominated strategy). Whether students rank their best school or
their second best school first in the limiting logit-QRE under the immediate acceptance mechanism
is a function of the payoff structure. If the payoff of the best and the second best school are “close
enough” to each other, the limiting logit-QRE is equal to the median stable matching. And if
there is a “suficient” payoff difference for these two schools, the student-optimal stable matching is
obtained.

Finally, part of the recent experimental literature on school choice studies mechanisms that in-
corporate concerns for affirmative action (i.e., Klijn, Pais, and Vorsatz, 2016; Kawagoe, Matsubae,
and Takizawa, 2018), allow for information acquisition (Chen and He, 2021), or employ a dynamic
assignment procedure (i.e., Klijn, Pais, and Vorsatz, 2019; Bó and Hakimov, 2020; and Dur, Ham-
mond, and Kesten, 2021). Also, there are innovative experimental designs that analyze the roots
of sub-optimal behavior in experimental matching markets (i.e., Guillen and Hakimov, 2017; Ding
and Schotter, 2017; Dur, Hammond, and Morrill, 2018; and Guillen and Veszteg, 2019). It seems
worthwhile to more closely study the predictive power of the quantal response equilibrium in these
settings.
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Appendix A: Instructions (translated from Spanish)

General Instructions

Dear participant, thank you for taking part in this experiment. The purpose of this session is to
study how people make decisions. The session will last about 90 minutes. In addition to the 3
Euro show-up fee you can – depending on your decisions – earn some more money. In order to
ensure that the experiment takes place in an optimal setting, we would like to ask you to abide to
the following rules during the whole experiment:

• Please, do not communicate with other participants!

• Do not forget to switch off your mobile phone!

• Read the instructions carefully. If something is unclear or if you have any question now or
at any time during the experiment, please ask one of the experimenters. However, do not
ask out loud, raise your hand instead. We will answer questions privately.

If you do not obey the rules, the data becomes useless for us and in this case we will have to
exclude you from this experiment and you will not receive any monetary compensation. Payoffs
during the experiment are expressed in ECU (experimental currency units). At the end of the
session you will receive 1 Euro for each ECU obtained in the course of the experiment.

Description

The basic decision environment in the experiment is as follows. There are three students —let us
call them E1, E2, and E3— that can be assigned to a school. There are two schools —denoted
C1 and C2— and each school can have 1 or 2 available seats (we will specify this later on in these
instructions).

Since the schools differ in their location and quality, students have different opinions regarding
which school they would like to attend. The desirability of schools in terms of location and quality
is expressed in a table such as the one reproduced below. Note: this is an illustrative example and
hence any table you will see later in the experiment might be different.

E1 E2 E3

Most preferred school C2 C1 C1

Least preferred school C1 C2 C2

Table 9: Preferences of students E1, E2 and E3 over schools

Each column gives the preferences of a particular student. Consider the column that is marked
E3. This column gives the preferences of student E3. and tells us that he/she would most of all
like to obtain a seat in school C1. Therefore, the least preferred school of student E3 is C2. Finally,
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not obtaining a seat at any of the schools is the worst possible outcome. The columns of E1 and
E2 have similar interpretations.

Some students have already a brother or sister attending one of the schools. Also, the students
differ in walking distance to the schools. The authorities use these and other factors to determine
the schools’ priorities over the students. Each school has a priority ordering where all students are
ranked. The priority orderings of the schools can be summarized in a table such as the one below.
Note: this is an illustrative example and hence any table you will see later in the experiment might
be different.

C1 C2

Highest priority student E1 E2

Second highest priority school E2 E3

Lowest priority school E3 E1

Table 10: Priority orderings of schools C1 and C2

Each column gives the priority ordering of a particular school. Consider the column that is
marked C2. This column gives the priority ordering of school C2 and tells us that this school gives
the highest priority to receiving student E2. If this is not possible, then school C2 gives priority
to student E3 to be enrolled. The lowest priority student of school C2 is student E1. The column
of C1 has similar interpretations.

The Matching Procedure

To decide if and how students are assigned to schools, the following procedure is followed. It
consists of two phases.

Phase 1. Students are asked to simultaneously and independently send an application to one
school. For instance, it can happen that the students apply to schools as described by the table
below. Here each column shows the application of a student.

E1 E2 E3

School applied to C2 C2 C1

Table 11: Applications of student E1, E2, and E3

Note: this is an illustrative example of three applications. Each student is free to apply to the
school that he/she thinks is appropriate. The application does not necessarily have to coincide
with the most preferred. In fact, in our example students E1 and E3 apply to their most preferred
school, but this is not the case for student E2.
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Phase 2. The students’ applications together with the schools’ priority orderings determine an
assignment of students to schools in the following way.

• Step 1: Each school that has received at least one application accepts the application from
the student with the highest priority (among all received applications). If a school with
two seats has received at least two applications, then it also accepts the application from
the student with the second highest priority (among all received applications). All other
applications (if any) are rejected.

• Step 2: Each student is assigned to the school that she applied to provided that the school
accepted her application. If the application of a student was rejected, then the student
remains without a seat.

The Experiment

In the beginning of the experiment, the computer randomly divides the participants into groups
of 3. The assignment process is random and anonymous, so no participant will know who is in
which group. Then, each participant in a group gets randomly assigned the role of a student in
such a way that one group member will be in the role of student E1, another group member will
be in the role of student E2, and a third member will be in the role of student E3.

You will play the basic decision situation explained above 18 times in total. The composition
of the group and the roles of the participants within each group do not change over the course of
the experiment (for example, if you are assigned the role of student E2, then this will be your role
until the end of the experiment; also, you will always be playing with the same participant in role
E1 and with the same participant in role E3). Every 6 rounds the numbers of seats school offer
change. The first table with student preferences and the second table with priority orderings of
schools remain the same in all 18 rounds of the experiment.

In each of the 18 rounds, payoffs are such that you receive 1 ECU if you end up at the school
you prefer most, x ECU if you are assigned to your second most preferred school, and 0
ECU if you end up unassigned. At the end of the experiment, we will sum up your payoffs over
the 18 rounds. Your final payoff will be equivalent of the sum of the per-round ECUs and the 3
Euro show-up fee.

The first thing you will see when the computer program starts is an illustrative example. Then,
there will be one trial round that does not count for your final payoff so that you can familiarize
yourself with the computer program. Afterwards, the first of the 18 rounds that count for payment
starts.

Note: in the experimental sessions of treatment H, the parameter x took the value 0.7; in the
experimental sessions of treatment L, the parameter x took the value 0.3.
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Appendix B: Nash equilibria

Let x be the per-round payoff for obtaining a seat at the second most preferred school, i.e., x = 0.3

in treatment L and x = 0.7 in treatment H. Recall that a mixed strategy of player/student i is
completely described by the probability pi ∈ [0, 1] with which the student applies to school s1 (so,
1− pi is the probability with which student i applies to school s2).

The set of NE in mixed strategies of problem P1

One can easily verify that the normal-form game is as follows:

1\2 s1 s2
s1 0, 0,x 0,x, x

s2 x, 0, x x,x,x

Table 12: Player 3 plays s1

1\2 s1 s2
s1 1, 0,x 1,x,1

s2 x,1,1 x, x, 0

Table 13: Player 3 plays s2

Thus, the best response correspondences of the three students are as follows:17

br1(p2, p3) =


1 if 1− p3 > x

[0,1] if 1− p3 = x

0 if 1− p3 < x

br2(p1, p3) =


1 if (1− p1)(1− p3) > x

[0,1] if (1− p1)(1− p3) = x

0 if (1− p1)(1− p3) < x

br3(p1, p2) =


1 if x > p1 + p2 − p1p2
[0,1] if x = p1 + p2 − p1p2
0 if x < p1 + p2 − p1p2

We compute the set of Nash equilibria by checking the three Cases I, II, and III below. Let
(p1, p2, p3) be a Nash equilibrium.

I: 1−p3 > x. It follows from br1 that p1 = 1. Since p1 = 1, (1−p1)(1−p3) = 0 < x. Therefore,
p2 = 0 by br2. Hence, x < 1 = p1 + p2 − p1p2. So, p3 = 0 by br3. Now one easily verifies that
the strategy-profile (p1, p2, p3) = (1, 0, 0) is indeed a Nash equilibrium.

II: 1 − p3 < x. It follows from br1 that p1 = 0. Since p1 = 0, (1 − p1)(1 − p3) = 1 − p3 < x.
Therefore, p2 = 0 by br2. Hence, x > 0 = p1 + p2 − p1p2. So, p3 = 1 by br3. Now one easily
verifies that the strategy-profile (p1, p2, p3) = (0, 0, 1) is indeed a Nash equilibrium.

III: 1− p3 = x. We distinguish between two subcases.
17For instance, given strategies (p2, p3) of students 2 and 3, the expected utility of student 1 from applying to s1

is 1 × (1 − p3) because s1 has only one seat and only student 3 has higher priority for the school than student 1.
Similarly, applying to s2 yields the expected utility x × 1, because s2 has two seats and student 1 has the second
highest priority for the school (so, applying to the school guarantees entrance).
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• Subcase 0 < p1 ≤ 1. Then, since x > 0, (1 − p1)(1 − p3) < x. Then, p2 = 0 by br2.
Since p3 = 1−x ∈ {0.3, 0.7} and p3 = br3(p1, p2), we have x = p1+p2−p1p2 = p1. Now
one easily verifies that the strategy-profile (p1, p2, p3) = (x, 0, 1 − x) is indeed a Nash
equilibrium.

• Subcase p1 = 0. Then, (1 − p1)(1 − p3) = x. Since p3 = 1 − x ∈ {0.3, 0.7} and
p3 = br3(p1, p2), we have x = p1 + p2 − p1p2 = p2. One easily verifies that the strategy-
profile (p1, p2, p3) = (0, x, 1 − x) is indeed a Nash equilibrium.

The set of NE in mixed strategies of problem P2

One can easily verify that the normal-form game is as follows:

1\2 s1 s2
s1 0, 0,x 0,x,x

s2 x, 0,x 0,x,x

Table 14: Player 3 plays s1

1\2 s1 s2
s1 1, 0,x 1,x, 0

s2 x,1, 0 0, x, 0

Table 15: Player 3 plays s2

Thus, the best response correspondences are as follows:

br1(p2, p3) =


1 if 1− p3 > p2x

[0,1] if 1− p3 = p2x

0 if 1− p3 < p2x

br2(p1, p3) =


1 if (1− p1)(1− p3) > x

[0,1] if (1− p1)(1− p3) = x

0 if (1− p1)(1− p3) < x

br3(p1, p2) =


1 if x > p1p2
[0,1] if x = p1p2
0 if x < p1p2

We compute the set of Nash equilibria by checking the three cases I, II, and III below. Let
(p1, p2, p3) be a Nash equilibrium.

I: 1−p3 > p2x. It follows from br1 that p1 = 1. Since p1 = 1, (1−p1)(1−p3) = 0 < x. Therefore,
p2 = 0 by br2. Hence, x > 0 = p1p2. So, p3 = 1 by br3. But then 0 = 1 − p3 > p2x = 0.
Hence, there is no Nash equilibrium in this case.

II: 1 − p3 < p2x. It follows from br1 that p1 = 0. Since p1 = 0, (1 − p1)(1 − p3) = 1 − p3 <

p2x ≤ x. Therefore, p2 = 0 by br2. Hence, x > 0 = p1p2. So, p3 = 1 by br3. But then
0 = 1− p3 < p2x = 0. Hence, there is no Nash equilibrium in this case.

III: 1− p3 = p2x. We distinguish among three subcases.

• Subcase (1− p1)(1− p3) > x. Then, p2 = 1 by br2. Thus, 1− p3 = x. From (1− p1)(1−
p3) > x and 1 − p3 = x we obtain (1 − p1)x > x, which, by x > 0, is equivalent to
p1 < 0. Hence, there is no Nash equilibrium in this subcase.
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• Subcase (1 − p1)(1 − p3) = x. Substituting 1 − p3 = p2x yields (1 − p1)p2x = x or
equivalently (because x ̸= 0), (1 − p1)p2 = 1. Then, since p1, p2 ∈ [0, 1], p1 = 0 and
p2 = 1. Since 1 − p3 = p2x, p3 = 1 − x < 1. However, from x > 0 = p1p2 and br3 it
follows that p3 = 1. Hence, there is no Nash equilibrium in this subcase.

• Subcase (1 − p1)(1 − p3) < x. Then, p2 = 0 by br2. From 1 − p3 = p2x, p3 = 1. Now
one easily verifies that for each p1 ∈ [0, 1] the strategy-profile (p1, p2, p3) = (p1, 0, 1)

is indeed a Nash equilibrium.

The set of NE in mixed strategies of problem P3

One can easily verify that the normal-form game is as follows:

1\2 s1 s2
s1 1, 0, x 1,x,1

s2 x,1,x 0, x,x

Table 16: Player 3 plays s1

1\2 s1 s2
s1 1,1,1 1, x, 0

s2 x,1, 0 0, x, 0

Table 17: Player 3 plays s2

In particular, player 1 has the dominant strategy p1 = 1. The best response correspondences of
the other two players are then as follows:

br2(1, p3) =


1 if 1− p3 > x

[0,1] if 1− p3 = x

0 if 1− p3 < x

br3(1, p2) =


1 if x > p2
[0,1] if x = p2
0 if x < p2

We compute the set of Nash equilibria by checking the three cases I, II, and III below. Let
(p1, p2, p3) be a Nash equilibrium.

I: 1 − p3 > x. It follows from br2 that p2 = 1. Then, from br3 and x < 1 = p2, p3 = 0. One
easily verifies that the strategy-profile (p1, p2, p3) = (1, 1, 0) is indeed a Nash equilibrium.

II: 1 − p3 < x. It follows from br2 that p2 = 0. Then, from br3 and x > 0 = p2, p3 = 1. One
easily verifies that the strategy-profile (p1, p2, p3) = (1, 0, 1) is indeed a Nash equilibrium.

III: 1 − p3 = x. Since p3 = 1 − x ∈ {0.3, 0.7} and p3 = br3(1, p2), x = p1p2 = p2. One easily
verifies that the strategy-profile (p1, p2, p3) = (1, x, 1 − x) is indeed a Nash equilibrium.
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Figure 4: The set of Nash equilibria in mixed strategies for problem P1 (blue dots), for problem P2

(yellow line segment), and for problem P3 (red dots with cross). The strategy-profiles labeled L (H) are
only Nash equilibria for treatment L (H).
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Appendix C: Disaggregated data

Treatment L − Student 1 Treatment L − Student 2 Treatment L − Student 3

Treatment H − Student 1 Treatment H − Student 2 Treatment H − Student 3

Problem 1Problem 2 Problem 3 Problem 1Problem 2 Problem 3 Problem 1Problem 2 Problem 3

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

Figure 5: Probability that a student applies to school s1 in a given round.

Figure 5 indicates how subject behavior changes over rounds. One natural hypothesis regarding
learning is that repetitions bring subject behavior closer to the limiting logit-QRE. To statistically
analyze this hypothesis, we divide the six rounds in which a particular problem is played into two
subsets of three rounds each, namely the first three rounds and the last three rounds. Table 18
shows that all differences that are significant at the 5% level (4 comparisons out of a total of 18)
support this hypothesis.
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Treatment L Treatment H

Problem Student First Last QRE First Last QRE

1 48% (0.3998) 51% 100% 35% (0.3199) 33% 0%
P1 2 11% (0.1053) 25% 0% 9% (0.7575) 7% 0%

3 38% (0.4014) 42% 0% 56% (0.0364) 68% 100%

1 68% (0.0766) 75% 50% 62% (0.3797) 63% 50%
P2 2 12% (0.0094) 2% 0% 5% (0.1999) 2% 0%

3 81% (0.1375) 86% 100% 90% (0.0193) 98% 100%

1 94% (0.4924) 93% 100% 99% (0.1678) 100% 100%
P3 2 63% (0.1896) 52% 100% 42% (0.0124) 26% 0%

3 43% (0.2513) 53% 0% 64% (0.1461) 75% 100%

Table 18: Frequency that a student applies to school s1 in the first three rounds (column “First”) and
in the last three rounds (column “Last”) in which a problem is played. The limiting logit-QRE strategy
is indicated in column “QRE.” One-sided p-values of the Mann-Whitney U tests at the student level are
presented in parenthesis. Significant differences at the 5%-level are indicated in boldface.

Figure 6 shows the distributions over matchings per round.

Treatment L − Problem 1 Treatment L − Problem 2 Treatment L − Problem 3

Treatment H − Problem 1 Treatment H − Problem 2 Treatment H − Problem 3
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Matching school−optimal student−optimal unstable

Figure 6: Probability distribution over matchings per round.

Table 19 analyzes the hypothesis that repetitions help reaching a stable matching. We divide the
six rounds in which a particular problem is played again into two subsets of three rounds each (the
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first three and the last three rounds, respectively). We observe that in all six instances in Table 19,
the frequency of reaching an unstable matching is substantially lower in the last three than in the
first three rounds. The effect is significant at the 5%-level in five out of the six instances.

Treatment L Treatment H

Problem First Last First Last

P1 49% (0.0550) 35% 47% (0.0011) 23%
P2 27% (0.0287) 16% 15% (0.0094) 5%
P3 28% (0.0074) 11% 30% (0.0000) 1%

Table 19: Frequency of unstable matchings in the first three rounds (column “First”) and in the last three
rounds (column “Last”) in which a problem is played. One-sided p-values of the Mann-Whitney U tests at
the group level are presented in parenthesis.
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Appendix D: Lists of length 2

We analyze the robustness of the theoretical results for the immediate acceptance and the student-
optimal stable mechanism, respectively, when students submit lists of length 2. Note that the
two mechanisms do not coincide in general in this setting.18 For each problem P ∈ {P1,P2,P3},
PIA and PDA refer to problem P under the immediate acceptance and the student-optimal stable
mechanism, respectively. A mixed strategy of player/student i is completely described by the
probability pi ∈ [0, 1] with which the student uses strategy s1, s2 (so, 1− pi is the probability with
which student i uses strategy s2, s1). Again, x is the per-round payoff for obtaining a seat at the
second most preferred school, i.e., x = 0.3 in treatment L and x = 0.7 in treatment H. Table 26
shows the probability distribution of matchings induced by the Nash equilibria. There are neither
differences between treatments nor between mechanisms. Our most important findings are the
logit-QRE predictions in Figure 7. Together with Table 26 they establish that in both treatments,
the student-optimal stable matching is obtained in the limiting logit-QRE. Therefore, we expect
that a similar experiment applied to this alternative setting would yield results that are different
from our study.

The set of NE in mixed strategies of problems PIA
1 and PDA

1

One can easily verify that the normal-form game is as follows:

1\2 s1, s2 s2, s1
s1, s2 x,x, x x,x, x

s2, s1 x,x, x x,x,x

Table 20: Player 3 plays s1, s2

1\2 s1, s2 s2, s1
s1, s2 1,x,1 1,x,1

s2, s1 x,1,1 x, x,x

Table 21: Player 3 plays s2, s1

Thus, the best response correspondences are as follows:

br1(p2, p3) =

{
1 if p3 ̸= 1

[0,1] if p3 = 1

br2(p1, p3) =

{
1 if p1 ̸= 1 and p3 ̸= 1

[0,1] if p1 = 1 or p3 = 1

br3(p1, p2) =

{
0 if p1 ̸= 0 or p2 ̸= 0

[0,1] if p1 = 0 and p2 = 0

We compute the set of Nash equilibria by checking the two cases I and II below. Let (p1, p2, p3)
be a Nash equilibrium.

I: p3 ̸= 1. From br1, p1 = 1. Then, from br2 and br3, p2 ∈ [0, 1] and p3 = 0, respectively. One
easily verifies that for each p2 ∈ [0, 1], the strategy-profile (p1, p2, p3) = (1, p2, 0) is indeed
a Nash equilibrium.

18For example, Pathak and Sönmez (2013) and Bonkoungou and Nesterov (2020) theoretically compare the
strategic manipulability of several mechanisms, including the immediate acceptance mechanism and the student-
optimal stable mechanism.
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II: p3 = 1. Then, from br3, p1 = p2 = 0. One easily verifies that the strategy-profile (p1, p2, p3) =
(0, 0, 1) is indeed a Nash equilibrium.

The set of NE in mixed strategies of problems PIA
2

One can easily verify that the normal-form game is as follows:

1\2 s1, s2 s2, s1
s1, s2 0,x, x 0,x,x

s2, s1 x, 0,x 0,x,x

Table 22: Player 3 plays s1, s2

1\2 s1, s2 s2, s1
s1, s2 1, 0,1 1,x, 0

s2, s1 x,1, 0 0, x,x

Table 23: Player 3 plays s2, s1

Thus, the best response correspondences are as follows:

br1(p2, p3) =


1 if 1− p3 > xp2
[0,1] if 1− p3 = xp2
0 if 1− p3 < xp2

br2(p1, p3) =


1 if (x+ 1)p1p3 > x− 1 + p1 + p3
[0,1] if (x+ 1)p1p3 = x− 1 + p1 + p3
0 if (x+ 1)p1p3 < x− 1 + p1 + p3

br3(p1, p2) =


1 if x(p1 + p2) > (1 + x)p1p2
[0,1] if x(p1 + p2) = (1 + x)p1p2
0 if x(p1 + p2) < (1 + x)p1p2

We compute the set of Nash equilibria by checking the three Cases I, II, and III below. Let
(p1, p2, p3) be a Nash equilibrium.

I: 1 − p3 > xp2. Since p2 ≥ 0 and x > 0, p3 < 1. From br1, p1 = 1. Since (x + 1)p1p3 =

(x+1)p3 < x+ p3 = x− 1+ p1 + p3, it follows from br2 that p2 = 0. Then, from br3, p3 = 1,
which contradicts p3 < 1. Hence, there is no equilibrium in this case.

II: 1 − p3 < xp2. Since p3 ≤ 1, p2 > 0. From br1, p1 = 0. From br3, p3 = 1. Since
(x + 1)p1p3 = 0 < x = x − 1 + p1 + p3, it follows from br2 that p2 = 0, which contradicts
p2 > 0. Hence, there is no equilibrium in this case.

III: 1− p3 = xp2. We distinguish among three subcases.

• Subcase p2 = 0. Since 1−p3 = xp2, p3 = 1. One easily verifies that for each p1 ∈ [0, 1],
the strategy-profile (p1, p2, p3) = (p1, 0, 1) is indeed a Nash equilibrium.

• Subcase p2 = 1. Since 1−p3 = xp2, p3 ∈ (0, 1). Hence, from br3, x(p1+p2) = (1+x)p1p2,
i.e., p1 = x ∈ (0, 1). Then, from br2, (x+ 1)p1p3 = x− 1 + p1 + p3. Thus, (x+ 1)xp3 =

p3 − 1. In the case that x = 0.3, we obtain p3 > 1, and in the case that x = 0.7, we
obtain p3 < 0. In either case, this yields a contradiction with p3 ∈ (0, 1). Hence, there
is no equilibrium in this subcase.
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• Subcase p2 ∈ (0, 1). Since 1− p3 = xp2, p3 ∈ (0, 1). From br3, x(p1 + p2) = (1 + x)p1p2.
From br2, (x+1)p1p3 = x−1+p1+p3. Using the latter equality, substituting p3 = 1−xp2,
applying straightforward simplifications, and finally substituting x(p1+p2) = (1+x)p1p2
yields p1p2 =

x
1−x2 . Therefore,

x(p1 + p2) = (1 + x)p1p2 = (1 + x)
x

1− x2
= (1 + x)

x

(1− x)(1 + x)
=

x

(1− x)
.

Hence, p1 + p2 =
x

(1−x)
. Finally, it is easy to check that for each of x = 0.3 and x = 0.7,

the unique solution (p1, p2) of the system p1p2 =
x

1−x2 and p1+p2 =
x

(1−x)
satisfies p2 > 1

which contradicts p2 ∈ (0, 1). Hence, there is no equilibrium in this subcase.

The set of NE in mixed strategies of problem PDA
2

One can easily verify that each profile of pure strategies induces payoffs (0, x, x). Therefore, each
profile of mixed strategies is a Nash equilibrium.

The set of NE in mixed strategies of problems PIA
3 and PDA

3

One can easily verify that the normal-form game is as follows:

1\2 s1, s2 s2, s1
s1, s2 1,x, x 1,x,x

s2, s1 x,1,x 1, x,x

Table 24: Player 3 plays s1, s2

1\2 s1, s2 s2, s1
s1, s2 1,1,1 1, x,x

s2, s1 x,1,x 1, x,x

Table 25: Player 3 plays s2, s1

Thus, the best response correspondences are as follows:

br1(p2, p3) =

{
1 if p2 ̸= 0

[0,1] if p2 = 0

br2(p1, p3) =

{
1 if p1 ̸= 1 or p3 ̸= 1

[0,1] if p1 = 1 and p3 = 1

br3(p1, p2) =

{
0 if p1 ̸= 0 and p2 ̸= 0

[0,1] if p1 = 0 or p2 = 0

We compute the set of Nash equilibria by checking the two cases I and II below. Let (p1, p2, p3)
be a Nash equilibrium.

I: p2 ̸= 0. From br1, p1 = 1. Then, from br3, p3 = 0. Thus, from br2, p2 = 1. One easily verifies
that the strategy-profile (p1, p2, p3) = (1, 1, 0) is indeed a Nash equilibrium.

II: p2 = 0. Then, from br2, p1 = p3 = 1. One easily verifies that the strategy-profile (p1, p2, p3) =
(1, 0, 1) is indeed a Nash equilibrium.
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Problem Treatment (p̂1, p̂2, p̂3) µI µS unstable

PIA
1 ,PDA

1 L,H (1, p̂2, 0) for each p̂2 ∈ [0, 1] 1 0 0

L,H (1, 0, 1) 0 1 0

PIA
2 L,H (p̂1, 0, 1) for each p̂1 ∈ [0, 1] 1 1 0

PDA
2 L,H (p̂1, p̂2, p̂3) for each p̂1, p̂2, p̂3 ∈ [0, 1] 1 1 0

PIA
3 ,PDA

3 L,H (1, 1, 0) 1 0 0

L,H (1, 0, 1) 0 1 0

Table 26: Lists of length 2. Probability distribution over matchings induced by Nash equilibria
in mixed strategies (p̂1, p̂2, p̂3). Recall that in P2, µI = µS .

Panel 5: Problem 3 − Treatment L Panel 6: Problem 3 − Treatment H

Panel 3: Problem 2 − Treatment L Panel 4: Problem 2 − Treatment H

Panel 1: Problem 1 − Treatment L Panel 2: Problem 1 − Treatment H

1 5 9 13 17 21 25 29 1 5 9 13 17 21 25 29
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Figure 7: Lists of length 2. Logit-QRE probabilities under the immediate acceptance mechanism.
Color scheme: (p∗1, p

∗
2, p

∗
3) → (black, dark-gray, light-gray).
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